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We study the emergence and dynamics of pulled fronts described by the Fisher-Kolmogorov-Petrovsky-
Piscounov(FKPP equation in the microscopic reaction-diffusion procAssA« A on the lattice when only
a particle is allowed per site. To this end we identify the parameter that controls the strength of internal
fluctuations in this model, namely, the number of particles per correlated volume. When internal fluctuations
are suppressed, we explictly see the matching between the deterministic FKPP description and the microscopic
particle model.
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The study of diffusion-limited reaction processes has One of the most studied microscopic models is the revers-
shown the important role of internal or microscopic fluctua-ible reaction modefA« A+ A on a lattice{5—7,9-17. In the
tions in low dimension$l—3]. Mean-field approximation for bosonic version of this modgB], the number of possible
those processes assume that diffusive mixing is much stromparticles per site is unbounded and thus the balance between
ger than the influence of correlations produced by reactionsirth and coagulation gives an average number of particles
However, diffusive mixing is not strong enough in low- per siteN. If N—o the reaction is well stirred within each
dimensional systems and fluctuations might modify the dysite and the front dynamics is described by the mean-field
namics or induce nonequilibrium phase transitions. Whileapproximation(1). For very largeN discreteness effects re-
this behavior is observed in different situations, there is amain and produce the predicted velocity correctionu,
special interest in the problem of front propagation in~In~2N [8,10]. In the case of the fermionic version of the
reaction-diffusion systemig—17]. In this paper we concen- A~ A+ A model only a particle is allowed per site. The main
trate in microscopic lattice reaction-diffusion models whosereason to consider exclusion is that, for some values of the
mean-field approximation is given by the Fisher-parameters, the model is analytically tractabp&5,7,14
Kolmogorov-Petrovsky-Piscouna¥KPP equation[18] and/or simulations are easier than in the bosonic version.

Exact results are available for the two interesting regimes in
the model: reaction-limited regim¢l4], where coarse-

1) grained density front profiles are described by the mean-field
FKPP equation, and diffusion-limited regimg8,5,7] in
which internal fluctuations dominate front propagation and
the mean-field approximatiofl) is not valid. Our purpose in

wherep(x,t) is the local concentration of particles. Such anthis paper is to put these two results in a general framework

equation display traveling-wave solutions of the fopn that can describe the emergence of pulled fronts in this fer-
=p(€) with é=x—vt, which invade the unstable phage mionic model. This is done by identifying the control param-
=0 from the stable phage=k; /k, and travel with velocity eter that modulates the effect of internal fluctuations on the
v=v,=2Dk;. For steep enough initial conditions, the so- front propagation model. As we will see, this parameter also
lution selected for large times is that with minimal velocity controls the development of the tail front and establishes the
vo, Which is known to be a pulled front, since it is essentially appearance of pulled fronts.

“pulled along” by the growth and spreading of small pertur-  In the A<~ A+ A model in one dimension, particles are

bations in the leading edge whese<1 [4,19]. Microscopic  allowed to occupy lattice sites and can undergo the following

fluctuations are expected to modify macroscopic propertiesnoves: (i) diffusion to any one of its two neighbor lattice
of pulled fronts at two levels{i) because the deterministic sites with a diffusion raté®; (ii) birth, occupied sites spon-
description(1) breaks down at small densitips- 1/N where  taneously generate particles at neighbor lattice sites with rate

N is the number of particles, which introduces an effectiveu; (ii) coagulation, a particle can get annihilated with death

cutoff in the FKPP equation; due to the importance of the tailrate # if one of its two neighboring filled lattice sites is

development in pulled fronts, several front features are drasccupied. The fermionic nature of the model makes diffusion
matically affected by this effective cutof8], for example, and birth only possible if the neighboring lattice site is
the selected velocity converges asN to the mean-field empty. The mean-field description of this model is given by
valuevy; (ii) because internal fluctuations are present andhe FKPP equation wittk;=2u, k,=2(u+ 7). Starting
could interplay with or even destroy pulled front develop-from an initial condition in which occupation number is only
ment and dynamickb,7,13. different from zero on the right side of a site, a front devel-
ops and advances as a function of time. Operationally, the
front positionx;(t) is determined by a local average of den-
*Electronic address: emoro@math.uc3m.es sity of particles over intervals of length™*=2D/v,, which
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FIG. 1. Velocity as a function of the birth rage for different FIG. 2. Schematic diagram of conditid®) in the (7, ) phase
values of the coagulation ratg. Simulations are done witlD space. Shaded area correspond to those values of the parameters for

=0.5. Dashed lines correspond to the predictionsy [5,3] and ~ WhichN*>1. Solid lines correspond to the solution of Eg) for
v=v, [14]. Inset: velocity corrections as a function NF for the different values ofN*. Dashed lines are the following sets of pa-

casen=0. Dashed line is the power lal~ 3 while dash-dotted ~'@metersy=D [5,7], =D [11], and »=0.002 used in Fig. 1.
line is the prediction?/(2In°N*) of Ref.[8].

have thatl ,=min(yD/u,vD/7), while we approximate,
is the width of the deterministic front selected for our initial by the average distance between particles in the stable phase
condition by the FKPP equatiqd) [19]. Thus, front position Ipnglz(,qu )l w. Since we are interested in the propa-
is the point where this coarse-grained density equal2  gation of pulled fronts, which are only driven by the birth
[12,13. Other definitions of the front position yield the same term, our condition to approach the mean-field approxima-
results[14]. Since results only depend on the ratidsu and  tion is then given only byu:
D/#n we setD=1/2 throughout this paper. After a transient
time (which could be long the front advances linearly, i.e., pwt 7
(x¢(t)y=vt, where(---) stands for average over different D/ u>pyt=——. (2
realizations. In this regime, statistical properties of the front M
with respect to the normalized coordingiex—uvt are in- Interestingly, this condition is equivalent th*=\""p,

dependent of time. . ; .
In this model, there are two special cases for which exacf>1’ whereN” is approximately the number of particles

results are available. When=D the model is solvable us- within an interval of Iength)(l_. Thusz c_ondition(z_) also
ing the method of intérparticle distribution functiof&5]. In means that the n_umb_er Of. particles within the_typl_cal length
that case fronts advance with velocity= s, which shbws scale of the fl‘OI’](It.S Wld.th) is large. Our rgs_ults in Fig. 1 are
how internal fluctuations can dominate #1e system behaviothen easily explained in terms of conditigd): when N*

. T . L1 internal fluctuations should be unimportant within cells
in this diffusion-limited regime. On the other hand, whgn . -1 .

R . of sizelp=\"" and front propagation should approach as-
=0 it was proved in Ref[14] that fronts approach asymp- mototically the EKPP predictions. Since

totically the FKPP equation predictions €v) in the limit ymp y P '

D/u—o0 (reaction-limited regimg while v=D+ w in the

opposite regimd/u— 0 (diffusion-limited regime. In Fig. . Vm/D 3

1 we show the results of our simulations for the velocity of ~ wu/D+ /D’ )

the frontv as a function ofu for different values ofy. Our

results are consistent with the exact res[®%,14 and pre- thenN*>1 only happens when)/ )?>D/u>1 for fixed
vious simulations of this moddll5]. For an intermediate values ofD and . We show the conditioN* >1 in Fig. 2
case X <D we observe that, for some values @f the  along with the different set of parameters used in Fig. 1 and

velocity seems to approach the deterministic valgeHow-  in other works[5,7,11]. Outside the regioN* >1 internal
ever, for small enough value @f internal fluctuations seem fluctuations dominate and fronts are not described by the
to dominate and the velocity deviates strongly from FKPP equation. This is the case fg=D [3,5] and n=pu

To understand this behavior, let us recall that mean-field11]. In the intermediate case<On<D, we can have values
approximation(1) in the A< A+ A is only valid when diffu-  of w for which N* is relatively large and fronts seem to
sive mixing is strong enough. Specifically, this happens whempproach the deterministic value of, which explains the
the typical distance traveled diffusively by a particle betweerbehavior observed in Fig. 1 fop=0.002. Note, however,
reaction eventd,p, is much larger than the typical distance that although being in the regioN*>1 is the minimum
between particles|, [3]. In that case, particles are well requirement for our model to approach the mean-field de-
stirred within cells of sizdp and thus mean-field approxi- scription (1) a finite value ofN* means that fronts are still
mation is valid for the coarse-grained density of particlessubject to internal fluctuations and discreteness effects that
over cells of sizdp, as shown in Ref.14]. In our model we produce a(strong correction to the velocity. Only in the
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FIG. 3. Position of the last particle from the front positidf,,

as a function ofu from simulations. Dashed lines are Hd) with FIG. 4. Time evolution of the diffusive spreading of the front
a=1.4. Inset: occupation probability for the site just before the last?osition for different values ofu (solid lines and »=0: w
particle (circles. Solid line is given by Eq(5) with v taken from  =1072,107%,10%,10"° from top to bottom. Inset: diffusion coef-
simulations and dashed line is the approximatidr=a/\ used to  ficient as a function oN* for »=0. Dashed line is the power law
get Eq.(4) [22]. (N*) 15,

limit N* % do both effects become negligible and the all times, which confirm our picturésee Fig. 3. This shock

A<>A+A system is effectively described by the FKPP equa-Waveshape is also observed in the cape D whenu> 7,
tion. This is the case fop=0, x—0 [20]. where it is found thaié=0. In the intermediate case in

An interesting question is wheth&* plays any role like which. 7n#0, we see that the front develops a taiI! which is
the average number of particles per skiejn bosonic mod- described by the FKPP equation only for a given interval of
els[8—10]. In those models, it is observed that the determin-values ofu (see Fig. 3 fory=0.002). ,
istic description of a pulled front given by the FKPP equation !N the casep=0 we have studied the correction to the
is valid until the density drops tp=N~1, which produces velocity as a function oN* and observ%m the inset of Fig.

1 . . 71 . . -
an effective cutoff in the tail of the front and modifies its 1 that it decays likedo—v)/vo~(N*) "™, which is consis-
velocity [8]. To check this possibility, we have measured intent with simulations of other microscopic bo_sonlc m_odels
our simulations the average distance of the last particle frorh8:17] for moderate values of number of particlds This
the front position,&*, which is observed to saturate to a result stresses the equivalenceNsf with the role that the
constant value for long enough times. It is obvious that forlUmber of particles plays in other microscopic models. In
&> &% the continuum description of the front breaks down partgulfr we expect the corre*ctlon o be~vo)/vg
and we expect this to happen when there is only a particle i !N “N* for very large values oN* [21]. o
each coarse-grained site of length %, i.e., whenp(&*) Since the last particle is, on average, at a certain distance
~a\. wherea is a constant. When internal fluctuations areffom the front position, their velocities coincide. This fact
irrele,vant ie. wherN*>1. we assume that continuum de- Was used in Ref§11,15 to estimate the velocity of the front
scription (1) is still valid up to & and taking thatp by counting possible forward and backward hopping rates:

=poh&e M for Né=1 for a pulled fronf19] we obtain
v=p—p*(n—D), (5

NE¥e M =a/N*. (4)  wherep* is the probability of having a particle behind the
last one. Several approximations can be made for the value
Solutions of this equation fog* with N* given by Eq.(3)  of p* [11,15. For example, in Refl11] it was taken ap*
are compared with our simulations in Fig. 3. We see that for=po, i.€.,p* is given by the probability to find a particle in
N&* =1 Eq.(4) gives a rather accurate predictiongf. This  the stable phase. Clearly, this approximation is only valid in
corroborates our assumption that a pulled front described bthe case in which fronts are like a shock wave, i.e., when
the FKPP equation develops even for moderate valuds‘of N*=1 because then the last particle is very close to the
up to the point wherg=(N*) 1. stable phase. In the case in which a pulled front develops
An important consequence of E@) is thatN* controls ~ (N*>1) we find that Eq(5) still holds; since the last par-

not only the size of internal fluctuations but also the appearticle is on average at a fixed distance from the front position,
ance and length of the tail in the pulled front. Thus, whenwe can approximat@* ~ po\ & e M"=a/\, which is the
N* =<1 internal fluctuations dominate and also the tail lengthconcentration of particles a*. Our simulations foryp=0
is roughly zero\ &*=0. This means that the front is basi- confirm the validity of this approximatio(see Fig. 3 which
cally a shock wave with heighty. Actually, the exact solu- brings out the effective matching between the continuum de-
tion when»=D [7] shows that the particles behind the lead- scription given by the FKPP equation f@r<¢* and the
ing one remain distributed as in the stable phase 4g) at  microscopic character of the model 6k £*.
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Another interesting property of front propagation is theinternal noise belong to a different universality class than
wandering of the position of the front around its mean valuethose subject to external noig&3].
A2(t) =([x:(t) —(x;(t))]?). Several studies of different mi- In summary, we have identified the parameter that con-
croscopic models show that?(t)=2D;t for long times trols the strength of microscopic fluctuations for the front
[8,9,17 and that the diffusion coefficie; depends on the propagation problem in the fermionic modél—A+A,
number of particlesN. Specifically, it was found thaD;  namely, the number of particlé* per coarse-grained site of
~N~* for moderate values dfl [9,17], while Di~In"N  |ength \~1. When N*>1, internal fluctuations are sup-
for very large values oN [8]. Our simulations for theA  pressed and the front becomes a pulled front like those of the
+A«<A system shows that fronts move diffusively for all Fxpp equatiori1). Moreover, our studies about the length of
values of the parameters. In the cage-0, in which the  the tail, the velocity of the front, and its diffusion show that
model approaches asymptotically the FKPP equation, we gg{+ pjays the same role as the number of particles in other

~ * _1/3 i i i 1 . . . . . . . .
th (N¥) (S?etﬁ'g-f 4'|[”t(ﬁa*ltn tl)osor:;]c m?delftlhﬂ that microscopic bosonic models. Finally, it is interesting to note
ber of particles in this fermionic motel, Moreover, we Joung 1121 1! (NEA—A+ A model, the velacity of a macroscopic
P : ' object such as the front is related to the microscopic motion

. . )
for small times that adl* increases, the correlation between of the last particle, something also observed in other works

the time development of the front and internal fluctuations[ .
e : L 8,11,16. We hope our results will help understand the dy-
roduces superdiffusive motion of the front positiaA(t . o . S . e
P P b (t) namics of fronts in microscopic fermionic reaction-diffusion

~t* with »=0.8. Once the front tail is developeahich models and its relevance when discussing properties of the
happens at=k; ), the front position starts to wander dif- . ) )
bp t=k; ) b FKPP equation subject to internal noige12,13.

fusively. Finally, our results for the diffusion of the front
indicate that as the front approaches the deterministic FKPP We are grateful to D. ben-Avraham, E. Brunet, R. Cuerno,
equation, internal fluctuations make the front move diffu-J. Casademunt, C. Doering, and W. van Saarloos for com-
sively at timest>k; !, independent oN*. We do not ob- ments and discussions. Financial support is acknowledged
serve any signs of subdiffusive behavior in the lilit to from the European Commission through its Marie Curie pro-
conjectured by some authdr,12] for pulled fronts subject gram and from the Ministerio de Ciencia y Tecnokgi
to noise. This supports the idea that pulled fronts subject t¢Spain.
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