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Galilean-invariant lattice-Boltzmann models with H theorem
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We demonstrate that the requirement of Galilean invariance determines the chbidaraftion for a wide
class of entropic lattice-Boltzmann models for the incompressible Navier-Stokes equations. The ndquired
function has the form of the Burg entropy f&r=2, and of a Tsallis entropy witq=1—(2/D) for D>2,
whereD is the number of spatial dimensions. We use this observation to construct a fully explicit, uncondi-
tionally stable, Galilean-invariant, lattice-Boltzmann model for the incompressible Navier-Stokes equations,
for which attainable Reynolds number is limited only by grid resolution.
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I. INTRODUCTION els[4—-6]. These models are motivated by the fact that the
loss of stability is due to the absence of ntheorem([6].
Lattice-Boltzmann models of fluidg,2] evolve a single- Numerical instabilities evolve in ways that would be pre-
particle distribution function in discrete time steps on a regu<luded by the existence of a Lyapunov function. The idea
lar spatial lattice, with a discrete velocity space comprising?ehind entropic lattice-Boltzmann models is to specify-an
the lattice vectors themselves. The single-particle distribufunction, rather than just the form of the equilibrium. Of
tion corresponding to lattice vectorat lattice positiork and ~ €0Urse, the equilibrium distribution will be that which ex-
time stept is denoted byN;(x,t). The simplest variety of tremizes theH function. The evolution will be required never

; decreasd, yielding a rigorous discrete-timid theorem;
lattice-Boltzmann models employ a Bhatnagar-Gross-Kroo 0 d S : Lo
(BGK) operator3], so that their evolution equation is i{hls is to be distinguished from other discrete models of fluid

dynamics for which am theorem may be demonstrated only
1 in the limit of vanishing time step7].
Ni(x+c ,t+At)=N;(x,t)+ =[N74x,t) = N;(x,1)], To ensure that collisions never decredsethe collision

T time 7 is made a function of the incoming state by solving
. . I for th llest value,;, which ti . Th
fori=1,... b. Hereb is the coordination number of the chlueethsggaugzdvgie;m'f‘xv( |\§:Vhedr<;eg<n’<o< Ilncrlf?]ids begn
lattice, NF(x,t) is a specified equilibrium distribution func- ¢pown that the expresgliré)n for the viscosity obtained by the
tion that depends only on the values of the conserved quatshapman-Enskog analysis will approach zero sasap-
tities at a site, and is a characteristic collisional relaxation proaches unity4—6]. Thus, the entropic lattice-Boltzmann
time. Using the Chapman-Enskog analysis, it is possible tonethodology allows for arbitrarily low viscosity together
show that the mass and momentum moments of the distribygith 5 rigorous discrete-timel theorem, and thus absolute

tion function will obey the Navier-Stokes equations for cer-giapility. The upper limit to the Reynolds numbers attainable

tain choices of equilibrium distributiofd]. . by the model is therefore determined by loss of resolution of
The viscosity appearing in .the Nawer—Stokes 1equat|on§he smallest eddies, rather than by loss of stabfifi,d].
obtained from these models is proportional te-3. To In a recent review of the subject, Succi, Karlin, and Chen

lower this and thereby increase Reynolds number, practitior] o] have pointed out that entropic lattice-Boltzmann models
ners often over-relax the collision operator by using value$aye three important desiderata: Galilean invariance, non-
of 7 in the range £,1]. For sufficiently smallz, however, negativity of the distribution function, and ease of determin-
the method loses numerical stability, and this consideratioing the local equilibrium distribution at each site and at each
limits the lowest Reynolds numbers attainable. time step.

In an effort to understand these instabilities, there has In this paper, we shall construct entropic lattice-
been much recent interestémtropic lattice-Boltzmann mod- Boltzmann models for the incompressible Navier-Stokes
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equations which are Galilean invariant to second order in théhat H is altered only by collisions and not by propagation,
Mach number expansion of the distribution functigquasip- we assume that thid function is of trace form

erfect in the terminology of Ref10]). We shall show that

the requirement of Galilean invariance makes the choice of b

H function unique. We shall show that the required function H :izl h(Nj),

has the form of the Burg entrop$1] in two dimensions, and

the Tsallis entropy in higher dir_nension;. While the a”a_lo'whereh’(x)zo for x>0. If lim,_oh’(x)=c, then the nor-
gous problem for the compressible Navier-Stokes equationg,, derivative ofH goes to negative infinity on the polytope
is difficult and remains outstanding, the purpose of this Papehoundary, enforcing the non-negativity constrdig. (3)].

is to point out that the incompressible case is nontrivial anGrpq purpose of this paper is to demonstrate that the require-

interesting in its own right. =~ _ ment of Galilean invariance uniquely determines the choice
Finally, a point of clarification: Throughout this paper, 4t fnction h(x).

when we describe the lattice-Boltzmann model as “incom- In passing, we note that our choice of the form tof

pressible,” we really mean that it is faithful to the Navier- yiters from that of Karlin, Ferrante, andthger[5], which
Stokes equations only in the asymptotic limit of incompres;s-Is of the form H=SPNIn(N./W), where W, are speed-
ibility. This means that the Mach number must scale with thedependent Weight(aeqluall o tlhe Iélobal equillibrium at zero

Knudsen number, and the fluctuation of density about It%Iow). That is, prior work has allowed weighted contributions

tmﬁea_n rtr;]ust scale with the Kgp?]sen numbgr squared..bllndftleg H and found solutions for whiclh has the form of a
IS IS the same Sense in which any guasicompressiule ful elative Boltzmann entropy, while the present work as-

model may be said to simulate incompressible fluid €qUag mes uniform contributions tél and finds solutions for

tions. In this asymptotic limit the pressure is determined byWhich h is not a Boltzmann entropy. Both approaches are

an elliptic equation, and the equation of state becomes i"elc':apable of yielding Galilean-invariant hydrodynamics. A
evant. more general form forH which will subsume both ap-
proaches as special cases remains an interesting theoretical
Il. EQUILIBRIUM DISTRIBUTION challenge.
The equilibrium distribution function may be found by
extremizingH with respect toN;, subject to the constraints

[Egs.(1) and(2)]

We consider a Bravais lattice of coordination numbén
D dimensions. We denote the lattice vectorsdy wherei

=1, ... b, and their magnitudes by=|c]|. The restriction

to a single-speed model on a Bravais lattice is done solely for

the sake of simplicity in presentation. A future publication 0=——|H-=p——-pul,
will generalize the results of this paper to multispeed lattice- N; m-m

Boltzmann model$12]. . .
We demand that the lattice symmetry group be Suﬁi_vyhereﬂlm and B/m are Lagrange multipliers. We quickly

ciently large that the only fourth-rank tensors that are invari-'"
ant under its group action are isotropic. The mass and mo-

mentum densities are given by 0=h"(N))—u—B-c,

b and so
p=2, mN (1)
N NFI= g (utB-G), @
and where the functionp is the inverse function dfi’. The con-
b stantsu and B are determined by Eq<$l) and (2). It is
U= 2 me N @) usually difficult to find an exact analytic expression for them
P = GNP in terms of the conserved quantitipsand pu, though some

equilibria are known for which this is possib[8,9]. Alter-
where m is the particle mass and is the hydrodynamic natively, one may solve for them numerically or perform a
velocity D vector. Theséd + 1 quantities must be conserved Taylor expansion in Mach number. We adopt the latter ap-

in collisions. proach below.
If we regardN;, for i=1,... b, as coordinates in a
b-dimensional space, the conservation la\ds and (2) re- IIl. GALILEAN INVARIANCE

strict the collision outcomes to [ — (D + 1)]-dimensional o S
subspace. Since the conserved quantities are linear functions We seek to Taylor expand the equilibrium distribution in

of N;'s, the non-negativity requirement Mach number becaus® we can do so analyticallyii) only
the first two terms of that expansion determine the form of
N;=0 (3  the incompressible Navier-Stokes equations, @nythat ex-

pansion is a useful initial guess for any numerical solution.
is satisfied within a compact polytope whose faces are giveRrom general symmetry arguments, it is clear tBatill be
by theb equationsN;=0 fori=1, ... b. In order to ensure proportional to the hydrodynamic velocity so that we may
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begin our Mach number expansion by expanding @y for D \é(x)d"(x)
small B. We get g= .
D2/ [¢'(x)]?
1
NF%=p(u)+ @' (n)B- G+ 5" () BBCCi+ - . If the factorg is not unity, Galilean invariance will be bro-

ken. Thus we demangl=1, and this yields the second-order
Inserting this into Eqs(1) and (2), and using general prop- "onlinear differential equation
erties of the Bravais lattice, we find

d(x)P"(x)= [¢' ()]

l+2
D

mbe )
p=mbe(u)+ —55=¢"(L)B"+ -
The general solution to this equation is of the form

and $(x)=CP2(x~aC)”,
pu= mb¢ & () B+-- - whereC anda are arbitrary constants, andis to be deter-
D ' mined. We quickly find thaty must be either 0 or-D/2.

) ) ) ) Since a constanp would not yield a well definett’, we see
where the ellipses denote third or higher order terms in Machhat we must haves(x) = CP2(x—aC) P2, whenceh’ (x)

number. Inverting this perturbatively we find that, to second_ c(a+x~2P), and this integrates to give
order in Mach number, the Lagrange multipliers are given by

, ho+Clax+Inx] if D=2
P 1-2/D
" h(x)= X - , )
D ( b) ¢"(x) 27| ifD#2,
- AL T Mot Claxt{ 55 )]

C2¢ [ (0]

wherehy is constant. In fact, the only effect of nonzérgis

wherex=h’(p/mb), and by to introduce an additive constant it and the only effect of
nonunityC is to scaleH by a constant factor. In other words,
P h(x) is uniquely specified only to within additive and mul-
D mb tiplicative constants. With this understanding, we may say
-2 ut---. that the requirement of Galilean invariance has uniquel
c? ¢’ (x) the requirem . quely
specified the choice ofl. We also note that ligp.gh’(x)
Inserting these into Eq4), we obtain the equilibrium distri- = SO the non-negativity constraint will be enforced by the
bution dynamics.
Finally, we write the global Lyapunov functioh=>,H
p D D2 ¢(X)¢"(X) by summingh(N;(x,t)) over the lattice. Since the total mass
quz—b 1+ 6 ut ————r is conserved we have complete freedom to ch@snd so
m c 2¢” [¢'(x)] to within additive and multiplicative constant§ may be
2 written
X cici—Bl Ut (5
g 2 IN[N;(x,)] for D=2

Now, for lattice-Boltzmann models on a Bravais lattice, itis  H(t)x 1-21D
well known that a Chapman-Enskog analysis based on the [Ni(x,0)] —Ni(x,1)

Lo N 22 for D#2,
equilibrium distribution x 2/D

p D(D+2) c? for appropriate choices ad and C. This has the form of a
qu:m 1+ —c-ut —49(Ci0i— 51) uut - Burg entropy[11] for D=2, and a subadditive Tsallis en-
¢ 2c tropy [13] with parameter
will give rise to the incompressible Navier-Stokes equations q:l_é
V.u=0

for D#2. We note thaD <2 corresponds tg=0, andD
and >2 corresponds to€g<1. Itis interesting that it is only in
the infinite-dimensional limitD —c, where the set of ve-
locities becomes infinite, thaj—1 and we recover the
Boltzmann-Gibbs entropy14]. We might also expect the
limit of large b at constanD to yield the Boltzmann-Gibbs
Comparing Eqgs(5) and (6), we identify entropy, but that demonstration will require the multispeed

M gu-Vu=— Svpiy?
o Tou-Vu= ; vVeu.
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generalization of the present analysis; that work, which willing perfect models for lattice models of tlewmpressible
also provide the details of the Chapman-Enskog analysis, iSlavier-Stokes equations is much more difficult and may well
in progresg12]. The numerical implementation of the model be impossible. We found it interesting that the simpler prob-
described herein is likely to require some careful algorithmidem, for incompressible fluids, is itself very nontrivial. In
optimization, and is likewise left to future publication. particular, the appearance of the Burg and Tsallis entropies
The appearance of the Burg and Tsallis entropies in thigor the H function is surprising. These entropies have here-
context is fascinating. In a footnote of their recent review,tofore been associated with long-range interactions, long-
Succi, Karlin, and Chefil0] noted that the entropy that gave time memory, or a fractal space-time structure. This work
rise to the above-mentioned solvable model for a compressndicates that they may also be relevant to models with dis-
ible fluid was related to the Tsallis entropy with=3/2, so  cretized space-time and finite domain connectivity, and this
there may be more than one connection with Tsallis thermosurely warrants future study.
statistic[13] lurking here. There are precious few situations
in which the origins of Tsallis thermostatistics can be traced
analytically to an underlying microscopic dynamical model, ACKNOWLEDGMENTS
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