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Emergence of pulled fronts in fermionic microscopic particle models
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We study the emergence and dynamics of pulled fronts described by the Fisher-Kolmogorov-Petrovsky-
Piscounov~FKPP! equation in the microscopic reaction-diffusion processA1A↔A on the lattice when only
a particle is allowed per site. To this end we identify the parameter that controls the strength of internal
fluctuations in this model, namely, the number of particles per correlated volume. When internal fluctuations
are suppressed, we explictly see the matching between the deterministic FKPP description and the microscopic
particle model.
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The study of diffusion-limited reaction processes h
shown the important role of internal or microscopic fluctu
tions in low dimensions@1–3#. Mean-field approximation for
those processes assume that diffusive mixing is much st
ger than the influence of correlations produced by reactio
However, diffusive mixing is not strong enough in low
dimensional systems and fluctuations might modify the
namics or induce nonequilibrium phase transitions. Wh
this behavior is observed in different situations, there is
special interest in the problem of front propagation
reaction-diffusion systems@3–17#. In this paper we concen
trate in microscopic lattice reaction-diffusion models who
mean-field approximation is given by the Fishe
Kolmogorov-Petrovsky-Piscounov~FKPP! equation@18#
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5D

]2r

]x2
1k1r2k2r2, ~1!

wherer(x,t) is the local concentration of particles. Such
equation display traveling-wave solutions of the formr
5r(j) with j5x2vt, which invade the unstable phaser
50 from the stable phaser5k1 /k2 and travel with velocity
v>v052ADk1. For steep enough initial conditions, the s
lution selected for large times is that with minimal veloci
v0, which is known to be a pulled front, since it is essentia
‘‘pulled along’’ by the growth and spreading of small pertu
bations in the leading edge wherer!1 @4,19#. Microscopic
fluctuations are expected to modify macroscopic proper
of pulled fronts at two levels:~i! because the deterministi
description~1! breaks down at small densitiesr;1/N where
N is the number of particles, which introduces an effect
cutoff in the FKPP equation; due to the importance of the
development in pulled fronts, several front features are d
matically affected by this effective cutoff@8#, for example,
the selected velocity converges as ln22N to the mean-field
value v0; ~ii ! because internal fluctuations are present a
could interplay with or even destroy pulled front develo
ment and dynamics@5,7,13#.
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One of the most studied microscopic models is the reve
ible reaction modelA↔A1A on a lattice@5–7,9–17#. In the
bosonic version of this model@9#, the number of possible
particles per site is unbounded and thus the balance betw
birth and coagulation gives an average number of partic
per siteN. If N→` the reaction is well stirred within eac
site and the front dynamics is described by the mean-fi
approximation~1!. For very largeN discreteness effects re
main and produce the predicted velocity correctionv2v0
; ln22N @8,10#. In the case of the fermionic version of th
A↔A1A model only a particle is allowed per site. The ma
reason to consider exclusion is that, for some values of
parameters, the model is analytically tractable@3,5,7,14#
and/or simulations are easier than in the bosonic vers
Exact results are available for the two interesting regimes
the model: reaction-limited regime@14#, where coarse-
grained density front profiles are described by the mean-fi
FKPP equation, and diffusion-limited regime@3,5,7# in
which internal fluctuations dominate front propagation a
the mean-field approximation~1! is not valid. Our purpose in
this paper is to put these two results in a general framew
that can describe the emergence of pulled fronts in this
mionic model. This is done by identifying the control param
eter that modulates the effect of internal fluctuations on
front propagation model. As we will see, this parameter a
controls the development of the tail front and establishes
appearance of pulled fronts.

In the A↔A1A model in one dimension, particles ar
allowed to occupy lattice sites and can undergo the follow
moves:~i! diffusion to any one of its two neighbor lattic
sites with a diffusion rateD; ~ii ! birth, occupied sites spon
taneously generate particles at neighbor lattice sites with
m; ~ii ! coagulation, a particle can get annihilated with dea
rate h if one of its two neighboring filled lattice sites i
occupied. The fermionic nature of the model makes diffus
and birth only possible if the neighboring lattice site
empty. The mean-field description of this model is given
the FKPP equation withk152m, k252(m1h). Starting
from an initial condition in which occupation number is on
different from zero on the right side of a site, a front dev
ops and advances as a function of time. Operationally,
front positionxf(t) is determined by a local average of de
sity of particles over intervals of lengthl2152D/v0, which
©2003 The American Physical Society02-1
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is the width of the deterministic front selected for our initi
condition by the FKPP equation~1! @19#. Thus, front position
is the point where this coarse-grained density equalsr0/2
@12,13#. Other definitions of the front position yield the sam
results@14#. Since results only depend on the ratiosD/m and
D/h we setD51/2 throughout this paper. After a transie
time ~which could be long!, the front advances linearly, i.e
^xf(t)&5vt, where^•••& stands for average over differen
realizations. In this regime, statistical properties of the fr
with respect to the normalized coordinatej5x2vt are in-
dependent of time.

In this model, there are two special cases for which ex
results are available. Whenh5D the model is solvable us
ing the method of interparticle distribution functions@3,5#. In
that case fronts advance with velocityv5m, which shows
how internal fluctuations can dominate the system beha
in this diffusion-limited regime. On the other hand, whenh
50 it was proved in Ref.@14# that fronts approach asymp
totically the FKPP equation predictions (v5v0) in the limit
D/m→` ~reaction-limited regime!, while v5D1m in the
opposite regimeD/m→0 ~diffusion-limited regime!. In Fig.
1 we show the results of our simulations for the velocity
the frontv as a function ofm for different values ofh. Our
results are consistent with the exact results@3,5,14# and pre-
vious simulations of this model@15#. For an intermediate
case 0,h,D we observe that, for some values ofm, the
velocity seems to approach the deterministic valuev0. How-
ever, for small enough value ofm internal fluctuations seem
to dominate and the velocity deviates strongly fromv0.

To understand this behavior, let us recall that mean-fi
approximation~1! in theA↔A1A is only valid when diffu-
sive mixing is strong enough. Specifically, this happens w
the typical distance traveled diffusively by a particle betwe
reaction events,l D , is much larger than the typical distanc
between particles,l p @3#. In that case, particles are we
stirred within cells of sizel D and thus mean-field approx
mation is valid for the coarse-grained density of partic
over cells of sizel D , as shown in Ref.@14#. In our model we

FIG. 1. Velocity as a function of the birth ratem for different
values of the coagulation rateh. Simulations are done withD
50.5. Dashed lines correspond to the predictionsv5m @5,3# and
v5v0 @14#. Inset: velocity corrections as a function ofN* for the
caseh50. Dashed line is the power lawN21/3 while dash-dotted
line is the predictionp2/(2ln2N* ) of Ref. @8#.
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have thatl D5min(AD/m,AD/h), while we approximatel p
by the average distance between particles in the stable p
l p5r0

215(m1h)/m. Since we are interested in the prop
gation of pulled fronts, which are only driven by the bir
term, our condition to approach the mean-field approxim
tion is then given only bym:

AD/m@r0
215

m1h

m
. ~2!

Interestingly, this condition is equivalent toN* [l21r0
@1, where N* is approximately the number of particle
within an interval of lengthl21. Thus, condition~2! also
means that the number of particles within the typical len
scale of the front~its width! is large. Our results in Fig. 1 ar
then easily explained in terms of condition~2!: when N*
@1 internal fluctuations should be unimportant within ce
of size l D.l21 and front propagation should approach a
ymptotically the FKPP predictions. Since

N* 5
Am/D

m/D1h/D
, ~3!

thenN* @1 only happens when (D/h)2@D/m@1 for fixed
values ofD andh. We show the conditionN* .1 in Fig. 2
along with the different set of parameters used in Fig. 1 a
in other works@5,7,11#. Outside the regionN* .1 internal
fluctuations dominate and fronts are not described by
FKPP equation. This is the case forh5D @3,5# and h5m
@11#. In the intermediate case 0,h,D, we can have values
of m for which N* is relatively large and fronts seem t
approach the deterministic value ofv0, which explains the
behavior observed in Fig. 1 forh50.002. Note, however
that although being in the regionN* .1 is the minimum
requirement for our model to approach the mean-field
scription ~1! a finite value ofN* means that fronts are stil
subject to internal fluctuations and discreteness effects
produce a~strong! correction to the velocity. Only in the

FIG. 2. Schematic diagram of condition~2! in the (h,m) phase
space. Shaded area correspond to those values of the paramete
which N* .1. Solid lines correspond to the solution of Eq.~3! for
different values ofN* . Dashed lines are the following sets of p
rameters:h5D @5,7#, m5D @11#, andh50.002 used in Fig. 1.
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limit N* →` do both effects become negligible and t
A↔A1A system is effectively described by the FKPP equ
tion. This is the case forh50, m→0 @20#.

An interesting question is whetherN* plays any role like
the average number of particles per site,N, in bosonic mod-
els @8–10#. In those models, it is observed that the determ
istic description of a pulled front given by the FKPP equati
is valid until the density drops tor.N21, which produces
an effective cutoff in the tail of the front and modifies i
velocity @8#. To check this possibility, we have measured
our simulations the average distance of the last particle f
the front position,j* , which is observed to saturate to
constant value for long enough times. It is obvious that
j.j* the continuum description of the front breaks dow
and we expect this to happen when there is only a particl
each coarse-grained site of lengthl21, i.e., whenr(j* )
.al, wherea is a constant. When internal fluctuations a
irrelevant, i.e. whenN* @1, we assume that continuum d
scription ~1! is still valid up to j* and taking thatr
.r0lje2lj for lj>1 for a pulled front@19# we obtain

lj* e2lj* 5a/N* . ~4!

Solutions of this equation forj* with N* given by Eq.~3!
are compared with our simulations in Fig. 3. We see that
lj* *1 Eq.~4! gives a rather accurate prediction ofj* . This
corroborates our assumption that a pulled front described
the FKPP equation develops even for moderate values ofN*
up to the point wherer.(N* )21.

An important consequence of Eq.~4! is thatN* controls
not only the size of internal fluctuations but also the appe
ance and length of the tail in the pulled front. Thus, wh
N* &1 internal fluctuations dominate and also the tail len
is roughly zero,lj* .0. This means that the front is bas
cally a shock wave with heightr0. Actually, the exact solu-
tion whenh5D @7# shows that the particles behind the lea
ing one remain distributed as in the stable phase (r5r0) at

FIG. 3. Position of the last particle from the front position,j* ,
as a function ofm from simulations. Dashed lines are Eq.~4! with
a51.4. Inset: occupation probability for the site just before the l
particle ~circles!. Solid line is given by Eq.~5! with v taken from
simulations and dashed line is the approximationr* .a/l used to
get Eq.~4! @22#.
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all times, which confirm our picture~see Fig. 3!. This shock
waveshape is also observed in the casehÞD whenm@h,
where it is found thatlj.0. In the intermediate case i
which hÞ0, we see that the front develops a tail, which
described by the FKPP equation only for a given interval
values ofm ~see Fig. 3 forh50.002).

In the caseh50 we have studied the correction to th
velocity as a function ofN* and observe in the inset of Fig
1 that it decays like (v02v)/v0;(N* )21/3, which is consis-
tent with simulations of other microscopic bosonic mod
@8,17# for moderate values of number of particlesN. This
result stresses the equivalence ofN* with the role that the
number of particles plays in other microscopic models.
particular we expect the correction to be (v2v0)/v0
; ln22N* for very large values ofN* @21#.

Since the last particle is, on average, at a certain dista
from the front position, their velocities coincide. This fa
was used in Refs.@11,15# to estimate the velocity of the fron
by counting possible forward and backward hopping rate

v5m2r* ~h2D !, ~5!

wherer* is the probability of having a particle behind th
last one. Several approximations can be made for the v
of r* @11,15#. For example, in Ref.@11# it was taken asr*
.r0, i.e.,r* is given by the probability to find a particle in
the stable phase. Clearly, this approximation is only valid
the case in which fronts are like a shock wave, i.e., wh
N* .1 because then the last particle is very close to
stable phase. In the case in which a pulled front devel
(N* @1) we find that Eq.~5! still holds; since the last par
ticle is on average at a fixed distance from the front positi
we can approximater* ;r0lj* e2lj* 5a/l, which is the
concentration of particles atj* . Our simulations forh50
confirm the validity of this approximation~see Fig. 3! which
brings out the effective matching between the continuum
scription given by the FKPP equation forj,j* and the
microscopic character of the model forj*j* .

FIG. 4. Time evolution of the diffusive spreading of the fro
position for different values ofm ~solid lines! and h50: m
51022,1023,1024,1025 from top to bottom. Inset: diffusion coef
ficient as a function ofN* for h50. Dashed line is the power law
(N* )21/3.
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Another interesting property of front propagation is t
wandering of the position of the front around its mean va
D2(t)5^@xf(t)2^xf(t)&#2&. Several studies of different mi
croscopic models show thatD2(t)52D ft for long times
@8,9,17# and that the diffusion coefficientD f depends on the
number of particlesN. Specifically, it was found thatD f
;N21/3 for moderate values ofN @9,17#, while D f; ln23N
for very large values ofN @8#. Our simulations for theA
1A↔A system shows that fronts move diffusively for a
values of the parameters. In the caseh50, in which the
model approaches asymptotically the FKPP equation, we
D f;(N* )21/3 ~see Fig. 4! like in bosonic models@17# that
stress once again the fact thatN* plays the role of the num
ber of particles in this fermionic model. Moreover, we fou
for small times that asN* increases, the correlation betwee
the time development of the front and internal fluctuatio
produces superdiffusive motion of the front positionD2(t)
;t2n with n.0.8. Once the front tail is developed~which
happens att.k1

21), the front position starts to wander di
fusively. Finally, our results for the diffusion of the fron
indicate that as the front approaches the deterministic FK
equation, internal fluctuations make the front move dif
sively at timest.k1

21, independent ofN* . We do not ob-
serve any signs of subdiffusive behavior in the limitN* to `
conjectured by some authors@4,12# for pulled fronts subject
to noise. This supports the idea that pulled fronts subjec
s
e,

tat

ev

02510
e

et

s

P
-

to

internal noise belong to a different universality class th
those subject to external noise@13#.

In summary, we have identified the parameter that c
trols the strength of microscopic fluctuations for the fro
propagation problem in the fermionic modelA↔A1A,
namely, the number of particlesN* per coarse-grained site o
length l21. When N* @1, internal fluctuations are sup
pressed and the front becomes a pulled front like those of
FKPP equation~1!. Moreover, our studies about the length
the tail, the velocity of the front, and its diffusion show th
N* plays the same role as the number of particles in ot
microscopic bosonic models. Finally, it is interesting to no
that in theA↔A1A model, the velocity of a macroscopi
object such as the front is related to the microscopic mot
of the last particle, something also observed in other wo
@8,11,16#. We hope our results will help understand the d
namics of fronts in microscopic fermionic reaction-diffusio
models and its relevance when discussing properties of
FKPP equation subject to internal noise@4,12,13#.
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