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Two-vibron bound states in a-helix proteins: The interplay between the intramolecular
anharmonicity and the strong vibron—phonon coupling
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The influence of the intramolecular anharmonicity and the strong vibron-phonon coupling on the two-vibron
dynamics in arx-helix protein is studied within a modified Davydov model. The intramolecular anharmonicity
of each amide-I vibration is considered, and the vibron dynamics is described according to the small polaron
approach. A unitary transformation is performed to remove the intramolecular anharmonicity, and a modified
Lang-Firsov transformation is applied to renormalize the vibron-phonon interaction. Then a mean field proce-
dure is realized to obtain the dressed anharmonic vibron Hamiltonian. It is shown that the anharmonicity
modifies the vibron-phonon interaction, which results in an enhancement of the dressing effect. In addition,
both the anharmonicity and the dressing favor the occurrence of two different bound states whose properties
strongly depend on the interplay between the anharmonicity and the dressing. This dependence was summa-
rized in a phase diagram which characterizes the number and the nature of the bound states as a function of the
relevant parameters of the problem. For a significant anharmonicity, the low-frequency bound states describe
two vibrons trapped onto the same amide-| vibration, whereas the high-frequency bound states refer to the
trapping of the two vibrons onto nearest neighbor amide-I vibrations.

DOI: 10.1103/PhysReVvE.68.021909 PACS nunier87.15-v, 03.65.Ge, 63.20.Ry, 63.22m

[. INTRODUCTION nonlinearity and can thus be viewed as the quantum counter-
parts of breathers or soliton excitatiofis].

In low-dimensional molecular lattices, the nonlinear na- The second source of nonlinearity, which originates in the
ture of vibrational excitongvibrons plays a key role for coupling between vibrons and low-frequency excitations,
energy transfer as well as energy storage in physical, chemyvas first pointed out by Davydov and co-workd@] to
cal, and biological systems. In a general way, two maireXplain the mechanism for bioenergy transport. The main
sources yield nonlinear dynamics, namely, the intrinsic inidea is that the energy released by the hydrolysis of adenos-
tramolecular anharmonicity of each molecule and the extrininN€ triphosphatdATP) can be stored in the high-frequency
sic coupling between the vibrons and surrounding low-C—© Vibration (amide-) of a peptide group of a protein.
frequency excitationgsuch as phonons, for instance The dipole-dipole coup_lmg_ between _the d|ffe_rent_pept|de

In classical lattices, the anharmonicity gives rise to thedroups leads to delocalization of the internal vibrations and

occurence of intrinsic localized modes, or discrete breather%0 the formation of vibrons. However, the coupling between

; . : . he vibrons and the phonons of the protein yields nonlinear
which have been the subject of intense research during th ; X : -
. : ynamics, which counterbalances the dispersion created by
last decade(for a recent review see, for instance, Refs.

1-3). Th highlv localized vibrati q .~ "the dipole-dipole interaction. It leads to the creation of the
[1- ])',, ese highly localized vi rations do not requIre In- <4_called Davydov soliton, which provides an approximation
tegrability for their existence and correspond to quite gener

, i ! o the self-trapping phenomena described by akcb type

and robust solutionp4]. Since discrete breathers favor a lo- jamiltonian[21]. Soliton mechanisms for bioenergy transfer
cal accumulation of the energy that might be pinned in thn proteins have received increasing attention during the last
lattice or may travel through it, they are expected to be of25 years, and a broad review can be found in R&), [23].
fundamental importance for both energy storage and trans- However, as pointed out by Brown and co-workers
port. Unfortunately, no clear evidence has yet been found fof24,25 and by Ivic and co-workerg26—298, the solution of

the existence of breathers in real molecular lattices. By conthe Davydov problem is rather a small vibron-polaron than a
trast, in the quantum regime, two-vibron bound statessibron-soliton. Indeed, the self-trapping process exhibits two
(TVBS's) have been observed in several low-dimensionabsymptotic solutions depending on the values taken by the
systemg5-13. In that case, the intramolecular anharmonic-three relevant parameters of the problem, i.e., the vibron
ity breaks the vibron independence and favors the formatiobandwidth, the phonon cutoff frequency, and the small po-
of bound state$14—-19. When two vibrons are excited, a laron binding energy proportional to the strength of the
bound state corresponds to the trapping of two quanta overibron-phonon coupling. When the vibron bandwidth is
only a few neighboring molecules with a resulting energygreater than the phonon cutoff frequency, the adiabatic limit
which is less than the energy of two quanta lying far apartis reached. The phonons behave in a classical way and create
The lateral interaction yields motion of such a state from onea quasistatic potential that can well be responsible for the
molecule to another, thus leading to the occurrence of a dearapping of the vibron. The vibron, dressed by this lattice
localized wave packet with a well-defined momentum. As adistortion, forms a polaron which is described according to
result, TVBS'’s are the first quantum states that experiencéhe soliton theory of Davydov. By contrast, when the vibron
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bandwidth is less than the phonon cutoff frequency, the situtributed along the lattice. Each site is occupied by a peptide
ation corresponds to the nonadiabatic limit in which thegroup which contains the amide-I vibration. Theéh amide-|
guantum behavior of the phonons plays a crucial role. Avibration is assumed to behave as an internal high-frequency
mentioned by the authors, this situation corresponds to thescillator described by the standard creation and annihilation
vibron dynamics in proteins. Therefore, a vibron is dressedibron operatord! andb,,. The vibron Hamiltonian is thus
by a virtual cloud of phonons, which yields a lattice distor- written as(using the conventior =1)
tion essentially located on a single site and which instanta-
neously follows the vibron. The dressing effect modifies the
vibron frequency, reduces the vibron bandwidth, and allows
for an attractive interaction between vibrons mediated by vir-
tual phonons. Such an interaction is responsible for the for- —J(b§+ bn)(bl+l+ bri1), (1)
mation of bound states, and it has been suggested that pro-
teins can support solitons formed by bound states involving #’herew, stands for the internal frequency of thth amide-|
large number of vibrational quanfa7,2§. mode andJ denotes the lateral hopping constant between

As a consequence, the previous results clearly show th&xearest neighbor amide-I vibrations. In E@), y; and y,4
both the intramolecular anharmonicity and the strong vibronrepresent the cubic and quartic anharmonic parameters of
phonon coupling produce a similar effect on the vibron dy-€ach amide-I mode.
namics and favor the formation of bound states. The present The amide-I vibrations interact with the phonons of the
paper is thus devoted to the fundamental question of th&ttice which characterize the collective dynamics of the ex-
interplay between both nonlinear sources. To proceed, théernal motions of the peptide groups. Within the harmonic
Davydov model, modified by introducing the intramolecular @pproximation, each peptide group, with massinteracts
anharmonicity of each amide-I vibration, is described withinwith its nearest neighbor peptide groups via the lateral force
the small polaron approach. The two-vibron energy spectrurgonstant. Therefore, the phonons correspond to a sét of
is studied with special emphasis on the influence of the inlow-frequency acoustic modes, labelégh, for which the
tramolecular anharmonicity on the dressing effect. Note thatiamiltonian is defined as
we do not investigate the formation of solitons but focus our
attention on the creati_on of TVB_S’s only. This procedure_ is Hp:E Qqagaq, )
twofold. First, as mentioned previously, TVBS'’s are the first q
guantum states sensitive to the nonlinearity. Their character-
ization allows us to understand the interplay between the twavherea! anda, stand for the phonon operators of thth
nonlinear sources and appears as a first step in studying timeode with frequencﬁq=ﬂc|sin(q/2)|, Q.=VAW/M de-
formation of multivibron solitons. Then, recent theoretical noting the phonon cutoff frequency.
calculations have shown that single-vibron solitons do not Finally, the vibron-phonon interaction Hamiltonian,
last long enough to be useful at biological temperaturesvhich characterizes a random modulation of the internal fre-
[29,30. By contrast, two-vibron solitons are more stable andguency of each amide-lI mode, is expressed as
appear as good candidates for bioenergy trang@ir32.
Note that a perfect knowledge of the two-vibron dynamics is
also required to interpret some experiments such as time re-
solved pump-probe spectroscof83,34.

The paper is organized as follows. In Sec. Il, the Davydowvhere the coupling constadt,,  is written as
Hamiltonian for a one-dimensional molecular lattice is de-
scribed. In Sec. lll, we first realize a unitary transformation A i Ay sin(Q) o
to remove the intramolecular anharmonicity. Then a modified AT TS e o
Lang-Firsov[35] transformation is applied to renormalize \/N [sin(a/2)
the vibron-phonon interaction and to reach the small polarony, gq. (4), A, is defined in terms of the coupling parameter
point of view. Finally, a mean field procedure is performed tojnroquced in the original Davydov model as\,
obtain the dres_sed anharmonic vibron Hamiltonian. In Seczx(thW)flm (% has been reintroduced to avoid confu-
IV, we summarize the number states method used to solv;

the two-vibron Schrdinger equation. In Sec. V, a detailed  The yibron-phonon dynamics is thus described by the full
analysis of the two-vibron energy spectrum is performed deysmiiionian H=H +H.+AH which slightly differs

pending on the values taken by the relevant parameters of thgyy, the original Davydov model. The Davydov Hamil-
problem. Finally, the results are discussed and interpreted iynian is recovered from Eqél)—(3) by restricting the full

Sec. V1. Hamiltonian to vibron-conserving terms only, and by ne-
glecting the intramolecular anharmonicity of each amide-I
vibration. Although the full HamiltoniarH yields a rather
simple model for the protein dynamics, it cannot be solved
According to the original Davydov model, the vibron- exactly due to the anharmonic contributions. The following
phonon dynamics in ame-helix protein is described by a section is thus devoted to its simplification to obtain an ef-
one-dimensional system formed bysites periodically dis- fective Hamiltonian describing the vibron dynamics.

H,= 2 wObIbn'i_ 73( b§+ bn)3+ 7’4(bx+ bn)4
n

1
AHup=2 5 (Angagt i (brtby? (3

~ian, @

Il. THE DAVYDOV HAMILTONIAN
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Ill. DRESSED ANHARMONIC VIBRONS vibron-phonon interaction, the procedure consists in per-
forming a unitary transformatiofl to diagonalize each an-
harmonic amide-l mode. Then an approximate Hamiltonian
is obtained by applying the transformation on the full Hamil-

To remove the cubic and quartic intramolecular anharmotonianH and by keeping the vibron-conserving terms only.
nicity, the standard procedure described by Kimtsilal. As a result, by using the formula shown in Appendix A,
[14] is used. First, by disregarding the lateral coupling bethe transformed vibron-phonon Hamiltonidh=THT" is
tween nearest neighbor amide-l vibrations as well as thexpressed as

A. Renormalization of the intramolecular anharmonicity

H= ; (wo—2A—B)blb,—Ab!202—Bb! ., ;b'b,. 1by—JIi[blby, 1+ H.c]—JI,[bl%b2, ,+H.c]-J3[bl(blb,

+b!, bni1)bns g+ H.c.]+% (Apqab+A% @g)[(1+27)blb,+ nbgzbﬁhé Qqatag, (5)

whereA denotes the positive anharmonic parameter writterin the course of which two vibrons, initially located on the
as same amide-I vibration, realize simultaneously a transition to
a nearest neighbor amide-I site. In the same way, the contri-
butions proportional tal; affect single-vibron hops from
states formed by two vibrons located on the same amide-I
vibration. Finally, the anharmonicity leads to a correction of
In Eq. (5), H.c. stands for the Hermitian conjugate and thethe vibron-phonon coupling Hamiltonian, and Ef) shows
different parameters are defined as that single- and two-vibron states do not experience the same
interaction with the phonon bath. When compared with the
2 T '
1+4A(£) _122 h_armonl_c situation, the coupling between pho_nc_)ns_ anc_i
wo wo]’ single-vibron states is enhanced by the anharmonicity, i.e., it
is multiplied by the factor *27. Moreover, the terms
nblblb,b,, which act on two-vibron states only, show that
' two vibrons located on the same amide-lI mode interact in a
different way with the phonon bath when compared with two
3\ 2 Y4 vibrons that are far apart. Note that the anharmonic correc-
7/=12({ —) —-12—. (7)  tions occurring in Eq(7) are typically of the order oA/ w
@o @o and represent rather small contributions, which have been

Note that Eq.(5) was obtained by disregarding the constantnhegleﬁted in o;J]r previous Wf?'m_Llqu Nde_verthelgzsg, al- N
term as well as contributions acting on states involving mord"0tgh some changes can eftectively be disregarded, such as

than two vibrons. the modification of the hopping constants, other contribu-

The unitary transformation allows us to diagonalize eacﬁipns play a sig'nificant. role, especially the qorrection of.the
anharmonic amide-1 vibration up to the second order withvibron-phonon interaction, as will be shown in the following

respect to the anharmonic parameters. As a result, the vibrotf lions-

operators describe vibrational states, called anharmonic vi-

brons, t_hat are expressed as linear superimpositions of the B, Renormalization of the vibron-phonon coupling
harmonic states of each amide-l mode. Therefore, (BY.

clearly shows that the anharmonicity strongly affects the dy- _bThe nhext step in ?ur [;roce_ldur(_a IS ;O par]ElaIIy_ remove ctjhe
namics of these anharmonic vibrons. It first modifies the harY!°ron-phonon coupling Hamiltonian by performing a modi-

monic part of the Hamiltonian by inducing a redshift of eachﬁed Lang—F,irsov[SS] transformati_on. According to IViC. an_d
internal frequency &o— wo—2A—B) and by changing the co—w_orkers remark$27,2§, the V|t.)ron—phonoln dynamics is .
strength of the lateral interactiod<+J;). Then the anhar- dominated by the so-called dressing effect since the nonadia-

monicity is responsible for the occurrence of coupling termsb"’lt,',C I'm'F is reached. As a rgsult, we consider a "fu]l dress—
which break the vibron independence and directly affect thé"9 and introduce the following unitary transformation:
two-vibron dynamics. The terms—Ab/blb.b, and

—Bb!b!, ,b,b,. yield an attractive interaction between U=exp{2 Qul (1+27)bfb,+ 7blblbab,1|, (8
two vibrons and favor their trapping around the same "

amide-I site and around two nearest neighbor sites, respec-

tively. The contributions proportional td, characterize hops whereQ, is defined as

2
y
A=30—"—61y,. (6)
(C0]

Y3 2
B:144J(—), J;=J
o

2 2
J2:4J(ﬁ) | Jszj[zz(ﬁ) PPRL
wo

wo
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S Y ELR S B
"L, g,

vibron population operators. This dependence originates in
. 9 the modification of the vibron-phonon interaction mediated

by the intramolecular anharmonicifisee Eq.(5)] and the

original Lang-Firsov transformation is recovered by setting
The transformatiotd [Eq. (8)] differs slightly from the true ~ #7=0. Therefore, by using Eq8), the transformed Hamil-
Lang-Firsov transformation due to its dependence on théonianH=UHUT is expressed as

H=2 @obhb,—Ab}’b3—Bb}, 1bby. 10, =3[ O (Ny=1)O 1, 1(Ny, )bIby, 1+ H.C]

n

bi?b3 4+ H.C.| = I OF(Ny=1)O 1 (Np s )DI N+ Ny 1]bp g + H.C]

—JZ[W

3\ 1
Nn_i ®n+l Nn+l+§

+2 Qqagag. (10
q

whereanbﬁbn denotes the vibron population operator and . .t siiaa a4 ot
where the different parameters occurring in ELD) are ex- Heﬁ=§n: wobpby—Aby by —Bbp, 1 biby 10y =I5 [P (N,
pressed in terms of the small polaron binding enekgy

=2A2%/Q, as +Nps1)blbns 1+ H.c]— I D (Ny+ Ny, 1)*bl 202

n+1
) +H.c]=Ja[ @(Ny+ Ny )b [Ny + Ny g 10y
.c.],

A=A+(1+87)Eg, B=B+(1+47)Es. (11) Wwhere®(X)=exp—ST)[1+27+27X]} and whereS(T) is
the coupling constant introduced by lvic and co-workers as
. (kg denotes the Boltzmann constant
In Eg. (10), ®,(N,) stands for the dressing operator defined
_(q q\? Qq
sm( 5) cos{ 5) cotl’(m . (15

as 4Eg
ST, >
The Hamiltonianﬂeﬁ [Eq. (14)] describes the dynamics
of the anharmonic vibrons dressed by a virtual cloud of
phonons, i.e., anharmonic small polarons. It takes into ac-

count the anharmonicity up to the second order and allows

od’\tIJIathnltr?f thﬁ tlgteral term? by Otlhe d;essmtgh opehrator%r a renormalization of the main part of the vibron-phonon
n(Np). oug €se operators depend on the p Onor&oupling within the nonadiabatic limit. The interaction

_coordm_ates in a highly nonlinear way, t_he V!bron'phononHamiltonianAH, which characterizes the coupling between
interaction has been strongly reduced with this transformat-hese dressed anharmonic vibrons and the remaining

tion. As a result, we can talfe advantage of this reduction t?)honons, is assumed to be small in order to be treated using
express the full Hamiltoniahl as the sum of three separate perturbation theory. This contribution, responsible for phase
contributions a$26,27] relaxation, will be studied in a forthcoming paper.
Equation(14) clearly shows the interplay between the in-
tramolecular anharmonicity and the strong vibron-phonon

coupling. The Hamiltoniart:leﬁ exhibits basically the same
contributions as the vibron part of the anharmonic Hamil-

where Heﬁ=<F|)—Hp denotes the effective Hamiltonian of tonianH. The main difference is that the parameters occur-

the dressed anharmonic vibrons and whatd=H—(H)  ring in He; are renormalized due to the dressing effect,

stands for the remaining part of the vibron-phonon interacwhich modifies the dynamics in two main ways. First, it

tion. The symbok- --) represents a thermal average over theyields additional contributions to the anharmonic parameters
phonon degrees of freedom which are assumed to be in theA and B as well as to the internal frequenay, [Eq. (11)].

mal equilibrium at temperatur€. As a result, the effective Then, the dressing effect modifies the different lateral contri-
dressed anharmonic vibron Hamiltonian is written as butions via the dressing functio®®(X) which reduces the

On(Np)=exp(—Qn[1+27+27N,]). 12

In this dressed anharmonic vibron point of vidqg.
(10)], the vibron-phonon coupling remains through the

H="Fes+Hp+AH, (13

021909-4



TWO-VIBRON BOUND STATES INa-HELIX . .. PHYSICAL REVIEW E 68, 021909 (2003

hopping constants. However, in marked contrast with theand when two vibrons are located on the same amide-lI mode
harmonic situation, the intramolecular anharmonicity en-the Schrdinger equation is defined as
hances the role played by both the small polaron binding

energy and the coupling constaB8{T). In addition, the —23,®(2)4¥(ni+1n;+1)+¥(n;—1n,—1)]
dressing effect depends on the vibron population. As shown
in the next section, this dependence discriminates between —V2(31+35) P(2)[ W (ny,ny + 1)+ ¥ (n;—1)ny)]

transitions involving two vibrons located on the same +(2ig—2R)W(ny.ny)
amide-| vibration and transitions involving two vibrons that @o L

are far apart. =wW¥(ny,Nny). (19

V. TWO-VIBRON STATES As shown in Egs.(18) and (19), both the intramolecular
. anharmonicity and the dressing effect strongly modify the
Since the effective HamiltoniaH ¢ [Eq. (14)] conserves  dynamics involving vibrons located on neighboring sites.
the number of dressed anharmonic vibrons, its eigenstatgsyst, they contribute to a redshift of the energies of the cor-
can be characterized by using the number states méliied  responding states. Then, they affect the hopping processes by
19]. Within this method, the two-vibron wave function is favoring simultaneous motions of two vibrons and by chang-

expanded as ing the dressing effect, which is characterized by the effec-
tive correction® (2)=exd —(1+67%)YT)]. This latter feature
[Wy=">  W(ng.nylng,ny), (16)  originates in the dependence of the dressing operéEus
ni,Ny=nq

(12)] on the vibron population. Therefore, sind€2) is less
than®d(1), it is clear that the trapping process experienced by

where{lr]l,nz)} denotes a local basis set normalized andtwo vibrons located on the same site is more efficient than
symmetrized according to the restriction=n,; due to the

indistinguishable nature of the vibrofs7—19. A particular }2: dressing effect which modifies the single-vibron dynam-
vector|n;,n,) characterizes two vibrons located on the sites Equations(17)—(19) clearly indicate how the physics of

Ny andny, respectively. The expressionAof the corresponding[he two-vibron states is related to the dynamics of a single
time-independent Schdinger equationHer{W)=w[¥) de- fictitious particle moving quantum mechanically on the two-

pends on the nature of the bgsis vectors i.nvolved. qugeqjimensionm lattice displayed in Fig(a [17-19. Within
two vibrons located on sites that are far apart, two vibrongan pe viewed as the wave function of the fictitious particle.
located on nearest neighbor sites, and two vibrons located qgs dynamics is described by a tight-binding Hamiltonian

the same site. o o characterized by the self-energpglocated on each site and
In the first situation, the Schdinger equation is ex- 4 hopping matrixJ;®(1) which couples nearest neighbor
pressed as sites. However, the two-dimension@D) lattice exhibits two

=3, D(D)[¥(ny,n+1)+W¥(ny,n,—1)]— I, D(D)[¥(n, rows of defectdsee Fig. 1a)] which yield a redshift of the
self-energy of the corresponding sites as well as a modifica-
+1.n2) +W(ny—1n3)]+2w0W(Ng,N3) tion of the hopping matrix elements connecting the defect
(17) sites. Therefore, such defects allow us to discriminate be-
tween two different eigenstates. The eigenstates of the core

Equation(17) shows that the two vibrons move in an inde- of the lattice correspond to plane waves slightly perturbed by
pendent way according to an effective hopping constant[he defects. By contrast, the presence of the defects leads to

3,®(1)=J, exq] —(1+47)T)], which slightly differs from the occurrence of states that are localized in the vicinity of

the hopping constant involved in the harmonic approxima-the two _defect rows. In terms of the .tWO'V'br(.)n dynar_mcs,
he previous equivalence yields two different kinds of eigen-

tion. Indeed, as discussed in the previous section, the irf! Indeed. the delocalizati f the fictiti cle i
tramolecular anharmonicity modifies the harmonic hoppingStates' ndeed, the delocalization of the fictitious particle is

constant §—J;) and enhances the dressing effé&(T) associated with free motion of the two vibrons, i.e., two-

—(1+47)S(T)]. Therefore, although the anharmonic pa- vibron free state$TVFS's), whereas its localization is con-
rametery is rather small, it acts under the exponential andneCteOl with the occurrence of TVBS's. Note that in marked

; - ; ontrast with the standard Hubbard Hamiltonian for bosons
:E:Sh;er?nuocrﬁi ;?tiaeirgi?tlve hopping constant with respect t 14.,16,18, the presence of two defect rows in our equivalent
When two vibrons are located on nearest neighborlattlce shows that the system can s.upport two k|nd§ of bouqd
amide-I vibrations, the Schdinger equation is expressed as states, correspondlng'to the_ trapplng of the two V|bro.ns eI
ther on the same amide-| vibration or on nearest neighbor
=31 P(D[¥(ny,n;+2)+W¥(ny—1n;+1)] amide-| sites, respectively.

The Schrdinger equation Eqs(17)—(19) can be ex-

~V2(J1H 3 R(2)[W(ng,ng) + W (N + 10y 1)) pressed in an improved way by taking advantage of the lat-

=w¥(ng,ny).

+(2&)0—l§)‘lf(n1,n1+1) ticg perioldicity. Indeed, the two-yibron wave fungtion is in-
variant with respect to a translation along the lattice and can
=wW¥(ny,n;+1), (18  be expanded as a Bloch wave as
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where y,=2(J;+J3)P(2)cosk2). Then, when two vi-
brons are located on the same site=0), Eq.(19) is ex-
pressed as

(280—2A— )V (0) = V23 P (1)=0, (23

whereA,=A+2J,8(2)* cos).

Finally, for each wave vectds, the two-vibron dynamics
reduces to a one-dimensional tight-binding problem on a
semi-infinite lattice which exhibits two defeci{see Fig.
1(b)]. The Schrdinger equation Eqg21)—(23) can thus be

A solved easily to obtain the two-vibron eigenstates and to de-
® 20 _%A I1em termine the two-vibron energy spectrum. This procedure is
©20p-B — V20 +73)P(2) illustrated in the following section.

O 2dy 7 20
V. NUMERICAL RESULTS
(b) In this section, the previous formalism is applied to char-
acterize the two-vibron energy spectrum of aelix pro-
o—0——0O0—0O—0O—> tein. However, the present theory involves a set of param-
m eters that has to be discussed first.

. = From the literature, the harmonic dynamics of vibrons in
® 200 -2Ax ____ Tk a-helices is relatively well describegee, for instance, Refs.
© 2d -B N7 [16], [27]). The quantum energy for an amide-I vibration is
O 26y —_— V2Yk aboutw,=1665 cm ! and a well accepted value for the hop-

ping constant is]=7.8 cm . By contrast, the phonon dy-

FIG. 1. (a) Equivalence between the two-vibron Satlirger nam_ics and the vibron-phonon coupl_ing parameter are only
equation and the dynamics of a single fictitious particle movingP@rtially known. The mas#l of a peptide group ranges be-

25 - 25
quantum mechanically on a 2D lattid®) For each wave vectdr, ~ tween 1.1k 1077 and 1.9 10”“> kg, whereas the phonon
the two-vibron dynamics reduces to a one-dimensional tightforce constantis expected to be about 13-19.5 NAs

binding problem on a semi-infinite lattice that exhibits two defects@ result, the phonon cutoff frequency varies from 87 to 137
(see the text cm™ L. In the same way, a typical range for the vibron-phonon
coupling term is y=35-62 pN. Therefore, the vibron-
phonon coupling parameteY, ranges between 12 and 29
W(ny,n,=n;+m)= iz ek(=m2y (m). (20) cm 1 and Ehe small polaron binding energy extends from
JN 3to 15 cmt.

In marked contrast with the previous parameters, little is
known about the intramolecular anharmonicity of each
amide-| vibration. Therefore, to determine the range of the
anharmonic parameters, we assume that the amide-I vibra-

In Eq. (20), the total momenturk, which belongs to the first
Brillouin zone of the molecular lattice, is associated with the
motion of the center of mass of the two vibrons, whereas th%on is equivalent to the €0 stretching mode of a single
resulting wave functionV, (m) refers to the degree of free- molecule, but with a different reduced massBy describing
dom m that characterizes the distance between the two vi; '

. . both vibrations according to a Morse potential, it is straight-
brons. Since the momentukris a good quantum number, the
T . '~ forward to show that, scales as 1/u whereas the anhar-
HamiltonianH.4 appears as block diagonal and the Sehro

_ ) monicity A scales as 1. By comparing the harmonic fre-
dinger equation can be solved for edclvalue. Therefore,

. . quency of both the amide-l vibration and the=<©
when two vibrons are located on sites that are far apart ( stretching modedo=2170 cn * [36]), the reduced mass of
>1), Eq.(17) becomes 0 |

the amide-l mode is found to be about 1.6-1.7 times the
reduced mass of the=£0O molecule. As a consequence,
(209— o)V (M) - [V (m+1)+¥ (m—1)]=0, since the anharmonic parameter for the=O stretching
(21)  mode isA=13.3 cm ! [36], the anharmonic constant of the
amide-| vibration is abouf=8.0 cmi 1. Note that this last
value represents the order of magnitude of the anharmonic
parameter since, strictly speaking, the anharmonicity of the
amide-| vibration depends on the details of the correspond-
ing intramolecular potential. In addition, our calculations es-
tablish that both the cubic and quartic anharmonic param-
(20— B— )W (1) — T ¥ (2) — V2 ,¥ (0) =0, eters can be expressed approximately in term& by using
(22)  the relation 193/ wy~67y,~A.

whereI",=2J,®(1)cosk/2). In the same way, when two
vibrons are located on nearest neighbor sites=(L), Eq.
(18) is rewritten as
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g FIG. 2. Two-vibron energy
3 spectrum forEg=8 cm'!, J=8
a cm 1, 0,=100 cm '}, T=310K,
d and for A=(a) 0 and (b) 10
S cm L,

@

c

L

50
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As a result, in the rest of the text, the intramolecular an-frequency band, located below the TVFS’s over the entire
harmonicity will be described by a single parameter, namelyBrillouin zone, refers to bound states denoted TVBS-I. The
the anharmonic consta#t. The small polaron binding en- bottom of this band is located at 24.74 chbelow the center
ergy Eg is taken as a parameter whereas the phonon cutofff the continuum and its bandwidth is about 8.7 ¢miThe
frequency(), is fixed to 100 cm™. The temperature is set to second band, which refers to bound states denoted TVBS-II,
the biological temperature, i.eT,=310 K, and the hopping is located below the continuum at the end of the Brillouin
constant is set td=7.8 cni *. zone only. The band disappears inside the continuum when

The influence of the intramolecular anharmonicity on the|k| <k.=2.06. When the anharmonic parameter is sefto
two-vibron energy spectrum is shown in Figs. 2, 3, and 4 for=10 cm ! [Fig. 2(b)], the TVFS bandwidth is reduced to
three typical situations. In each figure, the spectrum is cen28.40 cm®. Note that the center of the continuum is red-
tered on the corrected frequencw@ [Eq. (11)] and corre-  shifted due to the dependence abR[Eq. (11)] on the an-
sponds to the two-vibron dispersion curves drawn in the firsharmonic parameteA (not drawn in the figure Thus the
Brillouin zone of the lattice, i.e.; m<k<nr. intramolecular anharmonicity is responsible for a strong red-

WhenEg=8 cm ! and A=0 [Fig. 2], the two-vibron  shift of the TVBS-I band as well as for a decrease of the
energy spectrum is formed by an energy continuum assoctorresponding bandwidth. The bottom of the band is located
ated with the TVFS'’s. This continuum is symmetrically lo- at 43.39 cm* below the center of the continuum and the
cated around @, with a bandwidth equal to 31.21 ¢cth  bandwidth is equal to 2.78 cm. Finally, although the an-
Below the continuum, the energy spectrum exhibits twoharmonicity does not significantly change the shape of the
bands connected to two different bound states. The lowTVBS-II band, it leads to a decrease of the critical wave

(a) (b)

E
o
5 FIG. 3. Two-vibron energy
*g 20 4 P spectrum forEg=10 cm !, J=8
2 T cm™ %, Q=100 cnt ?, T=310K,
> -30 and for A=(a) 0 and (b) 10
= cm L,
2 -0 -
L
S
-50 -
'60 T T T T T T T T T T T T T T
-3 2 1 0 1 2 3-3 2 1 0 1 2 3
k k
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L
g ) FIG. 4. Two-vibron energy
5 spectrum forEg=14 cm !, J=8
g’& cm %, Q,=100 cm', T=310K,
g and for A=(a) 0 and (b) 10
o cm L.
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vector for which its disappearance arises, sikge 0.70. tion is described by open circles whereas the TVBS-Il wave

WhenEg is set to 10 cm?, the two-vibron energy spec- function is represented by open squares. When0 and
trum is shown in Figs. @ and 3b). In the harmonic case, Ez=10 cm *[Fig. 5a)], the TVBS-I wave function is maxi-
i.e., A=0 [Fig. 3@)], the energy spectrum exhibits the samemum whenm=0 and decreases as the separation distemce
features as in Fig.(2). Nevertheless, the TVFS bandwidth is petween the two vibrons increases. However, it does not ex-
smaller and equal to 26.24 c¢th The width of the TVBS-I  hibit a true exponential decrease versusWhen the anhar-
band has been reduced to 6.04 ¢nand the bottom of the monicity is set toA=10 cn ! [Fig. 5b)], the lattice sup-
band is located at 26.04 crhbelow the center of the con- ports two bound states with zero wave vediee Fig. &)].
tinuum. In addition, the critical wave vector connected to thea g previously, the TVBS-I wave function is maximum when
disappearance of the TVBS-II gtates has beeni reduckg to m=0 but the extension of the wave function has been re-
=1.70. When the anharmonic parameter is set Ao duced when compared with the harmonic case, i.e., it de-

=10cm !, we observe the same behavior as in Fith)2 :
Indeed, both the TVFS and the TVBS-I bandwidths decreas§ co>0> exponentially versus By contrast, the TVBS-II

to reach 23.30 and 1.70 cth respectively. In addition, the “2'€ function is maximum whem=1 and %x1h|b|ts an ex-
bottom of the TVBS-I band is strongly redshifted and is lo- ponential tail asnincreases. W,heEB: 14 cm, the lattice
cated at 47.47 cit below the center of the continuum. SUPPOrts two bound states with zero wave vector whatever
However, a different process arises since the intramoleculdP® @nharmonicityFigs. 4a) and 4b)]. When A=0 [Fig.
anharmonicity yields the occurrence of the TVBS-II band®(C)]: the TVBS-I wave function, which is maximum when
over the entire Brillouin zone. The corresponding bandwidthm=0, shows a significant value when=1 and does not
is equal to 1.53 cm'* and the bottom of the band is located at decrease according to a true exponential. The TVBS-II wave
13.42 cm ! below the center of the continuum. function is maximum whem=1 and has significant weight
The situation corresponding to a strong small polarorwhen m=0. By contrast, when the anharmonicity is set to
binding energy is finally illustrated in Figs(@ and 4b) for ~ A=10cni ! [Fig. 5d)], the TVBS-I and TVBS-Il wave
Eg=14 cm . The main difference when compared with the functions are clearly localized om=0 andm=1, respec-
two previous cases is that the dressing effect is strongjvely, both wave functions exhibiting an exponential tail
enough to induce the occurrence of the TVBS-Il band ovewversusm.
the entire Brillouin zone, even wheA=0 [Fig. 4(a)]. As As mentioned previously, the intramolecular anharmonic-
previously, the intramolecular anharmonicity reduces bothity is responsible for a slight decrease of the TVFS band-
the TVFS continuum and the TVBS-I bandwidth and yields awidth. This feature is illustrated in Fig. 6 where the behavior
strong redshift of the TVBS-I band. Moreover, it increasesof the bandwidth is shown as a function Affor different
the frequency difference between the TVBS-Il band and thealues ofEg . The figure exhibits two distinct regimes. When
center of the continuum and reduces the TVBS-Il bandwidthEg=0, the TVFS bandwidth increases slightly in a linear
The difference between the two bound states is illustrategvay as the anharmonicity increases. The bandwidth, equal to
in Fig. 5. Figures B) and 5b) show the TVBS wave func- 62.40 cm* when A=0, is blueshifted by about 0.36 ¢rh
tions with zero wave vector and whose energy spectrum isshen A=10 cm . In marked contrast, for finite values of
displayed in Figs. @ and 3b), respectively Eg Eg, the TVFS bandwidth is strongly reduced and decreases
=10cm ). By contrast, Figs. @) and Fd) refer to the asA increases. WheEg=9 cm ! andA=0, the bandwidth
TVBS whose energy spectrum is shown in Figéa)4dand is equal to 28.6 cm!, whereas it reaches the value 25.7
4A(b), respectively Eg=14 cm ). The TVBS-I wave func- cm *whenA=10cm !, i.e., a variation of about 2.9 cm.
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% 0.25 - FIG. 6. Behavior of the two-vibron free state bandwidth as a
> 0.00 4 ) function of the anharmonicit for J=8 cm *, Q.=100cm?,
) L T=310K, andEg=0 (full circles), 5 (full squares, 7 (full tri-
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o 1t 2 3 4 5 6 7 8 increases withEg. Note thatE, decreases with increasing
1.00 small polaron binding energy. In Fig(ly, the behavior of
’ the TVBS-I bandwidth as a function & is illustrated for
0.75 (c) different values oEg. In a general way, the TVBS-I band-
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FIG. 5. Zero-wave-vector two-vibron bound state wave func-
tions for J=8cm!, O.,=100cni!, T=310K, and (a) Eg
=10cm!, A=0cm %, (b) Eg=10cm !, A=10cm %, (c) Eg
=14cml, A=0cm?, (d) Eg=14cm !, A=10cnil. Open
circles represent the TVBS-I wave function whereas open squares
characterize the TVBS-Il wave functiqsee the text

In Figs. 1a) and 7b), the influence of the anharmonicity
on the TVBS-I states is illustrated for different values=gf.
As shown in Fig. 7a), the TVBS-I binding energ¥,, de-
fined as the gap between the TVBS-I state with zero wave
vector and the bottom of the TVFS continuum, decreases as
the anharmonicity increases. Wheg=0, E, decreases from
zero according to a? power law for smallA values and FIG. 7. TVBS-I(a) binding energy andb) bandwidth as a func-
reaches a quasilinear decrease for a stronger anharmonicifisn of the anharmonicity for Eg=0 (full circles), 5 (full squares,
For finite values ofEg, E, reaches the linear regime more 7 (full triangles, 9 (open circley and 11 cm? (open squarésand
rapidly on increasing\, and the slope of the decrease slightly for J=8 cm™!, Q,=100cni !, andT=310 K.

TVBS-I bandwidth (cm™")

A (em™)
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3.0 shift of the TVFS bandwidth, typically of about a few wave
2:2 | Eg=10cm’™ numbers. Note that, wheBg =0, i.e., when there is no cou-
o5 o 20 A=8 cm™ pling with the phonon bath, the anharmonicity leads to a very
' X 154 small blueshift of the continuum bandwidth. These features
1.0 4 originate in the modification of the hopping constdmiue to
50 8:8 ] both the anharmonicity and the dressing effect. Indeed, as

50 100 150 200 250 discussed in Sec. IV, a TVFS corresponds to an independent
motion of the two vibrons according to an effective hopping

0

T(K
& 15 o constant];®(1)=J; exd —(1+4#)YT)], which differs from
N the constant involved in the harmonic approximation. First,
\ the intramolecular anharmonicity slightly increases the har-
1.0

monic hopping constarisee Eq(7)] yielding a blueshift of

the TVFS continuum whe&g=0. Then, the anharmonicity
reinforces the role played by the coupling consta(i) that
characterizes the dressing effelc®(T)— (1+4#7)S(T)].
Therefore, it enhances the dressing effect and favors a de-

0.5 H \

0.0 | : : : : : : crease of the effective hopping constant. Although the two
0 5 4 6 8 10 12 contributions act in opposite ways, the enhancement of the

A dressing effect appears to be more efficient for nonvanishing

Afcm ) values of the small polaron binding energy. In other words,

FIG. 8. Behavior of the critical wave vector for which the dis- anharmonic vibrons are more sensitive to the dressing effect

appearance of the TVBS-Il band takes place as a function of th&_hiz ha[rlnonlc(:j JV'_b;Og S- _F? r ;]nstail:rnce_, W?FFF 310 K, Eg
anharmonicityA for Eg=8 (full line), 9 (dotted ling, 10 (short =1l4cm -, andJ=7.8 cm -, the effective hopping constant

dashed ling and 11 cri® (medium dashed line(J=8 cm 1,0, quID(l) is _equal to 2.32 cfn1 in the harmonic_(lzas_e, whereas

=100 cnT 1, T=310K). The inset represents the evolution of the it iS redshifted to 1.96 cm' whenA=10cm?, ie., a re-

critical wave vector as a function of the temperature. duction of about 15%. -
The main result of the present study concerns the modifi-

width decreases as the anharmonicity increases. Howevecr"’ltlon of the bound states due to the interplay between the

for a small anharmonicity, the TVBS-I bandwidth exhibits alﬁtramolecular anharmonicity an_d the_strong vibror_l-phonon

rather fast decrease, whereas it decreases more slowly for.CQUplmg' 'Udeed* for the harmonic lattice, the _dressmg effect
stronger anharmonicity. Wheg=9 cm %, the TVBS-| is resp(_)n3|ble for the occurrence of two different bound
bandwidth is equal to 7.28 cm when A=b and reaches states, i.e., TVBS-l and TVB.S'“' The TVBS- St?‘tes are k.)'
2.67 cmt whenA=8 cm 2, ie., almost 0.3 times smaller. cated below the TVFS continuum over j[he entire Brillouin
Finally, Fig. 8 displays the behavior of the critical wave Zone. B% contrast,hforfTr\]/BS-II,l'ltwo Isﬂuatgqnz_occur depend-
vectork, for which the TVBS-II band disappears. In a gen- Ing on the strength of the sma polaron binding energy. For
small values ofEg, the band disappears inside the con-

eral way, k. decreases a#é increases and vanishes for a _. . o
critical vixluia of the anharmonic baramefer A . In others _inuum when the wave vectd is lower than a critical wave
P c vectork., whereas, for large values &, the band is lo-

words, wherA>A,, the TVBS-I| band is located below the cated below the continuum over the entire Brillouin zone. On

continuum. By contrast, wheA<A., the TVBS-Il band increasing the anharmonicity, the TVBS-I band is redshifted
appears below the continuum at the end of the Brillouin Z0N€, 4 its bandwidth is strongly reduced. In the same way, the

only, i.e., whenfk|>ke. l\_Iote thatA, decreases aE.B. In- ...anharmonicity modifies the nature of the TVBS-Il band. If
creases. Moreover, the different curves clel%rly exh|p|t 8 CMitlihe hand is resonant with the continuum, the anharmonicity
cal behavior sincé; scales askC~(A_—AC) _ when it ap- yields a decrease of the critical wave vector. Therefore, if it
proaches zero. Note that, as shown in the inset of Fi§: 8, g strong enough, the anharmonicity allows for the TVBS-II
®and to get out of the continuum over the entire Brillouin
zone. When the TVBS-II band is not resonant with the con-
rH‘?ﬁuum, the anharmonicity induces a redshift of the band as
well as a decrease of its bandwidth. All the previous features
are accompanied by a modification of the wave functions of
the bound states.

To understand these features, we can take advantage of
the equivalence between the two-vibron dynamics and the
tight-binding problem on the one-dimensional lattice dis-
played in Fig. 1b). Within this equivalence, bound states in

To interpret and discuss the previous numerical results, lehe real molecular lattice are described in terms of localized
us first focus our attention on the influence of the anharmostates in the equivalent lattice, the localization occurring due
nicity on the TVFS continuum. As shown in Figs. 2, 3, 4, andto the presence of two defects. For a gilewmalue, the pre-

6, the intramolecular anharmonicity is responsible for a redvious results clearly show that the system supports one or

Indeed, forA=8 cm ! andEg=10 cmi !, the critical wave
vector decreases on increasing the temperature and vanis
whenT=T,=236 K. Therefore, whed>T_, the TVBS-II
band is located below the continuum over the entire Brillouin
zone. Note thak, shows the same critical behavior when it
approaches zero and scaleskas (T—T,)'2

VI. DISCUSSION
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two bound states, depending on the values taken by the rel- 8 1

evant parameters of the proble@nharmonicity, small po- TVBS-I (m=1)|  [TVBS-I(m=0+1) .
laron binding energy, temperature, &tdn other words, if 71 |1vBs-li(m=0)| - |TVBS-I(m=1+0)] -
these parameters are allowed to vary, a localization transition 1 ’
arises in the equivalent lattice. Such a transition discrimi- ® rvesi

nates between two “phases.” The first phase corresponds to 5 JLm=1)

the presence of a single localized stéte., a single bound

state in the real lattigewhereas the second phase is con- Q‘ 4

nected to the occurrence of two localized stafies., two o TVBST (m0)
bound states A localized state is characterized by its local- 3 TVBSHI (m=1)
ization length¢, which refers to the length of the bond be-

tween two vibrons in a bound state. The disappearance of a 2 -

localized state is accompanied by a divergence of the local- Ve

ization length, since it now refers to two independent vi- 1o (m=0+1) TVBSH[
brons. o ; (m=0)

This process is similar to a critical transition and conse-
quently we can use the tools of renormalization gréi|(®)
theory to understand the transition and predict the occurrence Ak/Fk
of localized statesi.e., bound statgesThis can be achieved
by performing a decimation of the Schiinger equation as FIG. 9. Phase diagram in the parameter space. The critical curve
detailed in Refs[37], [38] and summarized in Appendix B. discriminates a phase with a single bound state from a phase with
The decimation consists in eliminating from the initial two bound stategsee the text
equivalent lattice one site of every two to arrive at a scaled
lattice with twice the lattice spacing. If the initial lattice is at mode and two nearest neighbor amide-I modes. In phase I,
a critical point, i.e., if the localization transition takes place, the lattice supports two bound states. Whga>B, TVBS-I
the localization lengtlt is infinite and the dynamics is in a corresponds to the trapping of the two vibrons on the same
self-similar situation. As a result, no change in the criticalamide-l mode, whereas TVBS-Il characterizes the trapping
parameters accompanies the length scaling and the scaleélthe two vibrons onto nearest neighbor amide-lI modes. As

lattice remains at a critical point. The decimation procedureshown in Fig. 9, the reverse situation takes place whgn

can be applied recursively until the lattice parameter hasgé_ Finally, whenA,<B<2A, , both bound states appear

been increased up to infinity. By operating in such a way, we s combinations of states involving the trapping of the two

drastically decrease the number of sites in the equivalenf; . .
lattice, and obtain a scaled lattice that reduces to the two sid [brons on the same amide-1 mode and on nearest neighbor

sitesm=0 andm=1 only[see Fig. 1b)]. It is thus possible gmllgfhl mhofrisni heli tein i 0, Eq.(11) yield

to study exactly the Schdinger equation of such a critical . = . € harmonia-netix pro el.n., le.A=0,Eq yieldas
system and then to characterize the critical properties of thék=B=Es. Therefore, the critical curve Ed24) shows
initial lattice. By following this procedurésee Appendix & that whenEg<4J®(0)cosk/2), the lattice exhibits a single
the condition for the occurrence of localized states in thé?0und state which mixes the trapping on the same amide-|

equivalent lattice, i.e., for the occurrence of bound states if"ode and on two nearest neighbor amide-I mddee Fig.
the real lattice, is defined as 5(a)]. By contrast, wherEg>4J®(0)cosk/2), the lattice

supports two bound states, both being a superimposition of
states involving trapping on the same and on two nearest
neighbor amide-l moddsee Fig. c)]. Note that the condi-
tion for the occurrence of two bound states over the entire
where the parameters are defined in Sec. IV. Brillouin zone isEg>4J®(0). Onincreasing the anharmo-

As shown in Fig. 9, Eq(24) defines the critical curve in pjcity A, Eq. (11) shows thatA,>B. For instance, whei¥

the space of the parameters that separate the phase I, With:a310 K, Eg=14cmt, and A=10cn?, A is equal to
single bound state, from the phase II, with two bound states. = B L r‘nl
In phase I, the nature of the bound state depends on theb:29 M~ whereasB is equal to 16.54 cnr. Therefore the

relative values of the parameters and three main situatior@harmonicity decreases the hybridization between the two
~ . . . kinds of trapping. As a result, the TVBS-I state corresponds
oceur. WhenA,>B, the localization arises _around the f'YSt essentially to trapping on the same amide-l mode whereas
S|tem=Q. In other words, TVBS-| chgracter!zes _the rapping e TvRS.I| state, when it is present, characterizes trapping
of two wbrgns :ilround the .sar'ne amide-| vibration. By an'on two nearest neighbor amide-1 modege Figs. &) and
trast, whemA, <B, the_: localization occurs on the seconc_i site5(d)]. Note that the hybridization between the two trapping
m=1 and the two vibrons are trapped on nearest neighbgsrocesses is also reduced when the hopping consfaread
amide-I modes. In the intermediate case, wigr=B, the v, decrease, i.e., when the different simbecome uncorre-
localized state is a superimposition of states localized otated. This feature arises when the TVBS wave vector ap-

sitesm=0 andm=1. As a result, TVBS-| characterizes a proachesr as well as when the temperature increases due to
superimposition of states trapped over both the same amidetthe dressing effect.

0 1 2 3 4 5 6 7 8

(A—T(B—T\) =172, (24)
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14 Phase with vyeak, both Iocaliz_ed states can be Io_cated below the con-
two bound —— J=6.0cm™! tmuum._A_s s_hown in Eqsi21) and(22), intramolecular an-
12 b states — J=78cm"! ha}rr.nonlcny increases the energy _d|ffer(_ence petween the two
P J=9 cm-" original localized states. In addition, since it enhances the
10 7 e dressing effect, it reduces the coupling between these two
— ._\\\..__\ .................... states. As a result, anharmonicity favors a weak hybridiza-
g 8 } R — o tion between the two original localized states. The main con-
~ ' e~ ] sequence is that the TVBS-I and TVBS-II states are essen-
Foef T T T tially localized aroundn=0 andm=1, respectively.
~ Phase with -~ .~ .7 The present paper has clearly established the interplay
41 onebound . T between intramolecular anharmonicity and strong vibron-
Sstate 0 o phonon coupling. We have shown that the anharmonicity
2 1 S ; modifies the vibron-phonon interaction, which results in an
0 . ‘ _-I" S . .;" I.-" enhancement of the dressing effect. Therefore, anharmonic

vibrons are more sensitive to dressing than harmonic vibrons
and are characterized by smaller effective hopping constants.
A (cm™) In addition, we have shown that both nonlinear sources break
the vibron independence and favor the occurrence of two
FIG. 10. Phase diagram in thé (Eg) parameter space for zero kinds of bound states whose properties strongly depend on
wave vector (0,=100cm 1, T=310K). The critical curve dis- the interplay between the anharmonicity and the dressing
criminates a phase with a single bound state from a phase with tweffect. This dependence was summarized in a phase diagram
bound stategsee the text which characterizes the number as well as the nature of the
bound states as a function of the values taken by the relevant
Although the phase diagram displayed in Fig. 9 allows forparameters of the problem. In the harmonic situation, the two
a complete understanding of the nature of the bound states,bibund states appear as combinations of states involving the
involves parameters that are not independent. For instanceapping of the two vibrons on the same amide-I mode and
both A, and B depend onA and Eg. However, from Eq. ©n nearest neighbor amide-I modes. By contrast, the in-
(24), we can define a phase diagram in thefg) parameter tramolecular anharmonicity reduces the hybridization be-
space. This diagram is illustrated in Fig. 10 for zero wavefween these two kinds of trapping so that the low-frequency
vector. The temperature is fixed To=310 K whereas three bound state refers to the trapping of the two vibrons on the
different values for the hopping constahhave been consid- Same amide-1 mode whereas the high-frequency bound state
ered. The curve discriminates between a phase with a singfaracterizes the trapping on nearest neighbor amide-I vibra-
bound state and a phase with two bound states, both statigns. In addition, the anharmonicity strongly reduces the
being located below the continuum over the entire Brillouindispersion of the bound states and thus enhances their breath-
zone sincek=0. The figure clearly shows that the anharmo-€rlike behaviof19]. _ _ _
nicity favors the occurrence of two bound states by decreas- T0 conclude, let us mention that forthcoming work will be
ing the value of the required small polaron binding energy_devoted to the fundamental question _of the TVBS'Ilf.eUme
For instance, whed=7.8 cni ! andA=0, Eg must exceed due to the couplingAH [Eq. (17)] with the remaining
11.5 cni! to allow for the occurrence of the TVBS-II state. Phonons. This problem was studied in a recent pap@fin
By contrast, this value is reduced to 8.7 Cinwhen A which the decay of the TVBS's into either bound or free
—8 cm L. Note that the curve is pushed down on decreasin§t@tes was described by considering weak vibron-phonon
the hopping constant as well as on increasing the temperatuf@UPling. However, in the present context, both the anharmo-
due to the dressing effect. nicity and the dressing effect modify the'natur'e and number
From a physical point of view, the previous phase dia—_Of the bound states as well as the cogplmg with the remain-
grams can be easily understood in terms of localization off’d Phonons. As a consequence, a different theory must be
the equivalent lattice. Indeed, since the equivalent lattice ex¢!aborated to characterize the different pathways for the de-
hibits two defects on the sitas=0 andm=1, it can sup- ca&y of the TVBS's.
ports two states localized on the sites-0 andm= 1. How-
ever, due to the hopping processes, these two localized states APPENDIX A UNITARY TRANSFORMATION TO
overlap and interact to generate new localized states whichlREMOVE THE INTRAMOLECULAR ANHARMONICITY

appear as superimpositions of the two previous states. This By assuming that the cubic anharmonicity is one order of

mechanism is accompanied by a splitting of the frequency of5gnitude greater than the quartic anharmonicity, a pertur-
the new localized states which depends on both the strengiflie parameten is introduced so that the vibrational
of the coupling between the original states and on their fre amiltonian of thenth amide-l mode is written as

guency. As a result, we obtain a high-frequency localize

state(TVBS-Il) and a low-frequency localized staféVBS- hy=h® + AV, + N2W,+- -, (A1)
). If the splitting is strong enough, the high-frequency local-

ized state is pushed back into the continuum and a singleshere hﬁ°)=wob§bn, Vn=y3(bl+ b,)3 and Wn=y4(b§
localized state remains. By contrast, if the splitting is rather+b,)*. The anharmonic terms in E¢A1) can be removed

0 2 4 6 8 10 12 14
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by performing a perturbative unitary transformatidn,
=exp(S,), whereS, is expanded as

PHYSICAL REVIEW E 68, 021909 (2003

By using Eq.(A7), the transformation of the operatorbﬁ(
+b,)? and (bl+ bn)(bg+l+ b,.1) involved in the vibron-

phonon Hamiltonian can be determined easily. By restricting
S;=ASP A28 4. (A2)  the calculations to the vibron-conserving terms, we thus ob-
tain
Under this transformation, the Hamiltoni&p becomes 5
(”6;+"6n)2:1+88(§) —12%+2(1+277)b§bn
~ 0 0
hy=h” + X (V+[S ,ha°>]>+A2(vv+[s<nz> ] - .

+2nb,b,b,b,+ (nonconserving terms

1 A8
LS VI+ SIS IS 00T+ (A3) (A8)
where 7 is defined in Eq(7) and
Since the required unitary transformation must diagonalize o
the Hamiltonian, the diagonal terms in E@\3) participate (b;+ bn)(bl,+bn,)
in the diagonalization scheme of the Hamiltonian whereas 5
the nondiagonal terms, which must vanish, allow us to deter- _79 73 [bib,+b! b, ]
mine the S, operator order by order. At second order with wg) N T
respect to the anharmonic parameters, we obtain )
sluvad 2] 2
V3 o o
Sy =—=[by*~b3+9(by’b,—bibi+bi—by)] (Ad) )
0 X [biby +b by +| 22 ﬁ) — 1274t
o o
and
2
Y3 Y4
X (b'b,+b', b, )by +[22 =| —1222
1|4 v3|? pZ! y3\? nEn s FarEnEn 1) 1)
2)_ | % S t4_ 4 RANR Y IRAS 13, 0 0
S| 2 w0+3 ” [bl*—bi]+ ” 3 ” [2b/°b, 2
T nt T 73
— 2b}b3+3b2—3bZ], (AS) O (Par By On )04 wo)
. . . . 2
which lead to the renormalized Hamiltonian X[b§2b§,+bg,2bﬁ]+144( Z_Z) [brﬁb;'bnbn’]
hn=(wo—2A)b/b,—Ab/blb,b,, (AB) +(nonconserving terms (A9)

where the irrelevant constant was disregarded and where  Finally, by using Eqs(A7)—(A9), the transformed Hamil-
denotes the positive anharmonic parameter defined in Edonian Eq.(5) is obtained straight-forwardly.
(6).

At this step, the full vibron-phonon Hamiltonidth can be
expressed in an improved way by applying the general uni-
tary transformationr=I1,T,. The transformation modifies i . i
the lateral interaction as well as the vibron-phonon coupling  For eachk value, the two-vibron Schrdinger equation
Hamiltonian, leading to the occurrence of vibron-conservingEds-(21)—(23) can be reduced by using a decimation proce-
and vibron-nonconserving terms. Nevertheless, since the irflure [37,38. To proceed, let us rewrite the Schioger
ternal frequencyw, is more than two orders of magnitude €duation Eqs(21)—(23) as
greater than the anharmonic parametegysand y,, the non-
conserving terms are weak when compared with the conserv-
ing terms and will be neglected. Such a procedure requires
knowledge of the transformation of the vibron displacement
operatorb,+ bﬁ, expressed as

APPENDIX B: DECIMATION OF THE TWO-VIBRON
SCHRODINGER EQUATION

(A +2a)¥(0)=—v2gW¥ (1), (B1)

(A +b)W(1)=—v2g¥(0) —¥\(2),

AN (m)y=—-V¥ (m+1)-¥ (m—-1), m=234,..,
2
TILT _pt Y3 nt2, w2 apt Y3 A -
by bn=bntbn 27 [ by by = 6byby = 3]+ 22 w—o) where \=(w—2d0)/Ty, a=ATy, b=BIT,, and g
=wl .
2 . .
o YAt +2 2 V3 Y4 In Eqg.(B1), we eliminate the wave functions connected to
6 wo [bn+bntby bt brby] + 3 wo) + wo the even sites by substituting their expressions in the 'Schro
3.3 dinger equations of the odd sites. Nevertheless, we keep un-
X[by"+by]. (A7) changed the first two Schdinger equations associated with
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the defect sitesm=0 andm= 1. We thus obtain a new set of A TVBS occurs when its frequency is at least equal to the
Schralinger equations for the odd sites only, as minimum of the TVFS continuum. This condition is obtained
when A =\.=—2. At the critical point\=\, the scaled
[2—\2=2(Na+1)]¥(0)=v2AgW¥ (1), values of the parameter satisfy \(V=---=\(P)=)\_. This
parametein becomes scale invariant and is a fixed point of
[2—=N2=(Ab+1)]¥(1)=—v2Ag¥,(0)— ¥ (3), the RG transformation. Indeed, when the initial lattice dy-
namics is at a critical point, the localization lengtlis infi-
2-\)¥ (m)=-¥ (m+1)—¥ (m—1), m=357,... nite. No change in the critical parameters accompanies the
(B2) length scaling so that the scaled lattice remains at a critical
point.
From Eq.(B3), the scaled values of the parameters at the
tical point are expressed as

Equation(B2) characterizes the Schitimger equation of the
rescaled lattice with parameters defining the RG transforma‘sri

tion:
AN =2-)2
' AP =_2
a’=—-ra—1,
bY=—\b-1, alP=2P(a—1)+1,

gP=—-\g. (B3)

. o . b(P=2P(b—1)+1,
The previous decimation procedure allows us to define the ( )

critical values of the parameters responsible for the occur-

rence of bound states. Indeed, bound states correspond to a

localization of the wave function,(m) around the sites g =2rg. (BS)
m=0 andm=1. Therefore, when the decimation is applied

recursivelyp times, the neighboring site of the site=1 is

pushed to infinity, and we thus obtain an ultimate scaledcombining Eqs(B5) and(B4) for p tending to infinity leads
lattice formed by the two side sitee=0 andm=1 only.  to the conditions for the occurrence of a bound state in terms
The Schrdinger equation can thus be solved exactly, and itof the reduced parameteasb, andg as

two eigenvalues are expressed as

(p) (p)
O (a—1)(b—1)=g>2 (B6)
2
2 . . . .
. \/ 2a'P)+pP) _2(aPp(P_gP2) (g4 Eduation(Be) is equivalent to Eq24) with the correspond-
2 ing definitions ofa, b, andg.
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