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Models of spatial and orientational self-organization of microtubules under the influence
of gravitational fields
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Tabony and co-workers@C. Papaseit, N. Pochon, and J. Tabony, Proc. Natl. Acad. Sci. U.S.A.97, 8364
~2000!# showed that the self-organization of microtubules from purified tubulin solutions is sensitive to gravi-
tational conditions. In this paper, we propose two models of spatial and orientational self-organization of
microtubules in a gravitational field. First, the spatial model is based on the dominant chemical kinetics. The
pattern formation of microtubule concentration is obtained~1! in terms of a moving kink in the limit when the
disassembly rate is negligible, and~2! for the case of no free tubulin and only assembled microtubules present.
Second, the orientational pattern of striped microtubule domains is consistent with predictions from a phenom-
enological Landau-Ginzburg free energy expansion in terms of an orientational order parameter.

DOI: 10.1103/PhysRevE.68.021903 PACS number~s!: 82.20.2w, 82.70.2y, 82.39.2k, 89.75.Kd
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I. INTRODUCTION

Microtubules~MT’s! are major cytoskeletal proteins an
are present in virtually all eukariotic cells. They are involv
in many essential cell functions such as mitosis, maintena
of cell shape, cell motility, signal transduction, and intrac
lular transport. MT’s exhibit a highly dynamical behavio
and specific spatial reorganizations which allow them to p
form their cellular roles. MT’s are long cylindrical polymer
that exhibit aggregation through the addition at their ends
a, b-tubulin heterodimers@1#.

Tabony and co-workers have conducted a series of exp
ments on the effects of the gravitational conditions on thein
vitro self-organization of MT’s under conditions of high tu
bulin concentration@2,3#. Preparations containing purifie
tubulin and GTP~guanosine triphosphate! were heated from
'7 °C to 37 °C and MT’s were assembled in rectangu
samples of particular size (4031031 mm3). An enzymatic
system was also present to regenerate the GDP~guanosine
diphosphate! and to provide a continuous source of GTP. T
different samples were subjected to specific gravitatio
conditions. Thus, progressive self-organization of MT’s w
observed depending on the gravitation field strength and
orientation of samples with respect to the gravity axis. Th
authors@2,3# observed that after about 5 h, the preparatio
had stabilized and the following types of pattern of MT a
sembly had been identified:~1! under gravity~on Earth and
in flight under 1g centrifugation! with the major axis of the

*Author to whom correspondence should be addressed. Pre
address: Samuel Lunenfield Research Institute, Mount Sinai Ho
tal, 600 University Ave., Toronto, Canada M5G 1X5. Email a
dress: sportet@mshri.on.ca sportet@phys.ualberta.ca
1063-651X/2003/68~2!/021903~9!/$20.00 68 0219
ce
-

r-

f

ri-

r

l
s
e
e
s
-

sample parallel to the gravity axis, striped patterns of MT
appeared, with two adjacent stripes made up of highly o
ented MT bundles at an angle of 45° and 135°, respectiv
to the horizontal~Fig. 1!; ~2! under gravity and with the
major axis of samples perpendicular to the gravity axis,
cular patterns were observed;~3! in weightlessness (1024g),
an isotropic pattern appeared, and no preferential orienta
was adopted by the MT’s.

The effect of the gravitational field on the MT sel
organization has been observed both forin vitro and in vivo
experiments with mammalian and vegetal specimens. For
ample, in two different space flight experiments led by Lew
@4# and Vassy@5#, the structural organization ofin vivo MT’s
showed dramatic differences between the gravity and mic
gravity conditions. Instead of well-formed MT’s radiatin
from organizing centers in the gravitational environme
cells in microgravity uniformly diffuse and exhibit shortene
MT’s without normal organization.

In the present paper, we construct models in accorda
with the experimental conditions outlined in Ref.@6#, to de-
scribe quantitatively the effects of the gravitational field
the self-organization of MT’s. Two distinct approaches w
be presented dealing separately with the spatial distribu
of the MT concentration and with orientational order with
the MT assembly. The reason for this distinction is the pr
ence of the vastly different time scales of these two differ
dynamical processes, the former being much faster than
latter due to the significant differences between the diffus
constants for tubulin and MT’s, respectively.

II. THE MODEL OF SPATIAL ORGANIZATION

To model the spatial self-organization ofin vitro MT’s,
we consider the competition between different process
These include nonlinear chemical kinetics of MT assem

ent
i-
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FIG. 1. ~a! After about 5 h in
the experiments reported in Re
@2#, striped patterns of MT’s ap-
peared, with two adjacent stripe
made up of highly oriented MT
bundles at an angle of 45° an
135°, respectively, to the horizon
tal. ~b! The characteristic spatia
periodicities developed within
stripes for the samples exposed
gravity during the first 6 min, with
the major axis of the sample par
allel to the gravity axis.
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this
@7,8#, diffusion processes of tubulin and MT’s accounting f
significant differences in the diffusion coefficient as a res
of size and geometrical characteristics, and a hydrodyna
drift process of tubulin dimers and MT’s resulting from th
action of the gravitational field with the buoyancy correcti
@9#. To develop a physical model, we use a reaction-diffus
approach that accounts for the gravitational environme
The model equation is generally expressed by

~1!

whereS is the two-vector of the concentrationsC andM, C is
the number concentration of tubulin dimers, andM is the
number concentration of MT’s.D is the diagonal matrix of
positive diffusion constants.u is the diagonal matrix of drift
velocities of proteins induced by gravitational conditions.R
is the two-vector of the reaction termsf (C,M ) andh(C,M )
that are described below in detail. The present model is c
sidered with the initial conditions; xPV, whereV is the
spatial domain, C(x,0)5c0 , M (x,0)50, and zero-flux
boundary conditions are used.

In the development of the reaction term, we are guided
the tools of chemical kinetics as applied to protein polym
ization. The reader is referred to the seminal works of H
@7# and Oosawa and Asakura@8#. Furthermore, in the presen
study we wish to strongly emphasize the emergence of
tial patterns that were observed by Tabony and Job@3#.
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Hence, our focus is on the observed dynamics of MT agg
gation. With the inclusion of free tubulin dynamics th
drives MT aggregation, we therefore need to distinguish t
principal state variables: the assembled tubulin and the
tubulin. In our model, chemical kinetics equations are p
posed in terms of number concentration for the free dim
tubulin, C(•), and for MT’s,M (•).

MT’s switch between assembly and disassembly pha
This behavior is called dynamic instability@1#, the transition
from disassembly to assembly phases is known asrescueand
the reverse process, i.e., the transition from assembly to
assembly, ascatastrophe. Moreover, we assume the presen
of spontaneousnucleation from nuclei ~can also be called
seeds! which initiate MT’s. The kinetics of MT nucleation
was studied in detail by Flyvbjerget al. @10#. We also in-
clude the possibility of a nucleus elimination reaction, i.
the reverse chemical reaction that removes MT’s from
solution because the nuclei may become structurally
stable. Thus the dynamics of the number of MT’s will on
depend on this reversible reaction. On the other hand,
dynamics of free tubulin will also be determined by the
ternation of catastrophes and rescues, while the gra
shortening and elongation processes will be ignored du
their shorter time scale and limited effect on the process
MT aggregation. While individual MT’s exhibit catastrophe
and rescues, this polymerization behavior becomes smoo
out and is not so dramatic for ensembles at high concen
tions. Nonetheless, there exist collective phases of assem
and disassembly for MT aggregates and our objective in
3-2
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paper is a coarse-grained approach that focuses on thes
lective phenomena. Somewhat similarly but in the study o
different effect, Jobset al. @11# developed an accurate mod
for MT oscillation dynamics. During disassembly even
MT’s release GDP-tubulin which must be recycled as GT
tubulin to be used again to form a MT. Thus the inclusion
GTP and GDP concentrations as well as GDP-tubulin
GTP-tubulin species is necessary in the complete theore
description of MT dynamics. However, the experimen
conditions considered here, i.e., the presence of a G
regenerating system that provides a continuous sourc
GTP @3#, results in a constant GTP concentration in t
sample. This leads us to consider, for the purpose of
present model, a simplification of the recycling of GD
tubulin as an instantaneous process as well as to ignore
difference between the GTP-tubulin and GDP-tubulin poo
Thus, we have opted to account for the recycling proce
which also includes the effect of turnover, by introducing
effective term that is proportional to the tubulin concent
tion. As motivated above by the underlying chemical kin
ics, we postulate the following reaction terms in Eq.~1!:

~2a!

and

~2b!

wherek1 is the assembly rate,k2 is the disassembly rate,kn
is the nucleation rate,k2n is the rate of nucleus elimination
andk1 is the recycling rate for tubulin. Note thatk1 andk2

should not be misconstrued to represent the related kine
coefficients for a single MT. The present values jointly d
scribe the effective rate of the individual process and
frequency of occurrence. Here,n is the critical number of
tubulin dimers necessary for the MT nucleation. The proc
of MT nucleation is a slower process than assembly. Str
turally speaking, it is a more nonlinear process than eit
assembly or disassembly. While nucleus elimination and
assembly terms in Eq.~2a! can be linked together math
ematically, they represent a different effect and are gover
by a different dynamics. Nucleation processes, on the o
hand, cannot be combined with other effects. It should a
be mentioned that the presence of recycling terms is an
gous to an additional compartment in the so-called comp
mental models resulting in a delay of the assembly proc
All the rate constants are positive.

The drift velocityui for a particle of typei is calculated
according toui5(Di /kBT) f i , whereDi is the diffusion co-
efficient of the molecule of typei, kB is the Boltzmann con-
stant, andT is the temperature~in kelvin!. The termf i rep-
resents the net force~force of gravity and force of buoyancy!
02190
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that acts on a molecule of typei: f i5mi(12re /r i)g, where
mi is the molecular mass,re is the mean density of the
solution,r i is the density of molecules, andg is the strength
of the gravitational field.

The competition between hydrodynamic forces due to
sedimentation process and Brownian motion acting on e
type of particle is characterized by the Peclet number
defined as follows@12#:

Pe5
r iui

Di
5

r i f i

kBT
, ~3!

wherer i is the diameter of the molecule. When Pe!1, the
diffusion process dominates over the directional transp
and the latter can be considered insignificant within
sample. It is assumed that the solution is an aqueous bu
and that thea,b-tubulin heterodimer is approximated by
spherical particle of diameterr C58 nm with a massmC
5100 kDa@1#. We estimate the MT mass by assuming tha
is a hollow cylinder~the interior diameter of about 14 nm
and the exterior diameter of about 25 nm! of 5 mm length
@2#, made up of 1625 dimers per 1mm length of a MT. The
Peclet number for tubulin dimers at 37 °C is calculated
Pe510210, while for MT’s we obtain Pe51022. Thus, the
drift induced by gravitational conditions can be neglected
the case of tubulin dimers, but it is very relevant for t
MT’s and dominates the diffusion process.

Consequently, the model in Eq.~1! is now expressed in
the one-dimensional case~along the gravity axis! by two
coupled nonlinear partial differential equations

]C

]t
5DC

]2C

]x2
1 f ~C,M !, ~4a!

]M

]t
52G

]M

]x
1h~C,M !, ~4b!

whereDC is the diffusion coefficient of tubulin dimers. Ex
trapolating from the tubulin diffusion coefficient measur
for in vivo sea urchin eggs at 25 °C as 5.9310212 m2 s21

@13#, we estimateDC570310212 m2 s21 under the experi-
mental conditions@2# considered here. In the experimen
the temperature was 37 °C rather than 25 °C, so to ob
this estimate we have scaled the sea urchin diffusion c
stant, found in Ref.@13#, by the ratio of the two temperature
and the ratio of the corresponding viscosities at these
temperatures.

The drift coefficient G5guM , where uM
5(DM /kBT)mM(12re /rM)g is the positive drift velocity
for a MT of 5 mm in length. From the well-known Stokes
Einstein formula, using the combination of the parallel a
perpendicular components of the drag coefficient, we e
mate the MT diffusion coefficient to beDM51.54
310212 m2 s21. Thus uM is found to be equal to 5
310210 m s21 or 30 nm/min.

The scaling parameterg models the coupling betwee
MT’s and the so-called avalanche correlated clusters@14#.
Tubulin dimers are negatively charged globular proteins t
3-3
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are highly screened by positive counterions of the solve
The thermal fluctuations of the countercharges on tubu
cause a van der Waals attractive force that acts at short
tances and induces the aggregation of tubulin dimers. Th
forces correlate to initiate catastrophic events enabling tu
lin dimers to form avalanche correlated clusters.

We are interested in finding the propagation of a patt
of MT assembly through the sample which is subjected to
field of gravity. Hence, we look for constant traveling wa
front solutions of Eq.~4b! by definingM (x,t)5M (x2vt)
5M (j), wherev is the wave speed. Substituting this for
in Eq. ~4b!, we obtain the ordinary differential equation

~G2v !M 85knCn2k2nM , ~5!

where the prime represents differentiation with respect to
moving coordinatej. Settingv5G ~note that based on th
above,G is proportional to the gravitation constantg), we
obtain

M5
kn

k2n
Cn, ~6!

which allows us to decouple the two equations of the syst
Eq. ~4!. Hence substituting Eq.~6! in Eq. ~4a!, we obtain

]C

]t
2DC

]2C

]x2
52

k1kn

k2n
Cn111

k2kn

k2n
Cn1k1C, ~7!

which is a diffusion equation, with a nonlinear source ter
considered with the initial condition; xPV5$x:0<x
<LV%,C(x,0)5c0, i.e., starting with a constant tubulin con
centration in the sample, and with zero-flux boundary con
tions.

Below, we first find special analytical solutions to Eq.~7!
under the so-calleddomino effectand second we study th
dissipative instability of a homogeneous steady state of
~7!, C* 50, which represents the absence of free tubulin a
only assembled MT’s in the sample.

A. The domino effect

By consideringC as a traveling wave, i.e., as a function
x2vt5j, and neglecting the term proportional tok2 ~since
45'k2!k1C'3200), Eq.~7! may now be expressed b
the ordinary differential equation

DCC91vC85
k1kn

k2n
Cn112k1C. ~8!

Rescaling byj̃5ADC /k1j and C̃5(k1kn /k2nk1)1/nC, Eq.
~8! becomes

C91
v

ADCk1

C85Cn112C5C~Cn21!. ~9!

The ordinary differential equation~9! has the form of an
anharmonic dissipative oscillator equation as follows:

C91aC85C~Cn21! ~10!
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and, remarkably, its analytical solution is, according to R
@15#,

C5222/nF12tanhS n

2A2n14
~j2j0!D G 2/n

, ~11!

where j0 is an arbitrary constant anda52(n
14)/A2n14. The wave velocity is dependent on the critic
numbern of dimers constituting a nucleus according tov
5aADCk1, where k152 s21 @16#. This dependence cor
roborates the well-known insight that the MT nucleation is
major mechanism for determining the spatial organization
MT’s. For a givenn, we can calculate the wave velocityv.
For example, for a critical numbern56 (n is considered to
lie between 3 and 13, see, e.g., Ref.@10#!, the wave velocity
is found to beuvu52.9631025 m/s ~Fig. 2!. Thus, in 6 min,
the critical time observed in the Tabony experiment, the
sembly wave of MT’s travels through 10.631023 m and
completely crosses the sample@whose width is 1022 m, see
Fig. 1~a!#. Therefore, we propose to refer to this phenomen
as the domino effect.

The above solution is admittedly a special solution but
the best of our knowledge it is the only solitary wave th
can be found for this type of differential equation. It is inte
esting to explore the issue of physical stability of Eq.~9!
through a phase space analysis. To this end, a phase p
analysis of Eq.~9! may be undertaken by putting

C85Y ~12a!

and

Y852
v

ADCk1

Y1C~Cn21!. ~12b!

The critical points in the (C,Y) phase plane are the follow
ing: a stable point (0,0) and a saddle point (1,0). Figur
illustrates the phase plane trajectories and represents bot
stable and saddle points. Consequently in mathema
terms, we see that the propagating kink represents a tra
tion from a saddle point to a stable focus point. Physica
we interpret this domino effect solution as a propagat
front separating the region with free tubulin and no MT’s
the one hand and no free tubulin and only assembled M
on the other.

Subsequently, the question arises whether in the regio
assembled MT’s spatially ordered patterns may develop
result of slow translational but also rotational diffusion pr
cesses. This issue will be addressed in Sec. III.

B. Nonhomogeneous perturbation nearC*Ä0

We are interested in finding the MT pattern formation
Eq. ~7!. In other words, we wish to focus on the system
the vicinity of the steady stateC* 50 ~no free tubulin and
only assembled MT’s!. To examine the effect of small non
homogeneous perturbations of this steady state, which c
be due to thermal agitation or sample imperfections, we c
sider C̃(x,t) to be a small perturbation ofC* such that
3-4



MODELS OF SPATIAL AND ORIENTATIONAL SELF- . . . PHYSICAL REVIEW E 68, 021903 ~2003!
FIG. 2. ~a! Plot of Eq.~11! for n56: the wave velocityuvu52.9631025 m/s. Thus in 6 min, the wave front travels 10.631023 m which
is approximately the width of the sample in Tabony experiments.~b! Traveling wave front solutions for Eq.~7! for different wave velocities
according to the critical number of dimers required for nucleation. The smaller the critical number, the faster the wave moves.
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C~x,t !5C* 1C̃~x,t !. ~13!

For C̃(x,t) sufficiently small, Eq.~7! can be linearized abou
the homogeneous steady stateC* by substituting Eq.~13! in
Eq. ~7! to obtain

]C

]t
2DC

]2C

]x2
5k1C, ~14!

where the tilde is omitted for simplicity. The result of linea
ization in Eq.~14! is to be considered with the same initi
conditions and the same zero-flux boundary conditions
before.

By satisfying boundary conditions, we look for solution
of Eq. ~14! having the form

C~x,t !5(
n

c̃nevtcosS np

L
xD . ~15!

Herev determines the temporal growth. By substituting E
~15! into Eq. ~14! and by cancelingevtcos@(np/L)x#, we ob-
tain v5k12DC(np/L)2, so the solution of Eq.~14! is given
by

FIG. 3. Phase plane trajectories for Eq.~9! for the traveling
wave front solutions, wherev55310210 m/s5uM . Traveling
wave solutions fromC51 ~no MT’s! to C50 ~no tubulin! appear.
02190
s
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C~x,t !5(
n

c̃ne[k12DC(np/L)2] tcosS np

L
xD , ~16!

where c̃n are proportional to the Fourier series expans
coefficients.

For the steady stateC* 50 ~no tubulin and only as-
sembled MT’s! to be unstable to spatial disturbances, w
require the condition Re(v).0, for some modesnÞ0
~when n50, there will be no spatial effects!. Note that the
latter also is dependent on the domain sizeL. Thus we can
calculate the critical sizeLc of the spatial domain, for which
the system becomes unstable. We require the largestv for
which the system is unstable@Re(v)50#. This meansn
51, the smallest mode. Thus the critical sizeLc is expressed
as

Lc5pADC

k1
. ~17!

Therefore, whenL.Lc , there exist ranges of unstab
modesn, where spatial structure appears~Fig. 4!. In our case,
as Lc51.931025 m and the domain size is at leastL
51023 m, pattern formation is expected to arise as d
scribed above. Note that this length scale corresponds t
observed spatial periodicity in MT bundles measured
Tabony as 20mm @Fig. 1~b!# @2#.

Once MT’s have been formed and have achieved their
length at saturation, they are likely to interact with oth
MT’s in solution via several physical forces. First of a
there are excluded volume effects due to the significant
of MT’s reaching a length of 5mm or more. While their
average center-to-center distance for the experimental co
tions considered here is of the order of 100 nm, the prefer
orientation for MT assemblies is parallel@2#. This will be
enforced by the electrostatic effects due to the net charge
the surface of each MT. When the surface charge densit
of the order ofs'0.5 e/nm2, it yields electrostatic repulsion
3-5
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forces that are significant~of the order of 10 pN! even when
Debye screening due to the ions in solution is accounted
All of these factors will introduce orientational orderin
which we discuss in the following section.

III. ORIENTATIONAL ORDERING

In the previous sections of the paper, we introduced t
dependent variables characterizing the assembly proce
taking place in the sample. These variablesC andM referred
to the concentrations of tubulin and MT’s, respectively, a
are taken to be non-negative scalar variables. However, o
MT-MT interactions are included in the ordered state of
MT assembly, it is more appropriate to characterize the lo
concentration of MT’s as a complex order parameter, to
the language of the theory of phase transitions@17#. This is
very similar to the case of nematic liquid crystals which a
composed of long rodlike molecules forming an anisotro
fluid. For liquid crystals, the order parameter for the form
tion of parallel rolls is the so-called director field. Howeve
various defect structures commonly emerge in anisotro
fluids under the influence of external fields and their order
can be characterized by an angleu that measures orienta
tional deviation from the director axis. Hence, we introduc
complex order parameter for the orientational ordering of
MT assembly as

C~x,t !5M ~x,t !eiu(x,t),

whereM (x,t) is the MT concentration andu(x,t) shows a
spatiotemporal deviation from a preferred ordering direct
for an MT assembly.

Similarly to nematic liquid crystals, we postulate the e
istence of a free energy functional in terms ofu that captures
the essential features of the MT-MT interactions in the s
tem. The functional takes the well-known Landau-Ginzbu
form:

FIG. 4. Representation of the eigenvaluesv as a function ofn.
WhenL.Lc , there is a range of modes which are unstable.
02190
r.

o
ses

d
ce
e
al
e

c
-

ic
g

a
e

n

-

-
g

F~u,ux!5E F2
A

2
u21

B

4
u41

D

2
ux

2Gdx, ~18!

where ux5]u/]x and A, B, and D are phenomenologica
expansion parameters to be fitted to experimental data. In
case, thex axis is along the field of gravity. We assume he
that the amplitude of the order parameter,M (x,t), is ap-
proximately constant and only its phaseu varies once the
initial process of MT spatial assembly has been complete

Minimizing the free energyF with respect tou leads to
the Euler-Lagrange equation of the form

Duxx52Au1Bu3. ~19!

This equation can be integrated once to give

D

2
ux

252
A

2
u21

B

4
u41C0 , ~20!

whereC0 is an integration constant setting the energy sc
for a given solutionu(x). In Fig. 5, we plot the variableux

2

on the left hand side of this equation as a function of
variableu. In general, this equation can be mapped ont
standard elliptic form.

Importantly from the physical point of view, there exi
two nonsingular real types of solutionu(x) of Eq. ~20! @18#:

~a! First type: kink-type domain walls given by

u~x!56u0tanh~ax!, ~21!

whereu05AA/B anda5AA/2D. This solution is shown in
Fig. 6.

~b! Second type: periodic solutions expressed via the
cobi elliptic function sn(x,k) @see as an example, Fig. 7~a!#:

u~x!5u1sn~bx,k!, ~22!

whereu1 is the smaller of the two positive real roots of th
equation 2(A/2)u21(B/4)u41C050, and b5u2AB/2D

FIG. 5. A plot of ux
2 versusu with the two types of solution

indicated and labeled 1 and 2 where 1 isu(x)5u0tanh(ax) and 2 is
u(x)5u1sn(bx,k).
3-6
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with u2 being the larger of the two positive real roots of th
quartic equation@19#. The Jacobi modulusk is given by 0
<k[u1 /u2<1. For the kink solutionC05A2/4B, while for
the long wavelength sn(•) solutions, the value ofC0 is close
to it but a little less. The solutions in Eq.~22! are a set of
periodic functions shown below whose period is

l5
4K~k!

AB/2D
u2 ~23!

and it varies depending on the ratio ofu1 /u2 that defines the
Jacobi modulusk. The functionK(k) is the so-called com-
plete elliptic integral of the first kind@20#.

In the patterns seen in Tabony’s experiments, the ab
solutions can be identified such that we havel50.5 mm
which can always be satisfied byl of Eq. ~23!, sinceK(k)
→` as k→1. In order to get agreement with experimen
observations of the striped patterns exhibiting 45° and 1
with respect to the horizontal axis, the choice of the class
turning points in Eq.~20! is dictated byuu2u'uu1u'p/4
~Fig. 8!. Hence,k512e wheree5(u22u1)/u2. Note that
ask→1,

K~k!' lnS 4

12k2D 1
1

4 F lnS 4

12k2D 21G ~12k2!'2 ln e .

Hence,

l'2p ln eA2D

B
'0.5 mm. ~24!

The parameters used in the above model can be inde
dently estimated using some general properties of the
tained solutions when we compare them with the experim
tal observations considered here@2,6#. First of all, if D is
taken to represent the rotational diffusion coefficientDR in

FIG. 6. Representation of a domain wall that separates the
equilibrium orientations in the sampleu56u0. From the experi-
mental data, we haveu05p/4.
02190
ve

l
°

al

n-
b-
n-

o

FIG. 7. ~a! sn(x,k) wherek50.9998.~b! l as a function ofk,
Eq. ~24!.

FIG. 8. ~a! An illustration of orientational striped patterns wit
wavelengthl. ~b! The director angleu as a function of position
along the vertical axis.
3-7



ro

le
te
ob
lu

-

ip

th
n
o
.
ce
e

he
f
s

ve

site
ntal-
ther

eo-
to

the
der
at
sness
an
e
rva-
rel-
o-
of
in
del

tary
also
rre-
erns
if-
ree
mi-
ed
ysi-
tic
are

he
ior

RC
tia
of

all

PORTETet al. PHYSICAL REVIEW E 68, 021903 ~2003!
the presence of the other polymers, it may be obtained f
the Stokes-Einstein formula as

DR5
kBT

cR
, ~25!

wherecR is the rotational drag coefficient given by

cR5

1
3 phL3

ln~L/r !20.66
~26!

for a cylindrical MT of lengthL and diameterr @21#. The
viscosity coefficienth of the buffer is similar to that of wa-
ter, so we takeh51023 N s/m2. In our caseL55 mm and
r 525 nm, so that the value forDR is DR

050.16 rad2/s.
However, due to the very high density of MT’s in the samp
the above value is valid only for an isolated MT at dilu
concentrations. In order to estimate the experimentally
served rotational diffusion coefficient, we correct the va
of DR

0 by a crowding correction@22# to give

DR.DR
0~nL3!22, ~27!

wheren is the density of MT’s which will be taken to ben
5331018 m23 @2#. This givesDR51026 rad2/s.

By assumingk very close to unity, i.e.,k50.9998, we
obtain2 ln(e)'10. Thus from Eq.~24! we can estimateB as
B'6600 rad2 s21 m22. From the expression foru0 we can
then determineA'4000 rad2 s21 m22. From this we can es
timate a in the kink solution of Eq. ~21! as a54.4
3104 m21, thus giving the width of the transition area~do-
main wall! between the two adjacent acute and obtuse str
as 1/a'22 mm. Finally from the expression forb, as uu2u
'p/4, we estimateb to beb'4.53104 m21.

Hence, this model is sufficiently general to reproduce
experimental data. However, this model is not intended o
to describe the experiments already performed. It can als
used to make predictions regarding future experiments
particular, we can make the following predictions. Sin
lowering the ionic concentration reduces electrostatic scre
ing and lowers the rotational diffusion coefficient due to t
MT repulsion, we expectl to be lowered as a result o
decreasing the salt content. Conversely, increasing the
content should lead to patterns of MT’s with a shorter wa
length. The same outcome should also hold forpH changes.
S
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Varying the temperature should have a small and oppo
effect to those described above. We encourage experime
ists to try and carry out experiments whose results can ei
support or refute our predictions.

IV. DISCUSSION

The motivation for the present study was to describe th
retically a series of effects on MT self-organization due
the gravitation field. Tabony and co-workers@2,6# showed
experimentally that thein vitro self-organization of MT’s is
crucially dependent on the gravitational field strength and
orientation of samples with respect to the gravity axis. Un
gravity, striped patterns of MT’s oriented consecutively
acute and obtuse angles appeared, whereas in weightles
no pattern formation arises and MT’s self-organize into
isotropic configuration without preferential orientation. Th
present paper provides theoretical support for these obse
tions through the development of a model based on the
evant chemical kinetics of tubulin assembly, diffusion pr
cesses of MT’s and tubulin, and the gravitational drift
MT’s. In this first regime, the nucleation kinetics resulted
the formation of avalanche correlated clusters and our mo
predicts the emergence of a domino effect where a soli
wave of assembly propagates through the sample. We
show that the appearance of the dissipative structure co
lates to the size of the sample. The second regime conc
the state of fully assembled MT’s whose slow rotational d
fusion is modeled through the use of a Landau-Ginzburg f
energy functional. We demonstrate that free energy mini
zation leads to orientational ordering in the form of strip
patterns that were experimentally observed and whose ph
cal properties can be readily fitted to our model with realis
independently verified parameters. Further experiments
required to confirm our predictions and further refine t
model. Finally, we made predictions regarding the behav
of this model with respect to salt concentration,pH and tem-
perature changes.
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