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Models of spatial and orientational self-organization of microtubules under the influence
of gravitational fields
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Tabony and co-workerfC. Papaseit, N. Pochon, and J. Tabony, Proc. Natl. Acad. Sci. U%,A8364
(2000] showed that the self-organization of microtubules from purified tubulin solutions is sensitive to gravi-
tational conditions. In this paper, we propose two models of spatial and orientational self-organization of
microtubules in a gravitational field. First, the spatial model is based on the dominant chemical kinetics. The
pattern formation of microtubule concentration is obtaif®dn terms of a moving kink in the limit when the
disassembly rate is negligible, af®) for the case of no free tubulin and only assembled microtubules present.
Second, the orientational pattern of striped microtubule domains is consistent with predictions from a phenom-
enological Landau-Ginzburg free energy expansion in terms of an orientational order parameter.
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[. INTRODUCTION sample parallel to the gravity axis, striped patterns of MT’s
appeared, with two adjacent stripes made up of highly ori-
Microtubules(MT’s) are major cytoskeletal proteins and ented MT bundles at an angle of 45° and 135°, respectively,
are present in virtually all eukariotic cells. They are involvedto the horizontal(Fig. 1); (2) under gravity and with the
in many essential cell functions such as mitosis, maintenand@ajor axis of samples perpendicular to the gravity axis, cir-
of cell shape, cell motility, signal transduction, and intracel-cular patterns were observe@) in weightlessness (10g),
lular transport. MT’s exhibit a highly dynamical behavior @n isotropic pattern appeared, and no preferential orientation
and specific spatial reorganizations which allow them to perWas adopted by the MT's. .
form their cellular roles. MT’s are long cylindrical polymers ~ 1he effect of the gravitational field on the MT self-

that exhibit aggregation through the addition at their ends oP'da@nization has been observed bothifoxitro andin vivo
a, B-tubulin heterodimer§] experiments with mammalian and vegetal specimens. For ex-

Tabony and co-workers have conducted a series of exper ample, in two different space flight experiments led by Lewis

ments on the effects of the gravitational conditions onithe 4] and vassy5], the structural organization @i vivo MT's
. o g i . showed dramatic differences between the gravity and micro-
vitro self-organization of MT’s under conditions of high tu-

) ) : o ... Qgravity conditions. Instead of well-formed MT's radiating
bulln_ concentratlon[2,3]._ Preparatlons containing purified from organizing centers in the gravitational environment,
tubulin and GTHRguanosine triphosphatevere heated from  .q)i5 in microgravity uniformly diffuse and exhibit shortened
~7°C to 37°C_ and MT’S were assembled in rectan_gular,vl-|-=S without normal organization.
samples of particular size (4QL0x 1 mnT). An enzymatic In the present paper, we construct models in accordance
system was also present to regenerate the @Enosine jth the experimental conditions outlined in RES], to de-
diphosphatgand to provide a continuous source of GTP. Thescribe quantitatively the effects of the gravitational field on
different samples were subjected to specific gravitationathe self-organization of MT’s. Two distinct approaches will
conditions. Thus, progressive self-organization of MT's wasbe presented dealing separately with the spatial distribution
observed depending on the gravitation field strength and thef the MT concentration and with orientational order within
orientation of samples with respect to the gravity axis. Thes¢he MT assembly. The reason for this distinction is the pres-
authors[2,3] observed that after about 5 h, the preparationsnce of the vastly different time scales of these two different
had stabilized and the following types of pattern of MT as-dynamical processes, the former being much faster than the
sembly had been identifiedl) under gravity(on Earth and latter due to the significant differences between the diffusion
in flight under 1g centrifugation with the major axis of the constants for tubulin and MT’s, respectively.

Il. THE MODEL OF SPATIAL ORGANIZATION
*Author to whom correspondence should be addressed. Present

address: Samuel Lunenfield Research Institute, Mount Sinai Hospi- To model the spatial self-organization of vitro MT’s,
tal, 600 University Ave., Toronto, Canada M5G 1X5. Email ad- we consider the competition between different processes.
dress: sportet@mshri.on.ca sportet@phys.ualberta.ca These include nonlinear chemical kinetics of MT assembly
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[7,8], diffusion processes of tubulin and MT’s accounting for Hence, our focus is on the observed dynamics of MT aggre-
significant differences in the diffusion coefficient as a resultgation. With the inclusion of free tubulin dynamics that
of size and geometrical characteristics, and a hydrodynamigrives MT aggregation, we therefore need to distinguish two
drift process of tubulin dimers and MT’s resulting from the principal state variables: the assembled tubulin and the free
action of the gravitational field with the buoyancy correctiontypulin. In our model, chemical kinetics equations are pro-

[9]. To develop a physical model, we use a reaction-diffusioyosed in terms of number concentration for the free dimer
approach that accounts for the gravitational environmentypylin, C(-), and for MT's,M(-).

The model equation is generally expressed by MT’s switch between assembly and disassembly phases.
as This behavior is called dynamic instabilifg], the transition
—— DV — u-VS + RS, . y likg]
ot , , , from disassembly to assembly phases is knowressueand

Diffusion  Drift induced by gravity ~Chemical reactions the reverse process, i.e., the transition from assembly to dis-

) assembly, asatastropheMoreover, we assume the presence
of spontaneousucleationfrom nuclei (can also be called

whereSis the two-vector of the concentratioBsandM, C is seeds which initiate MT’s. The kinetics of MT nucleation
the number concentration of tubulin dimers, akidis the was studied in detail by Flyvbjergt al. [10]. We also in-
number concentration of MT'D is the diagonal matrix of clude the possibility of a nucleus elimination reaction, i.e.,
positive diffusion constantsal is the diagonal matrix of drift the reverse chemical reaction that removes MT’s from the
velocities of proteins induced by gravitational conditioRs. solution because the nuclei may become structurally un-
is the two-vector of the reaction termiéC,M) andh(C,M)  stable. Thus the dynamics of the number of MT’s will only
that are described below in detail. The present model is cordepend on this reversible reaction. On the other hand, the
sidered with the initial condition¥ xe (), where() is the  dynamics of free tubulin will also be determined by the al-
spatial domain, C(x,0)=cy, M(x,0)=0, and zero-flux ternation of catastrophes and rescues, while the gradual
boundary conditions are used. shortening and elongation processes will be ignored due to
In the development of the reaction term, we are guided byheir shorter time scale and limited effect on the process of
the tools of chemical kinetics as applied to protein polymer-MT aggregation. While individual MT’s exhibit catastrophes
ization. The reader is referred to the seminal works of Hilland rescues, this polymerization behavior becomes smoothed
[7] and Oosawa and Asakuf8]. Furthermore, in the present out and is not so dramatic for ensembles at high concentra-
study we wish to strongly emphasize the emergence of spaions. Nonetheless, there exist collective phases of assembly
tial patterns that were observed by Tabony and [®b and disassembly for MT aggregates and our objective in this
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paper is a coarse-grained approach that focuses on these cthlat acts on a molecule of typef;=m;(1—p./p;)g, where
lective phenomena. Somewhat similarly but in the study of an; is the molecular mass, is the mean density of the
different effect, Jobst al. [11] developed an accurate model solution, p; is the density of molecules, amglis the strength
for MT oscillation dynamics. During disassembly events,of the gravitational field.
MT’s release GDP-tubulin which must be recycled as GTP- The competition between hydrodynamic forces due to the
tubulin to be used again to form a MT. Thus the inclusion ofsedimentation process and Brownian motion acting on each
GTP and GDP concentrations as well as GDP-tubulin andype of particle is characterized by the Peclet number Pe
GTP-tubulin species is necessary in the complete theoreticalefined as follow$12]:
description of MT dynamics. However, the experimental
conditions considered here, i.e., the presence of a GTP- riui rif;
regenerating system that provides a continuous source of Pe:ﬁzﬁ* &)
i B

GTP [3], results in a constant GTP concentration in the
sample. This leads us to consider, for the purpose of thgherer; is the diameter of the molecule. When<®%, the
present model, a simplification of the recycling of GDP- diffusion process dominates over the directional transport,
tubulin as an instantaneous process as well as to ignore thgd the latter can be considered insignificant within the
difference between the GTP-tubulin and GDP-tubulin poolssample. It is assumed that the solution is an aqueous buffer,
Thus, we have opted to account for the recycling processand that thew, 8-tubulin heterodimer is approximated by a
which also includes the effect of turnover, by introducing anspherical particle of diameterc=8 nm with a massmc
effective term that is proportional to the tubulin concentra-— 100 kDa[1]. We estimate the MT mass by assuming that it
tion. As motivated above by the underlying chemical kinet-is a hollow cylinder(the interior diameter of about 14 nm
ics, we postulate the following reaction terms in E): and the exterior diameter of about 25 nof 5 wm length

[2], made up of 1625 dimers perAm length of a MT. The

Peclet number for tubulin dimers at 37 °C is calculated as

fC.M)=— nk,C" =k CM+  nk_.M Pe=10"1° while for MT’s we obtain Pe10"2. Thus, the

—_— Y S

nucleation assembly nucleus elimination drift induced by gravitational conditions can be neglected in
the case of tubulin dimers, but it is very relevant for the
+ kM + kC . o
—_— R (29 MT’s and dominates the diffusion process.
disassembly  recycling Consequently, the model in E@l) is now expressed in
the one-dimensional cas@long the gravity axisby two
and coupled nonlinear partial differential equations
aC §*C
h(C,M): knCn - k*nM s (Zb) _:DC_+f(C1M)1 (43)
— —_— ot &XZ
nucleation nucleus elimination
wherek,, is the assembly raté,_ is the disassembly ratk, AL ﬂJrh(C M) (ab)
is the nucleation raté _, is the rate of nucleus elimination, at X B

andk; is the recycling rate for tubulin. Note thkt andk_
should not be misconstrued to represent the related kinetioshereD is the diffusion coefficient of tubulin dimers. Ex-
coefficients for a single MT. The present values jointly de-trapolating from the tubulin diffusion coefficient measured
scribe the effective rate of the individual process and thdor in vivo sea urchin eggs at 25°C as %90 * m?s™?
frequency of occurrence. Hera,is the critical number of [13], we estimateD .=70x10 2 m?s ! under the experi-
tubulin dimers necessary for the MT nucleation. The procesmental conditiond2] considered here. In the experiments,
of MT nucleation is a slower process than assembly. Structhe temperature was 37 °C rather than 25°C, so to obtain
turally speaking, it is a more nonlinear process than eithethis estimate we have scaled the sea urchin diffusion con-
assembly or disassembly. While nucleus elimination and disstant, found in Refl13], by the ratio of the two temperatures
assembly terms in Eq2a can be linked together math- and the ratio of the corresponding viscosities at these two
ematically, they represent a different effect and are governetemperatures.
by a different dynamics. Nucleation processes, on the other The  drift  coefficient T'=+vyu,,, where uy
hand, cannot be combined with other effects. It should alse= (D, /kgT)my(1—p./pym)g is the positive drift velocity
be mentioned that the presence of recycling terms is analder a MT of 5 um in length. From the well-known Stokes-
gous to an additional compartment in the so-called compartEinstein formula, using the combination of the parallel and
mental models resulting in a delay of the assembly procesgerpendicular components of the drag coefficient, we esti-
All the rate constants are positive. mate the MT diffusion coefficient to beDy=1.54
The drift velocity u; for a particle of type is calculated x10 '?m?s . Thus uy is found to be equal to 5
according tou;= (D, /kgT)f;, whereD; is the diffusion co- x10"°ms 1 or 30 nm/min.
efficient of the molecule of typg kg is the Boltzmann con- The scaling parametey models the coupling between
stant, andT is the temperatur@n kelvin). The termf; rep-  MT’'s and the so-called avalanche correlated clusférd.
resents the net forgdorce of gravity and force of buoyangy Tubulin dimers are negatively charged globular proteins that
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are highly screened by positive counterions of the solventand, remarkably, its analytical solution is, according to Ref.
The thermal fluctuations of the countercharges on tubulingl5],

cause a van der Waals attractive force that acts at short dis-

tances and induces the aggregation of tubulin dimers. These o n

forces correlate to initiate catastrophic events enabling tubu- C=2 1-tan m(f_ éo)
lin dimers to form avalanche correlated clusters.

We are interested in finding the propagation of a pattergynere & is an arbitrary constant anda=—(n

of MT assembly through the sample which is subjected to the, 4y, 7+, The wave velocity is dependent on the critical
field of gravity. Hence, we look for constant traveling wave n,mhern of dimers constituting a nucleus according o
front solutions of.Eq.(4b) by deﬂmngM(x,t)=M(x—lut) =a\Dck;, wherek,=2 s°! [16]. This dependence cor-
— M(£), wherev is .the wave.speed: Subst'ltutmg th.|s form roborates the well-known insight that the MT nucleation is a
in Eq. (4b), we obtain the ordinary differential equation major mechanism for determining the spatial organization of
(T—v)M’ =k, C"—k_,M, (5) MT’s. For a givenn, we can calculate the. wave yeloc'ﬂzy

For example, for a critical number=6 (n is considered to
where the prime represents differentiation with respect to thée between 3 and 13, see, e.g., HéD]), the wave velocity
moving coordinatet. Settingu =" (note that based on the is found to belv|=2.96x 10> m/s (Fig. 2). Thus, in 6 min,
above,I" is proportional to the gravitation constag), we  the critical time observed in the Tabony experiment, the as-
obtain sembly wave of MT’s travels through 1060 3 m and
completely crosses the samplehose width is 102 m, see
Fig. 1(@)]. Therefore, we propose to refer to this phenomenon
as the domino effect.

The above solution is admittedly a special solution but to
which allows us to decouple the two equations of the systenmthe best of our knowledge it is the only solitary wave that
Eq. (4). Hence substituting Ed6) in Eq. (4a), we obtain can be found for this type of differential equation. It is inter-

esting to explore the issue of physical stability of Ef)
iC  PC_ kik Cn+1+k—kn Ch k. ,  through a phase space analysis. To this end, a phase plane
%2 ke, k., 16O analysis of Eq(9) may be undertaken by putting

2n
, (1D

M=o (6)
Kop

which is a diffusion equation, with a nonlinear source term, c'=Y (1239
considered with the initial conditionV xe Q={x:0<x

<Lgq},C(x,0)=cy, i.e., starting with a constant tubulin con-
centration in the sample, and with zero-flux boundary condi-

and

: v
tions. o _ _ _ Y'=— Y+C(C"—-1). (12b
Below, we first find special analytical solutions to Ed) VD cky

under the so-calledomino effecand second we study the - o
dissipative instability of a homogeneous steady state of EqThe critical points in the €¢,Y) phase plane are the follow-
(7), C* =0, which represents the absence of free tubulin andng: a stable point (0,0) and a saddle point (1,0). Figure 3

only assembled MT’s in the sample. illustrates the phase plane trajectories and represents both the
stable and saddle points. Consequently in mathematical
A. The domino effect terms, we see that the propagating kink represents a transi-

S ) ] ] tion from a saddle point to a stable focus point. Physically,

By consideringC as a traveling wave, i.e., as a function of \ye interpret this domino effect solution as a propagating
x—vt=¢, and neglecting the term proportionalko (since  font separating the region with free tubulin and no MT’s on

45~k_<k, C~3200), Eq.(7) may now be expressed by the one hand and no free tubulin and only assembled MT’s

the ordinary differential equation on the other.
K.k Subsequently, the question arises whether in the region of
+%n ! i
DcC"+vC'= ——CMl-k,C. (8)  assembled MT's spatially ordered patterns may develop as a
K_n result of slow translational but also rotational diffusion pro-

~ - cesses. This issue will be addressed in Sec. lll.
Rescaling byé=\D¢/k & andC= (k. k,/k_,k;)*"C, Eq.

(8) becomes B. Nonhomogeneous perturbation nealC* =0

v We are interested in finding the MT pattern formation in
C'+ \/—C'=Cn+l—C=C(C"—1)- (9 Eq. (7). In other words, we wish to focus on the system in
ch the vicinity of the steady stat€* =0 (no free tubulin and
only assembled MT)s To examine the effect of small non-
homogeneous perturbations of this steady state, which could
be due to thermal agitation or sample imperfections, we con-

C'+aC'=C(C"-1) (10 siderC(x,t) to be a small perturbation @* such that

The ordinary differential equatiof®) has the form of an
anharmonic dissipative oscillator equation as follows:
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FIG. 2. (a) Plot of Eq.(11) for n=6: the wave velocityv|=2.96x 10 ° m/s. Thus in 6 min, the wave front travels 18.60 2 m which
is approximately the width of the sample in Tabony experimgbjsTraveling wave front solutions for Eq7) for different wave velocities
according to the critical number of dimers required for nucleation. The smaller the critical number, the faster the wave moves.

C(x,t)=C*+C(x,1). (13 N % Al - D/l tand M
C(x,t)—; c,e cog x|, (19

For C(x,t) sufficiently small, Eq(7) can be linearized about
the homogeneous steady stare by substituting Eq(13) in

i wherec, are proportional to the Fourier series expansion
Eq. (7) to obtain 4 brop P

coefficients.
For the steady stat€* =0 (no tubulin and only as-
——D¢—=kC, (14 ~ sembled MT'$ to be unstable to spatial disturbances, we
require the condition Ref)>0, for some modem#0
o ] o ] (whenn=0, there will be no spatial effegtsNote that the
ization in Eq.(14) is to be considered with the same initial c5|cylate the critical size, of the spatial domain, for which
conditions and the same zero-flux boundary conditions age system becomes unstable. We require the largeistr

before. . ~ which the system is unstab[gRe(w)=0]. This meansn
By satisfying boundary conditions, we look for solutions — 1 ' the smallest mode. Thus the critical sizeis expressed
of Eq. (14) having the form as

~ nw
C(x,t)=> cne“"c05<—x). (15) _ |Bc
n L LC_7T k_. (17)

Here w determines the temporal growth. By substituting Eq. )
(15) into Eq.(14) and by canceling®'cog (nm/L)x], we ob- Therefore, whenL>L_, there exist ranges of unstable

tain @=k,— Dc(n/L)2, so the solution of Eq14) is given modesn, where spatial structure appedFsg. 4). In our case,
by as L,=1.9x10 °m and the domain size is at leakt

=10 °m, pattern formation is expected to arise as de-
scribed above. Note that this length scale corresponds to an
observed spatial periodicity in MT bundles measured by
Tabony as 2Qum [Fig. 1(b)] [2].

Once MT'’s have been formed and have achieved their full
length at saturation, they are likely to interact with other
MT’s in solution via several physical forces. First of all,
there are excluded volume effects due to the significant size
of MT’s reaching a length of Gum or more. While their
average center-to-center distance for the experimental condi-
tions considered here is of the order of 100 nm, the preferred
orientation for MT assemblies is parallg?]. This will be

FIG. 3. Phase plane trajectories for ES) for the traveling enforced by the electrostatic effects due to the net charge on
wave front solutions, where=5x10"°m/s=u, . Traveling the surface of each MT. When the surface charge density is
wave solutions fronC=1 (no MT’s) to C=0 (no tubulin appear.  of the order ofe~0.5 e/nn?, it yields electrostatic repulsion

IR I IR AR » N SRS A T S
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FIG. 4. Representation of the eigenvaluess a function oh. FIG. 5. A plot of 62 versusé with the two types of solution
WhenL>L, there is a range of modes which are unstable. indicated and labeled 1 and 2 where B{x) = fptanh(@x) and 2 is
0(x) = 6,sn(Bx,k).
forces that are significariof the order of 10 pilNeven when
Debye screening due to the ions in solution is accounted for. F(6,0 ):f {
All of these factors will introduce orientational ordering X
which we discuss in the following section.

- 502+E 6%+ 992 dx (18
2 4 2 77
where 6,=9d6/9x and A, B, and D are phenomenological
expansion parameters to be fitted to experimental data. In our
Ill. ORIENTATIONAL ORDERING case, thec axis is along the field of gravity. We assume here
that the amplitude of the order parametbt(x,t), is ap-
roximately constant and only its phagevaries once the
fitial process of MT spatial assembly has been completed.
Minimizing the free energy~ with respect tof leads to
e Euler-Lagrange equation of the form

In the previous sections of the paper, we introduced tw
dependent variables characterizing the assembly proces
taking place in the sample. These varialiltzandM referred
to the concentrations of tubulin and MT's, respectively, andth
are taken to be non-negative scalar variables. However, once
MT-MT interactions are included in the ordered state of the D 6,,= —Af6+B6°. (19
MT assembly, it is more appropriate to characterize the local
concentration of MT's as a complex order parameter, to us@his equation can be integrated once to give
the language of the theory of phase transitiphg|. This is
very similar to the case of nematic liquid crystals which are D 92= — A 02+ B 0 +C (20

. . . . ~ - ~ o 0> )
composed of long rodlike molecules forming an anisotropic 27X 2 4
fluid. For liquid crystals, the order parameter for the forma- _ ) _ )
tion of parallel rolls is the so-called director field. However, WhereCy is an integration constant setting the energy scale
various defect structures commonly emerge in anisotropiéor @ given solutiong(x). In Fig. 5, we plot the variabl®;
fluids under the influence of external fields and their orderingon the left hand side of this equation as a function of the
can be characterized by an anglethat measures orienta- variable 6. In general, this equation can be mapped onto a
tional deviation from the director axis. Hence, we introduce astandard elliptic form.
complex order parameter for the orientational ordering of the Importantly from the physical point of view, there exist
MT assembly as two nonsingular real types of solutigi{x) of Eq. (20) [18]:

(a) First type: kink-type domain walls given by

W (x,t)=M(x,t)e !0, 6(x)= * fptanH ax), (21)

where =+ A/B and «= \/A/2D. This solution is shown in
where M (x,t) is the MT concentration and(x,t) shows a Fig. 6 0

spatiotemporal deviation from a preferred ordering direction (b) .Second type: periodic solutions expressed via the Ja-

for an MT assembly. cobi elliptic function snk,k) [see as an example, Fig(af]:
Similarly to nematic liquid crystals, we postulate the ex-
istence of a free energy functional in termséothat captures O(X) = 0,5n BX,Kk), (22

the essential features of the MT-MT interactions in the sys-
tem. The functional takes the well-known Landau-Ginzburgwhere 6, is the smaller of the two positive real roots of the
form: equation — (A/2) 8%+ (B/4)6*+Cy=0, and B=6,\B/2D
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6 =£6, tanh(o x) 1 -_ Sn(x,k:l

.................... 7 R T yvo

FIG. 6. Representation of a domain wall that separates the twc (a)
equilibrium orientations in the samplg= = 6,. From the experi- ] %
mental data, we havé,= m/4.

with 6, being the larger of the two positive real roots of this
guartic equatiorf19]. The Jacobi moduluk is given by 0
<k=6,/6,<1. For the kink solutiorC,=A2?/4B, while for
the long wavelength snf solutions, the value ot is close

to it but a little less. The solutions in EqR2) are a set of
periodic functions shown below whose period is

4K (k)

)
J/B/2D °

and it varies depending on the ratio &f/ 6, that defines the /_/_/—////
Jacobi moduluk. The functionK (k) is the so-called com-

plete elliptic integral of the first kindi20]. 0 ke 1
In the patterns seen in Tabony's experiments, the above (b)

solutions can be identified such that we have 0.5 mm

which can always be satisfied by of Eq. (23), sinceK (k) FIG. 7. (a) sn(x,k) wherek=0.9998.(b) A as a function ok,

— ask—1. In order to get agreement with experimental gq, (24).

observations of the striped patterns exhibiting 45° and 135°

with respect to the horizontal axis, the choice of the classical

turning points in Eq.(20) is dictated by|8,|~|60,|~ w/4

(Fig. 8). Hence,k=1—¢€ wheree=(6,— 0,)/6,. Note that y

<

(23 ]

o A~ ln e\Emo.s mm. (24 &é n:“

The parameters used in the above model can be indeper (@) b)
dently estimated using some general properties of the ob-
tained solutions when we compare them with the experimen- F|G. 8. (a) An illustration of orientational striped patterns with
tal observations considered hdi26]. First of all, if D is  wavelengthx. (b) The director angled as a function of position
taken to represent the rotational diffusion coefficiert in  along the vertical axis.

4
K(k)%ln —k2 +Z
> <

NS
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the presence of the other polymers, it may be obtained fronvarying the temperature should have a small and opposite

the Stokes-Einstein formula as effect to those described above. We encourage experimental-
ists to try and carry out experiments whose results can either
_ kT o5 support or refute our predictions.
R_m, ( )

IV. DISCUSSION

where ¢z is the rotational drag coefficient given b . .
VR g g 4 The motivation for the present study was to describe theo-

retically a series of effects on MT self-organization due to
(26)  the gravitation field. Tabony and co-workel3,6] showed
experimentally that thén vitro self-organization of MT's is
crucially dependent on the gravitational field strength and the
orientation of samples with respect to the gravity axis. Under
gravity, striped patterns of MT’s oriented consecutively at
acute and obtuse angles appeared, whereas in weightlessness
no pattern formation arises and MT’s self-organize into an
the ab lue i id onlv f isolated MT at dilut 'isotropic configuration without preferential orientation. The
. e . tions through the development of a model based on the rel-
servgd rotational _dlffu5|on c_oefﬁment, we correct the Valueevant chemical kinetics of tubulin assembly, diffusion pro-
of D by a crowding correctiofi22] to give cesses of MT's and tubulin, and the gravitational drift of
DRzDO(vL3)‘2 27 MT’s. In th_is first regime, the nucleation kinetics resulted in
R ' the formation of avalanche correlated clusters and our model
where is the density of MT’s which will be taken to be  Predicts the emergence of a domino effect where a solitary
=3% 10 m~3 [2]. This givesDg=10"° rac¥/s. wave of assembly propagates throggh th.e sample. We also
By assumingk very close to unity, i.e.k=0.9998, we show that the_ appearance of the dissipative str_ucture corre-
obtain — In(e)~10. Thus from Eq(24) we can estimat® as lates to the size of the sample. The second regime concerns
B~6600 rads ' m 2. From the expression fofi, we can the state of fully assembled MT’s whose slow rotational dif-
then determiné~ 4000 rad s~ m~2. From this we can es- fusion is modeled through the use of a Landau-Ginzburg free
timate « in the kink solution of Eq.(21) as a=4.4 energy functional. We demonstrate that free energy minimi-

x 10" m~*, thus giving the width of the transition arégo- zation leads to orientational ordering in the form of striped

main wall) between the two adjacent acute and obtuse stripeBaItterns tr;f'it were gxperlg?lenft_illyé(:bserved 3”? V\_/tr;lose Iphty Si-
as 1k~22 um. Finally from the expression fgB, as|é,| .C"’:j propcejr Ietis can .f_e(;ea ty T te olgurtrr]no el witt reatls Ic
~ /4, we estimated to be B~4.5x 10" m™ . independently verified parameters. Further experiments are

Hence, this model is sufficiently general to reproduce the(equired to confirm our predictions and further refine the

experimental data. However, this model is not intended onl)}mdel' Finally, we made predictions regarding the behavior

to describe the experiments already performed. It can also b%f this model with respect to salt concentratiphi and tem-

used to make predictions regarding future experiments. jperature changes.
particular, we can make the following predictions. Since

lowering the ionic concentration reduces electrostatic screen-
ing and lowers the rotational diffusion coefficient due to the This project has been supported by grants from NSERC
MT repulsion, we expech to be lowered as a result of and MITACS. S.P. acknowledges support from the Bhatia
decreasing the salt content. Conversely, increasing the sdfund. J.M.D. would like to thank the staff and members of
content should lead to patterns of MT’s with a shorter wavethe Physics Department of the University of Alberta, for all

length. The same outcome should also holddbr changes. their kindness and thoughtfulness during his stay.

smol’
YR=In(LIr) —0.66

for a cylindrical MT of lengthL and diameter [21]. The
viscosity coefficienty of the buffer is similar to that of wa-
ter, so we takep=10 3 Ns/n?. In our caseL=5 um and
r=25nm, so that the value fobg is D%=0.16 rad/s.
However, due to the very high density of MT’s in the sample
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