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Unstable periodic solutions embedded in a shell model turbulence
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An approach to intermittency of a shell model turbulence is proposed from the viewpoint of dynamical
systems. We detected unstable solutions of the Gledzer-Ohkitani-Yamada shell model and studied their relation
to turbulence statistics. One of the solutions has an unstable periodic orbit~UPO!, which shows an intermit-
tency where the scaling exponents of the structure function have a nonlinear dependence on its order, quite
similar to that of turbulence solution at the same parameter values. The attractor in the phase space is found to
be well approximated by a continuous set of solutions generated from the UPO through a one-parameter phase
transformation, which implies that the intermittency of the shell model turbulence is described by this UPO.
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Universal scaling property of the three-dimension
Navier-Stokes turbulence is one of the fundamental proble
in understanding fluid turbulence. Since Landau’s famo
note on the Kolmogorov universality theory in 1941~K41
scaling!, many phenomenological models have been p
posed for the intermittency, and rather good numerical ag
ments have been obtained between these models and ex
ments, on the scaling exponents of the structure functio
However, these models have remained phenomenolog
and do not give an insight into a dynamical origin of t
intermittency.

Recently, in the case of a plane Couette turbulence, Ka
hara and Kida@1# showed that some mean properties inclu
ing the mean velocity profile as well as the time developm
of coherent structures can be described by one of the
stable periodic orbits~UPOs! embedded in the turbulenc
orbits. Their success gives us an expectation that UPO
fully developed turbulence, if found, would give basic info
mation of statistical properties of turbulence. However, at
present stage of numerical facilities, it is still impossible
detect UPOs due to the extremely large number of degree
freedom and the strong instability of the Navier-Stokes t
bulence.

Instead, in this paper, we consider a shell model tur
lence as a small model of Navier-Stokes turbulence,
study its unstable solutions and their statistics, showing t
as far as numerical pursuit of the UPO is successful,
intermittency in the shell model is described by one of
UPOs and that basic properties of the turbulence statistics
explained from this single UPO.

The shell model was first introduced by Gledzer@2# to
describe two-dimensional turbulence by its steady solutio
Later Yamada and Ohkitani@3# complexified the model to
describe three-dimensional turbulence by its chaotic s
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tions. In this model the wave number is one dimensional a
discretized by octaves askj52 j 24 ( j 51,2, . . . ,N), with
which a complex velocityuj variable is associated. The num
ber of the shells,N, is usually taken to be 10–30. The dy
namical equation for the complex shell velocityuj is

S d

dt
1nkj

2Duj5 i @ajuj 11uj 121bjuj 21uj 111cjuj 21uj 22#*

1 f d j ,1 , ~1!

where * denotes the complex conjugate, and the coupl
constants are taken asaj5kj , bj52dkj 21 , cj5(1
2d)kj 22, andb15c15c25aN215aN5bN50 to conserve
the energyE5( j uuj u2 when the viscosityn and the external
forcing f vanish. We are interested in the case ofd51/2,
where the helicityH5( j (21) j kj uuj u2 is also conserved a
in Navier-Stokes turbulence@4#, but here we leaved as a
variable parameter for later use in numerical pursuit of UP
In this study the external forcing is added to the first shell
avoid an unessential difficulty caused by energy transfe
lower wave numbers.

Many numerical evidences have been found for the K
scaling of the energy spectrum in the inertial range of
shell model@3,5#. As for the higher order structure function
a deviation from the K41 scaling, i.e., intermittency, has a
been found similarly to the Navier-Stokes turbulence@6–8#.
Also the probability density function~PDF! of the velocity
variableuj , which corresponds to the velocity difference
the Navier-Stokes case, has been found to have more de
tion from the Gaussian distribution function at higher wa
numbers@9#.

Even in the shell model, it is difficult to detect the UPO
numerically in its chaotic stage corresponding to the fu
developed turbulence because of their strong instability.
us then utilize the property of the shell model—that whend
gets apart from 1/2, the chaotic solution becomes noncha
@10#. We first obtain limit cycles ford,1/2, and then trace
the limit cycle along the following two paths in the param
eter space (n,d): ~a! (1.531023,0.16)→(1.531023,0.50)
and ~b! (1.9531023,0.4973)→(1.9531023,0.50)→(1.5
31023,0.50), where the destination (1.531023,0.50) is the
chaotic state in which the intermittent fully developed turb
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lence is realized. For the path~a!, we employ the Newton-
Raphson method, which has been applied to identify ste
solutions of the shell model@11#. For tracing the path~b!, we
use the Mees method@12,13#, an extension of the Newton
Raphson method, by which we solve 2N11 equations for
uj (0) and the periodT.

We found two kinds of unstable solutions for (n,d)
5(1.531023,0.50) andN512. One is an unstable stead
solution, which is found, by the path~a!, with the errorD j

5uu̇ j u being about 10218 for all j. The energy spectrum o
this steady solution shows25/3 power law in the inertial
range and the sum of the phases of sequential three veloc
uj , uj 11, anduj 12 is equal to 3p/2 (mod 2p), which is the
ideal value for the energy cascade process maximizing
energy flux towards higher wave numbers, although
steady solutions give no energy cascade. In the case of
nite number of shells without viscosity and external forcin
the model equation~1! allows two steady solutions,

uj5Cj
(1)kj

21/3, uj5Cj
(2)kj

21/31 log2(d21)/3, ~2!

where Cj
(1) and Cj

(2) are complex constants periodic wit
respect toj with period 3@10#. The slope of the energy spec
trum suggests that the unstable steady solution obtaine
our calculation may approach the former steady solution
Eq. ~2! asn→0, while in the case of 0,d,1 in our calcu-
lation, no solution was found which may correspond to
latter solution. This solution corresponds to the stand
model solution of the unstable fixed point found by Koc
elkorenet al. of the shell map@14#.

The other unstable solution is an unstable periodic so
tion, which was detected by the path~b! when we started
from the limit cycle at (n,d)5(1.9531023,0.4973). The pe-
riod of this solution isT5179.98, and the relative erro
D j

rel5u@uj (T)2uj (0)#/uj (0)u is about 1025 for all j. As de-
scribed below, this solution shows the intermittency, and
refer to this solution as the intermittency solution. The la
est eddy turnover timeTL52p/(AEk1) is equal to 65.6 and
the Kolmogorov time scale is 1.20. We note that the per
of the solution is around twice the largest eddy turno
time, consistent with the fact that the periodic solution co
sists of similar two parts, as seen in Fig. 1 where the orbi
this solution in the phase space is shown, by taking Re(u8),

FIG. 1. ~Color! Time evolution of the intermittency solution
~green line! and the turbulence solution~red line! in the space of
„Re(u8),Im(u8),Im(u9)….
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Im(u8), and Im(u9) as coordinates, together with the orbit
a chaotic solution~which we will call turbulence solution
hereafter! at the same values of parameters. We see that
intermittency solution is embedded in the turbulence so
tion. The time development of the energy transfer function
low wave number region shows two peaks in one peri
while that at the highest wave number shows eight pea
indicating that the intermittency solution has a ramifyin
cascade process of energy, as assumed in the Navier-S
turbulence. In Fig. 2, we show the PDF of Im(u8) together
with that of the turbulence solution. We see that the PDF
the intermittency solution outlines the shape of the PDF
the turbulence solution. Accordingly, the statistical propert
of the turbulence solution are expected to be well descri
by this intermittency solution.

To see it more quantitatively, we calculated the scal
exponent zp of the pth order structure functionSp(kj )
5^uuj up&, where the brackets stand for the time average. T
viscosity for this solution is not small enough to produce
wide inertial range necessary especially for the normal fitt
method for large values ofp. For this reason, we make use
the fitting method of the least squares with the extend
self-similarity ~ESS! @15,16#

Sp~kj !5S3~kj !
zp ~3!

for the evaluation ofzp in the wave number range of 1< j
<5, where the time-averaged energy flux

P j5K 2
d

dt (
i 51

j

uuj u2L
5^2kj Im~ujuj 11uj 122 1

4 uj 21ujuj 11!& ~4!

of the intermittency solution takes a constant valueP j;e
5^2n( j kj

2uuj u2&. Figure 3 shows the scaling exponents o
tained in this way for the intermittency solution and for th
turbulence solution. We see that the intermittency solut
shows a multiscaling property, and the scaling expone
agree well with those obtained from the turbulence soluti

FIG. 2. ~Color! Log-linear plots of PDFs for the intermittenc
solution ~green line! and turbulence solution~red line!.
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This means that the basic statistical properties of the tu
lence are well approximated by this intermittency soluti
which may be considered to be a skeleton of the turbulen

This agreement of the scaling exponents may seem c
ous, as the intermittency solution shares only a small par
the region in the phase space occupied by the turbule
solution ~Fig. 1!. The nonforced shell model is known t
have a phase symmetry corresponding to the spatial tran
tional symmetry of the Navier-Stokes equation@8,17#: If
$uj (t)% is a solution of the shell model, then$uj

(u,f)(t)%,
which is defined as

uj
(u,f)5eiuuj ,

uj 11
(u,f)5ei (f2u)uj ,

uj 12
(u,f)5e2 ifuj , ~5!

whereu andf are arbitrary real constants andj [1 (mod 3)
is also a solution of the shell model. In our case, we adde
constant external forcing term to the first shell, and the ph
symmetry is reduced to the following@see Eq.~5!#:

uj
(f)5uj ,

uj 11
(f) 5eifuj ,

uj 12
(f) 5e2 ifuj . ~6!

In Fig. 4 we show the orbits ofu7 , u8, andu9 of the inter-
mittency solution and of the turbulence solution. Again,
see that while the orbits ofu7 share a similar area, the orbi
of u8 andu9 of the intermittency solution take only a sma
part of the region of the turbulence solution. However,
phase transformation~6! means that the rotated orbit ofu8
(u9) by an anglef (2f) is also an orbit of a solution tha
has exactly the same statistical properties as the inter

FIG. 3. Scaling exponentzp of the pth order structure function
obtained by ESS fitting for the intermittency solution (h) and tur-
bulence solution (s). The error bars show the standard deviatio
obtained from the method of the least squares. The dotted line
responds to K41 (zp5p/3). In the inset, we show the log-log plo
of the sixth order structure function against the third order struc
function in the range of 1< j <5. The symbols are the same as f
the scaling exponents. The slopes are 2.0 for K41, 1.82 for
intermittency solution, and 1.81 for the turbulence solution.
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tency solution. Asf is an arbitrary constant, the orbit ofu8
(u9) thus generates a continuous set of the intermittency
lutions, which this time cover most of the region~attractor!
of the turbulence solution in the phase space. In other wo
the attractor is well approximated by the continuous set g
erated from a single intermittency solution, and this expla
why the statistical properties of the single solution agree w
with those of the turbulence solution.

The argument on the symmetry recovery given by Fris
@18# may be appropriate to be mentioned here. He claim
that the symmetries of the Navier-Stokes equation, which
broken in the process of transition to turbulence, recover
a statistical sense’’ in the inviscid limit. In our study of th
shell model, the turbulence solution recovers its phase s
metry by wandering around the area in the phase space
ered by a set of rotated intermittency solutions, just as Fri
claimed. Also a remark should be made on the instability
the orbit. We calculated the Lyapunov exponentsl j (1< j

r-

e

e

FIG. 4. ~Color! Time evolution of the shell velocities~a! u7, ~b!
u8, and~c! u9 of the intermittency solution in the complex plane.
each figure, the green line represents the intermittency solution
the red line represents the turbulence solution.
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<2N) along with the intermittency solution and with the tu
bulence solution, and substitute them into the Kaplan-Yo
formula for attractor dimensionDKY ,

DKY5p2
1

lp11
(
j 51

p

l j S p5maxH JU(
j 51

J

l j>0J D .

~7!

The obtained value for the intermittency solution is 6.2
which approximates 7.02 for the turbulence solution. Ob
ously the continuous set of the solutions generated by
intermittency solution through one-parameter phase trans
mation is two-dimensional in contrast with the Kaplan-Yor
dimension of the attractor, 7.02. This suggests that the att
tor is thin in the orthogonal directions to the two-dimension
continuous set. This conjecture may be supported by the
servation in Fig. 1, that the attractor is nearly flat in t
horizontal direction while very thin in the vertical direction

We should mention the burstlike structure found
Okkels@19#, who investigated the behavior of local attract
D
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of a real valued Gledzer-Ohkitani-Yamada model. He d
cussed the intermittency in relation to the stability of t
manifold of ṙ n50 derived from Eq.~8! of Ref. @19#. It is
interesting that in our case essential properties of the tu
lence are involved in a single UPO, rather than a multi
mensional manifold.

In conclusion, we have detected two kinds of unsta
solutions in the shell model. We showed that the scal
exponents of the intermittency solution agree well with tho
of the turbulence solution. The attractor is approximated b
continuous set generated from a single intermittency solu
through the phase transformation. Therefore, basic statis
properties of the intermittency of the shell model turbulen
can be described by the intermittency of the unstable p
odic orbit. Detailed structure of unstable periodic orbits
now under investigation and will be reported.
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