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Unstable periodic solutions embedded in a shell model turbulence
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An approach to intermittency of a shell model turbulence is proposed from the viewpoint of dynamical
systems. We detected unstable solutions of the Gledzer-Ohkitani-Yamada shell model and studied their relation
to turbulence statistics. One of the solutions has an unstable periodiqd@B@), which shows an intermit-
tency where the scaling exponents of the structure function have a nonlinear dependence on its order, quite
similar to that of turbulence solution at the same parameter values. The attractor in the phase space is found to
be well approximated by a continuous set of solutions generated from the UPO through a one-parameter phase
transformation, which implies that the intermittency of the shell model turbulence is described by this UPO.
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Universal scaling property of the three-dimensionaltions. In this model the wave number is one dimensional and
Navier-Stokes turbulence is one of the fundamental problemdiscretized by octaves d =21"% (j=1,2,...N), with
in understanding fluid turbulence. Since Landau’s famousvhich a complex velocity; variable is associated. The num-
note on the Kolmogorov universality theory in 194441  ber of the shellsN, is usually taken to be 10-30. The dy-
scaling, many phenomenological models have been prohamical equation for the complex shell velocity is
posed for the intermittency, and rather good numerical agree-
ments have been obtained between these models and expefid
ments, on the scaling exponents of the structure functions| dt
However, these models have remained phenomenological,
and do not give an insight into a dynamical origin of the +164, @
intermittency. . . ]
Recently, in the case of a plane Couette turbulence, Kawa¥here * denotes the complex conjugate, and the coupling
hara and Kid41] showed that some mean properties includ-constants are taken as;=k;, bj=-0dk;_,, ¢;=(1
ing the mean velocity profile as well as the time development™ 9)Kj-2, andb;=c,=c,=ay_;=ay=by=0 to conserve
of coherent structures can be described by one of the urihe energyE==;|u;|* when the viscosity and the external
stable periodic orbitfUPO9 embedded in the turbulence forcing f vanish. We are interested in the cased#t 1/2,
orbits. Their success gives us an expectation that UPOs iwhere the heIicityH=2]~(—1)ka|uj|2 is also conserved as
fully developed turbulence, if found, would give basic infor- in Navier-Stokes turbulencks], but here we leaveS as a
mation of statistical properties of turbulence. However, at thevariable parameter for later use in numerical pursuit of UPO.
present stage of numerical facilities, it is still impossible toln this study the external forcing is added to the first shell to
detect UPOs due to the extremely large number of degrees @fvoid an unessential difficulty caused by energy transfer to
freedom and the strong instability of the Navier-Stokes turlower wave numbers.
bulence. Many numerical evidences have been found for the K41
Instead, in this paper, we consider a shell model turbuscaling of the energy spectrum in the inertial range of the
lence as a small model of Navier-Stokes turbulence, anghell model3,5]. As for the higher order structure functions,
study its unstable solutions and their statistics, showing thag deviation from the K41 scaling, i.e., intermittency, has also
as far as numerical pursuit of the UPO is successful, théeen found similarly to the Navier-Stokes turbulefiée 8].
intermittency in the shell model is described by one of theAlso the probability density functiotiPDF) of the velocity
UPOs and that basic properties of the turbulence statistics amariableu;, which corresponds to the velocity difference in
explained from this single UPO. the Navier-Stokes case, has been found to have more devia-
The shell model was first introduced by GledZ&t to  tion from the Gaussian distribution function at higher wave
describe two-dimensional turbulence by its steady solutionsaumberd9].
Later Yamada and OhkitariB] complexified the model to Even in the shell model, it is difficult to detect the UPOs
describe three-dimensional turbulence by its chaotic solunumerically in its chaotic stage corresponding to the fully
developed turbulence because of their strong instability. Let
us then utilize the property of the shell model—that wiien
*Present address: IBM Research, Tokyo Research Laboratorgets apart from 1/2, the chaotic solution becomes nonchaotic
1623-14, Shimotsuruma, Yamato-shi, Kanagawa 242-8502, Japahl0]. We first obtain limit cycles for<1/2, and then trace
Email address: seikato@jp.ibm.com the limit cycle along the following two paths in the param-
Present address: Research Institute for Mathematical Sciencegter space %,8): (a) (1.5x10 2,0.16)—(1.5x10 *,0.50)
Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, and (b) (1.95<10 30.4973)-(1.95x10 3,0.50)— (1.5
Kyoto 606-8502, Japan. Email address: yamada@kurims.kyotoxX 10~ 2,0.50), where the destination (X80 2,0.50) is the
u.ac.jp chaotic state in which the intermittent fully developed turbu-
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FIG. 1. (Color Time evolution of the intermittency solution B ”
(green ling and the turbulence solutiofred ling in the space of 10 : : : : ;
(Re(ug), Im(ug), Im(ug)). % 4 = 9 2 4 &

us
lence is realized. For the path), we employ the Newton-
Raphson method, which has been applied to identify stead%/
solutions of the shell mod¢l1]. For tracing the patkb), we ol
use the Mees methdd 2,13, an extension of the Newton-

u;(0) and the period’. a chaotic solution(which we will call turbulence solution

We found two kinds of unstable solutions fow,¢) hereafter at the same values of parameters. We see that the
=(1.5x1073,0.50) andN=12. One is an unstable steady Ntermittency solution is embedded in the turbulence solu-

solution, which is found, by the patf®), with the errorA, tion. The time development of the energy transfer function in
=|Uj| being about 10% for all j. The energy spectrum of Iow wave number region shows two peaks in one period,
this steady solution shows 5/3 power law in the inertial while that at the highest wave number shows eight peaks,

) ...indicating that the intermittency solution has a ramifying
range and the sum of the phases of sequential three Veloc'"%ﬁscade process of energy, as assumed in the Navier-Stokes
Uj, Uj+1, andu;, , is equal to 3r/2 (mod 2), which is the '

. LT turbulence. In Fig. 2, we show the PDF of lmj together
ideal value for the energy cascade pracess maximizing thﬁ/ith that of the turbulence solution. We see that the PDF of
energy flux towards higher wave numbers, although th ;

steady solutions dive no enerav cascade. In the case of in?he intermittency solution outlines the shape of the PDF of
ready 9 : gy cas ’ " "Mhe turbulence solution. Accordingly, the statistical properties
nite number of shells without viscosity and external forcing,

the model equatiofil) allows two steady solutions of the_: tL_eruIence solution_are expected to be well described
’ by this intermittency solution.

U= CWK-13 | = (@)~ H3+log(o-1)/3 @) To see it more quantitatively, we calculated the scaling

R N ’ exponent{, of the pth order structure functiorSy(k;)

= P i
where C{Y) and C(® are complex constants periodic with ~(|u;|"), where the brackets stand for the time average. The
J { viscosity for this solution is not small enough to produce a

respect tg with period 3[10]. The slope of the energy spec- _ =~ ""> 7 . . o
; ! wide inertial range necessary especially for the normal fitting
trum suggests that the unstable steady solution obtained in .
ethod for large values @ For this reason, we make use of

our calculation may approach the former stgady solution o he fitting method of the least squares with the extended
Eqg. (2) asv—0, while in the case of & §<1 in our calcu- self-similarity (ESS [15,16
lation, no solution was found which may correspond to the y '

FIG. 2. (Color) Log-linear plots of PDFs for the intermittency
ution (green ling and turbulence solutiofred line.

latter solution. This solution corresponds to the standard Sp(k,)zss(k,)gp 3)
model solution of the unstable fixed point found by Kock- ! )
elkorenet al. of the shell mag 14]. for the evaluation of, in the wave number range of<lj

The other unstable solution is an unstable periodic solu<s, where the time-averaged energy flux
tion, which was detected by the path) when we started

from the limit cycle at ¢, 5) = (1.95x 10~ ,0.4973). The pe- dJ

riod of this solution isT=179.98, and the relative error Hj=< T > |uj|2>

A}e'z |[u;(T)—u;(0)]/u;(0)| is about 10° for all j. As de- =1

scribed below, this solution shows the intermittency, and we = (=K Im(Uu;u;j 4 1Uj4 2~ 7Uj—1U;Uj 1 1)) (4)

refer to this solution as the intermittency solution. The larg-

est eddy turnover tim&, =27/(\/Ek,) is equal to 65.6 and of the intermittency solution takes a constant vallig~ e

the Kolmogorov time scale is 1.20. We note that the period=<2v21kj2|uj|2>. Figure 3 shows the scaling exponents ob-
of the solution is around twice the largest eddy turnovertained in this way for the intermittency solution and for the
time, consistent with the fact that the periodic solution con-turbulence solution. We see that the intermittency solution
sists of similar two parts, as seen in Fig. 1 where the orbit oBhows a multiscaling property, and the scaling exponents
this solution in the phase space is shown, by takinguRe( agree well with those obtained from the turbulence solution.
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FIG. 3. Scaling exponeny, of the pth order structure function

obtained by ESS fitting for the intermittency solutidn’) and tur- 02 |
bulence solution©). The error bars show the standard deviations
obtained from the method of the least squares. The dotted line cor-
responds to K414,=p/3). In the inset, we show the log-log plot
of the sixth order structure function against the third order structure |
function in the range of £j=<5. The symbols are the same as for
the scaling exponents. The slopes are 2.0 for K41, 1.82 for the oa

intermittency solution, and 1.81 for the turbulence solution. 04 02 0 02 04
Re(ug)

Im(us)
o

N,

This means that the basic statistical properties of the turbu-
lence are well approximated by this intermittency solution
which may be considered to be a skeleton of the turbulence.
This agreement of the scaling exponents may seem curi-
ous, as the intermittency solution shares only a small part of

0.2

0.1

the region in the phase space occupied by the turbulence E°

solution (Fig. 1). The nonforced shell model is known to o { :

have a phase symmetry corresponding to the spatial transla- ' N\
tional symmetry of the Navier-Stokes equatip®,17]: If oz ‘
{u;(t)} is a solution of the shell model, thefu{*#)(t)}, 02 01 0 01 02

. . . Re(u
which is defined as o
(c)

ult =gy, . . »
I I FIG. 4. (Color) Time evolution of the shell velocitie®) u,, (b)

ug, and(c) ug of the intermittency solution in the complex plane. In

each figure, the green line represents the intermittency solution and

the red line represents the turbulence solution.

0, Al —
uod —gle-ay,.
ulhP=e""u;, (5)

where# and ¢ are arbitrary real constants ajet1 (mod 3) . ) . .
is also a solution of the shell model. In our case, we added ENCY solution. Asp is an arbitrary constant, the orbit af

constant external forcing term to the first shell, and the phasge) thus generates a continuous set of the intermittency so-
symmetry is reduced to the followirgee Eq.(5)]: lutions, which this t|m¢ cover most of the regigattractoy
of the turbulence solution in the phase space. In other words,

uj(d’): uj, the attractor is well approximated by the continuous set gen-

erated from a single intermittency solution, and this explains

uj(f)l: e‘¢uj , W_hy the statistical properties of thg single solution agree well
with those of the turbulence solution.

uj(f)zz —i¢uj ) (6) The argument on the symmetry recovery given by Frisch

[18] may be appropriate to be mentioned here. He claimed
In Fig. 4 we show the orbits afi;, ug, andug of the inter-  that the symmetries of the Navier-Stokes equation, which are
mittency solution and of the turbulence solution. Again, webroken in the process of transition to turbulence, recover “in
see that while the orbits af; share a similar area, the orbits a statistical sense” in the inviscid limit. In our study of the
of ug andug of the intermittency solution take only a small shell model, the turbulence solution recovers its phase sym-
part of the region of the turbulence solution. However, themetry by wandering around the area in the phase space cov-
phase transformatio(6) means that the rotated orbit of  ered by a set of rotated intermittency solutions, just as Frisch
(ug) by an angles (— ¢) is also an orbit of a solution that claimed. Also a remark should be made on the instability of
has exactly the same statistical properties as the intermithe orbit. We calculated the Lyapunov exponeRjs(1=|
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=<2N) along with the intermittency solution and with the tur- of a real valued Gledzer-Ohkitani-Yamada model. He dis-
bulence solution, and substitute them into the Kaplan-Yorkeussed the intermittency in relation to the stability of the

formula for attractor dimensioByy, manifold of r,=0 derived from Eq.(8) of Ref.[19]. It is

1P 3 interesting that in our case essential properties of the turbu-
lence are involved in a single UPO, rather than a multidi-
Dky=p— N =max J Ni=0¢ . . . ’
ky=P Np+1 ,—Z‘l ' (p X{ J-Zl J ]) mensional manifold.
(7) In conclusion, we have detected two kinds of unstable

) ) ] o solutions in the shell model. We showed that the scaling
The obtained value for the intermittency solution is 6.28,axponents of the intermittency solution agree well with those
which approximates 7.02 for the turbulence solution. Obvi-of the turbulence solution. The attractor is approximated by a
ously the continuous set of the solutions generated by thggntinuous set generated from a single intermittency solution
intermittency solution through one-parameter phase transfokyough the phase transformation. Therefore, basic statistical
mation is two-dimensional in contrast with the Kaplan-Yorke yrgperties of the intermittency of the shell model turbulence
dimension of the attractor, 7.02. This suggests that the attragsn pe described by the intermittency of the unstable peri-
tor is thin in the orthogonal directions to the two-dimensionalggic orbit. Detailed structure of unstable periodic orbits is
continuous set. This conjecture may be supported by the obyow under investigation and will be reported.
servation in Fig. 1, that the attractor is nearly flat in the
horizontal direction while very thin in the vertical direction. = The authors would like to thank G. Kawahara and S. Kida
We should mention the burstlike structure found byfor their fruitful comments. They are also grateful to H. Na-
Okkels[19], who investigated the behavior of local attractor kao for his continuous encouragement.
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