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Theoretical predictions for spatial covariance of the electroencephalographic signal
during the anesthetic-induced phase transition: Increased correlation length

and emergence of spatial self-organization

Moira L. Steyn-Ross,1,* D. A. Steyn-Ross,1 J. W. Sleigh,2 and D. R. Whiting1
1Department of Physics and Electronic Engineering, Private Bag 3105, University of Waikato, Hamilton, New Zealand

2Department of Anaesthetics, Waikato Hospital, Hamilton, New Zealand
~Received 5 December 2002; published 7 August 2003!

In a recent series of papers, the authors have developed a stochastic theory to describe the electrical response
of a spatially homogeneous cerebral cortex to infusion of a general anesthetic agent. We showed that by
modeling the GABAergic~propofol-like! drug effect as a prolongation of the inhibitory postsynaptic impulse
response, we obtain a prediction that there will be a hysteretically separated pair of first-order phase transitions
in the population-average excitatory soma voltage, the first occurring at the point of induction of unconscious-
ness, and the second at the point of emergence from unconsciousness. In the present paper we generalize our
earlier ‘‘zero-dimensional’’ homogeneous cortex to a one-dimensional~1D! line of cortical ‘‘mass,’’ thus
allowing for the possibility of spatial inhomogeneities in neural activity. Following the spirit of our earlier
adiabatic ~‘‘slow membrane’’! philosophy, we impose a spatioadiabatic approximation that permits us to
compute analytic expressions for changes in EEG~electroencephalographic! correlation length and EEG spatial
covariance as a function of anesthetic effect. We establish that the correlation length of the EEG fluctuations is
expected toincreaseat the approach to the transition points, and this finding is consistent with both the
homogeneous-cortex prediction of increased correlation time~‘‘critical slowing down’’! near transition, and the
recent, comprehensive anesthetic study by Johnet al. @Conscious. Cogn.10, 165~2001!# reporting an increase
in EEG coherence near the points of loss and recovery of consciousness. In addition, we find that if the
long-range~corticocortical! excitatory-to-inhibitory connectivity in the 1D cortex is stronger than the long-
range excitatory-to-excitatory connectivity, then the spatioadiabatic system can organize itself into large-
amplitude spatial patterns~‘‘dissipative structures’’! consisting of giant stationary quasiperiodic voltage fluc-
tuations distributed along the cortical rod.

DOI: 10.1103/PhysRevE.68.021902 PACS number~s!: 87.19.La, 05.10.Gg, 05.70.Fh
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I. INTRODUCTION

In a recent series of papers@1–3#, the authors have bee
developing a theoretical model that explores the electro
namic behavior of a spatially homogeneous cerebral co
subject to the action of a GABAergic general-anesthe
agent. We model the cortex as a collection of interconnec
macrocolumns: aggregates of cooperating neurons ov
whose spatial extent it is assumed possible to replace i
vidual neuron properties with population averages. This
the mean-field philosophy. In the present paper we inve
gate the implications of retaining the mean-field requirem
within the macrocolumn, but allowing intermacrocolum
spatial variability to develop along a one-dimensional~1D!
rod of cortical mass.

Our theoretical framework is a set of coupled stocha
differential equations~SDEs! for he and hi , the macro-
column-averaged transmembrane soma voltage of the ex
tory and inhibitory neurons. Thehe state variable is the key
observable, as its fluctuations are assumed to be the sour
the scalp-measured electroencephalographic~EEG! signal
@1#. The driving force for these fluctuations is the nonspec
subcortical inputpjk ( j ,kP$e,i %), modeled as four indepen
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dent, Gaussian-distributed random processes.
As described by Franks and Lieb@4#, the electrical effect

of GABAergic anesthetic agents is toprolong the duration of
the inhibitory postsynaptic potential~IPSP! event generated
in response to an impulsive influx of GABA (g-amino bu-
tyric acid! neurotransmitter arriving at the GABAA receptors
of the postsynaptic neuron. We assume that this prolonga
of the inhibitory impulse response depends on anesth
concentration, and model this in terms oflGABA , a dimen-
sionless number that scales the IPSP rate constantg i @see Eq.
~2.9! below# appearing in the equations for inhibitory presy
aptic input into the excitatory@Eq. ~2.2c!# and inhibitory@Eq.
~2.2d!# neural populations.

Central to our approach is the adiabatic or ‘‘slow
membrane’’ approximation. In this limit, we assume that t
time constants associated with the excitatory and inhibit
membrane ‘‘capacitors’’ are very much longer than the tim
constants for the electrical activity generated by the vari
neurotransmitter input events. That is, the time course for
he and hi membrane voltages is taken to be much slow
than the time course of the incoming excitatory and inhi
tory postsynaptic potentials. This enables a considerable
plification of the macrocolumn equations of motion, sin
the synaptic input voltages, having rapidly equilibrated, c
be replaced by their steady-state values.

Also central to our theory is the notion that the cort
always operates close to a homogeneous equilibrium s
©2003 The American Physical Society02-1
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FIG. 1. ~a! Predicted locus of
excitatory (he , black curve! and
inhibitory (hi , gray curve! equi-
librium voltage states for the ho
mogeneous cortex as a function o
anesthetic effectlGABA . ~b! Tra-
jectory of steady-state excitator
soma voltage forinductionof an-
esthetic unconsciousness follow
pathA1→A3→Q3; the return tra-
jectory for emergenceinto con-
sciousness follows the hysteret
cally distinct pathQ3→Q1→A1.
~Similar to Fig. 1 of@2#, but with
maximum neuronal firing rate
lowered from Se,i

max51000 s21 to
the physiologically more plausible
rate of 100 s21.!
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determined by the stationary solution of the system SD
The stationary behavior of the variableshe andhi is shown
in the inverted-S trajectory of Fig. 1.

These equilibrium curves were obtained by setting to z
all time and space derivatives, as well as zeroing the f
subcortical noise terms (Gm), in Eqs.~2.1!–~2.3! below, and
then solving for the steady-state voltageshe

0 ,hi
0 as a function

of lGABA . Unfortunately, because of the strongly coupl
and nonlinear nature of the system equations, it is not p
sible to write down an analytical expression for these eq
librium curves; instead one needs to follow an iterative n
merical scheme similar in concept to Wilson and Cowa
@5# ‘‘isocline intersection’’ technique in order to map out th
locus of excitatory and inhibitory steady-state soma voltag
~Full numerical details are given in Chapter 3 of@6#.!

The equilibrium manifold of Fig. 1 provides the conce
tual landscape on which we can identify distinct cortic
states. The upper branch represents theactive state charac-
terized by high neuronal firing rates; the lower branch rep
sents the low-firingquiescentstate. Points on the active an
quiescent branches are stable with respect to small pertu
tions; this pair of stable loci are separated by the reent
midbranch identifying the locus of unstable equilibriu
points. Although the cortex could ‘‘visit’’ a midbranch poin
it cannot remain there, since the slightest fluctuation w
cause it to ‘‘fall’’ onto either the upper or lower stab
branch.

In our adiabatic picture, the EEG signal arises from flu
tuations inhe about its equilibrium manifold; these fluctua
tions originate from the white-noise stochasticpjk input and
enterhe andhi by way of nonlinear interdependencies@e.g.,
the Se,i sigmoidal voltage-to-firing-rate transfer function
Eqs. ~2.5!; and thec jk synaptic-input weighting functions
Eq. ~2.4!# whose strengths depend directly on neuron volta
and indirectly on anesthetic concentration.

As discussed in@1,2#, the main result of our white-noise
driven cortex model was the prediction of an abrupt ‘‘an
thetodynamic’’ change of state. This state change is cha
02190
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terized by a pair of distinct, general-anesthetic-induced, fi
order phase transitions, the first transition occurring at
point of loss of consciousness~LOC!, and the second at th
point of recovery of consciousness~ROC!.

These state-change predictions follow from the inverte
form of Fig. 1: because the middle branch is unstable, th
will be an abrupt, discontinuous change inhe at LOC ~point
A3) as the anesthetic amountlGABA is increased; and simi
larly at theQ1 emergence point as the anesthetic amoun
reduced.

If this cortical phase-change picture is correct, then
model predicts that there should be gross changes in the
ture of the EEG signal in the vicinity of the jump points:~i!
a ‘‘biphasic’’ effect~EEG power surge at LOC and ROC! @7#;
~ii ! a redistribution of spectral energy toward lower freque
cies in the unconscious state;~iii ! a reduction of spectra
entropy at LOC@8#. These effects have all been observ
clinically. In addition, if the unconscious state is the mo
ordered state, then a thermodynamic analogy argumen@2#
suggests that there should be a sudden release of ‘‘la
heat’’ at LOC. Stullkenet al. @9# found that the metabolic
energy requirement of the cortex~as measured by oxyge
depletion in the cerebral blood flow! generally declined
steadily with increasing anesthetic concentration, but
clined precipitously in the vicinity of the cortical switchove
detected by alteration in EEG activity. This result is cons
tent with the notion of a thermodynamic ‘‘latent heat’’ effec

In this paper we extend the adiabatic approach of
earlier papers to allow for smallspatialfluctuations about the
equilibrium manifold. In the original adiabatic approxima
tion, both the long-range inputsfk and the local inputsI jk to
the macrocolumn were assumed to be spatially homogen
and to equilibrate instantaneously. Mathematically, this w
accomplished by setting the space and time derivatives e
to zero in the equations governing the behavior of thefk
~two equations! andI jk ~four equations!. This is equivalent to
collapsing the impulse responses forfk and I jk into
d-function ‘‘spikes.’’
2-2
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THEORETICAL PREDICTIONS FOR SPATIAL . . . PHYSICAL REVIEW E 68, 021902 ~2003!
Here we allow for the possibility of spatial variabilit
across a 1D cortex by developing a first-order treatment
refer to as thespatioadiabatic approximation. This treatment
still assumes rapid equilibration in time for thefk and I jk ,
but retains the second-order space derivative in the pa
fk wave equations. The result is a modified Green’s funct
for the fk that is ad function in time, scaled by an expo
nential decay in space.

The presumption of a spatioadiabatic limit allows us
derive analytically the spatial covariance ofhe , presumed
equivalent to the spatial covariance of the scalp-measu
EEG signal. The model predicts two interesting and disti
types of behavior, depending on the ‘‘wiring’’ ratioR
5Lee/Lei , where theLek are the corticocortical inverse
length scales for the long-rangee→e ande→ i intermacro-
column connections.

~1! For R&1.5 ~the default case: long-rangee→e connec-
tivity dominates long-rangee→ i connectivity!, a stability
analysis shows that the system relaxes over time to the
mogeneous steady state defined by the Fig. 1 invers
curve. For thisR wiring regime, thehe covariance decays
exponentially in space, with a correlation length that
verges at the induction pointA3 and again at the emergenc
point Q1. We find that the correlation length for the quie
cent state is longer than that in the active state. This is c
sistent with our phase transition picture, which views t
unconscious state as being more ordered than the cons
state. There is good supporting evidence of increased co
lation length at the LOC transition in the quantitative-EE
coherence experiments reported recently by Johnet al. @10#.
~We briefly discuss these results in Sec. V.!

~2! In contrast, forR*1.5 ~long-rangee→ i is now domi-
nant!, we find that the homogeneous steady state is no lon
stable with respect to small perturbations. As a result,
system undergoes a transition to anonequilibrium steady
state, as verified by numerical simulation of the 1D cortex
the spatioadiabatic limit. Ourlinearizedtheory suggests that
in this far-from-equilibrium regime, the EEG distributio
will organize itself to display a spatial covariance that is t
sum of an exponentially decaying term plus a term tha
periodic in space. However, simulation runs of thenonlin-
earizedspatioadiabatic equations show that the outcome
actually more complicated than linear theory can pred
instead of exhibiting small-amplitude spatially period
variations about the homogeneous steady state, we find
the cortical activity along the 1D cortical ‘‘rod’’ explode
into giant fluctuations in soma voltage that rapidly coale
into stable, clumped regions of high-firing activity adjoinin
regions of low-firing activity. This emergence of a sustain
mosaic of EEG activity is akin to the self-organization th
can emerge in other dissipative systems in physics suc
the chemical spiral waves of the Brusselator and the hexa
nal convection cells in a Rayleigh-Be´nard fluid ~both dis-
cussed in@11#!.

It is useful to place the present work in the context
other mean-field cortical models. Robinsonet al. @12# pre-
sented a 2D continuum model that incorporates sigmo
voltage-to-spike-rate conversion, excitatory and inhibito
synaptic connections, and the effects of dendritic and axo
02190
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time lags with axonal propagation formulated in terms o
wave equation. They investigated analytically the stability
the spatially homogeneous stationary state with respec
small perturbations and found temporally damped travel
waves for a variety of boundary conditions. They did n
consider the possibility of a soft-mode transition to a sp
tially organized system in their stability analysis, nor d
they look for such behavior in their nonlinear simulations

The earlier cortical model of Nunez@13,14# also ex-
presses axonal propagation in terms of a wave equation
assumes that the cortical system is linear. Nunez solved
model for a 1D loop cortex and for a 2D cortex with period
and spheroidal boundary conditions, obtaining glob
modes—weakly damped traveling waves that interfere
form standing waves—whose temporal frequencies appr
mately match observed cerebral rhythms. Jirsa and Ha
@15,16# generalized the linear Nunez model@13# to include a
sigmoid nonlinearity for the averaged effect of action pote
tials and derived a nonlinear wave equation for excitat
synaptic activity in a 1D neural tissue. When driven by
temporal sine-wave stimulus on spatially periodic boun
aries, the field modes of synaptic activity formed nonsinus
dal standing waves. In a later paper, Jirsa and Kelso@17#
demonstrated that the introduction of long-range connec
inhomogeneities can cause their spatially homogene
model to become unstable, leading to the formation o
series of distinct spatiotemporal patterns whose characte
determined by the strength and location of the two-po
long-range connection within the 1D loop of cortical tissu

II. THEORY

A. One-dimensional cortical model

We model the cerebral cortex as a collection of interco
nected macrocolumns~see Fig. 2 of@1#!. These are neura
masses containing approximately 100 000 synaptically c
nected neurons of which 85% are excitatory~e! and 15% are
inhibitory (i ). The primary variables of interest in the mod
are the macrocolumn-averagedexcitatory soma voltagehe
and the macrocolumn-averagedinhibitory soma voltagehi ,
both of which can vary in time and space.

We utilize a set of coupled stochastic differential equ
tions for the macrocolumn developed in@1#, and based on a
set of eight partial differential equations~PDEs! by Liley,
Cadusch, and Wright@18# for a one-dimensional cortex
These foundation PDEs can be regarded as a mean-field
eralization of Tuckwell’s ‘‘subthreshold neuron’’@19#. For
the Tuckwell neuron, there is only one ion species involv
in excitation ~e.g., sodium! and a second ion species in
volved in inhibition ~e.g., potassium!—thus their Nernst po-
tentials become the respective synaptic reversal poten
he

rev and hi
rev ~see Table I for values!, and the membrane

conductances of the neuron are taken as being proporti
to the signed deviation of the soma voltage from the relev
reversal potential@the Tuckwell conductances map to the d
mensionlessc jk weighting factors in Eq.~2.4! below#.

In the mean-field picture of macrocolumn-average po
lations of cooperating neurons, no attempt is made to foll
the detailed time dynamics for the formation of individu
2-3
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TABLE I. Symbol definitions and model constants for the 1D Liley-Cadusch-Wright neural macrocolumn model. In contrast
earlier papers@1–3#, here the sigmoid maximum firing rateSe,i

max has been lowered from 1000 to 100 s21.

Symbol Description Value Unit

e, i ~As subscript! excitatory, inhibitory cell populations
he,i Population mean soma voltage mV
te,i Membrane time constant 0.040, 0.040 s
he,i

rest Cell resting potential 270, 270 mV
he,i

rev Cell reversal potential~Nernst potential! 45,290 mV
I ee,ie Total e→e,i→e voltage input to excitatory synapses mV
I ei,i i Total e→ i ,i→ i voltage input to inhibitory synapses mV
c jk ( j ,kP$e,i %) Weighting factors for theI jk inputs
pee,ie Exogenous~subcortical! spike input toe population 1100, 1600 s21

pei,i i Exogenous~subcortical! spike input toi population 1600, 1100 s21

fe,i Long-range~corticocortical! spike input toe,i populations s21

Lee,ei Characteristic corticocortical inverse-length scale 0.040, 0.065 ~mm!21

EPSP, IPSP Excitatory, inhibitory postsynaptic potential mV
ge,i Neurotransmitter rate constant for EPSP, IPSP 300, 65 s21

Ge,i Peak amplitude of EPSP, IPSP 0.18, 0.37 mV
e @e.g., Eqs.~2.2!,~2.6!# Base of natural logarithms 2.71828 . . .
Nee,ei

b Total number of locale→e,e→ i synaptic connections 3034, 3034
Nie,i i

b Total number of locali→e,i→ i synaptic connections 536, 536
Nee,ei

a Total number of synaptic connections from distant
e populations 4000, 2000

v̄ Mean axonal conduction speed 7000 mm s21

Se(he),Si(hi) Sigmoid function mapping soma voltage to firing rate s21

Se
max,Si

max Maximum value for sigmoid function 100, 100 s21

ue,i Inflection-point voltage for sigmoid function 260, 260 mV
ge,i Sigmoid slope at inflexion point 0.28, 0.14 ~mV!21

, Length of macrocolumn ‘‘cell’’ 1 mm
kin
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action potentials as described by the classical Hodg
Huxley @20# equations. But the concept of athreshold volt-
age is retained, and this appears within the sigmoid trans
functions that map from~average! membrane voltagehe,i to
~average! firing rate S(he,i) @Eqs. ~2.5! below#. Effectively,
the sigmoids are ‘‘smoothed’’ step functions that describe
distribution of threshold voltages after averaging across
105 neurons in the macrocolumn.

Each sigmoid nonlinearity enters the system equati
scaled by a number representing the ‘‘strength’’ of the r
evantlocal ~symbolb) or distant ~symbola) synaptic con-
nection. Thus, for example,Nei

b is the number ofe→ i syn-
aptic connections local to the macrocolumn, and appear
the termNei

b S(he) on the right-hand side of Eq.~2.2b! for the
I ei excitatory-to-inhibitory synaptic input. To this locall
generated flux in Eq.~2.2b! is added the incominge→ i flux
f i originating from excitatory activity at distant macroco
umns@Eq. ~2.3b!#, pluse→ i subcortical activitypei flowing
into the inhibitory neural population from excitatory sourc
in the subcortex. This subcortical activity is assumed to
stochastic with a mean spike rate^pei& and a random com
ponent proportional toA^pei& as defined in Eq.~2.6b!.

All synaptic inputs—local~intracortical!, distant~cortico-
cortical!, and exogenous~subcortical!—into the population-
average inhibitory~excitatory! neuron are scaled by the ap
02190
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propriatecei or c i i (cee or c ie) reversal-potential weighting
function, then summed on the right of Eq.~2.1b! @Eq. ~2.1a!#
to give the deviation ofhi (he) from its resting voltagehi

rest

(he
rest). In the absence of any synaptic input,hi (he) will

relax exponentially, with time constantt i (te), to its resting
voltage. By assumption, the soma voltage time constantte
and t i are taken as being much larger than the relaxat
times for the synaptic input events, allowing the]/]t time
derivatives appearing on the left of Eqs.~2.2! to be set to
zero. This separation of fast~postsynaptic! and slow~soma!
time scales is theadiabatic approximationinvoked in our
earlier homogeneous cortex modeling.

The wave equations~2.3! for fe andf i describe, respec
tively, the propagation of flux activity from distant excitator
cortical sources coupling into the excitatory and inhibito
synaptic inputs of the macrocolumn mass. The symbolsfe
and f i are shorthand forfee and fei , but the double-
subscript notation can be abbreviated safely since all lo
range cortical connections are exclusively from excitato
sources~therefore equations forf ie andf i i are not needed!.
The two Lek constants are the inverse-length connectiv
scales for the corticocortical fibers. As in our previous wo
we assume thefe,i are ‘‘fast’’ variables ~compared with
soma-voltage time scales! so set their time derivatives to
zero ~adiabatic assumption!. However, the approach use
2-4
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here~described in Sec. II B! doesnot assume spatial homo
geneity, so retains the]2/]x2 space derivatives, and this lim
we refer to as thespatioadiabaticapproximation.

The set of stochastic differential equations for the non
mogeneous 1D cortex now follow:

te

]he

]t
5~he

rest2he!1cee~he!I ee~he!1c ie~he!I ie~hi !,

~2.1a!

t i

]hi

]t
5~hi

rest2hi !1cei~hi !I ei~he!1c i i ~hi !I i i ~hi !,

~2.1b!

S ]

]t
1geD 2

I ee~he!5@Nee
b Se~he!1fe1^pee&#Gegee

1G1~x,t !, ~2.2a!

S ]

]t
1geD 2

I ei~he!5@Nei
b Se~he!1f i1^pei&#Gegee

1G2~x,t !, ~2.2b!

S ]

]t
1g i D 2

I ie~hi !5@Nie
b Si~hi !1^pie&#Gig ie1G3~x,t !,

~2.2c!

S ]

]t
1g i D 2

I i i ~hi !5@Nii
bSi~hi !1^pii &#Gig ie1G4~x,t !,

~2.2d!

F S ]

]t
1 v̄LeeD 2

2 v̄2
]2

]x2Gfe5 v̄LeeNee
a S ]

]t
1 v̄LeeDSe~he!,

~2.3a!

F S ]

]t
1 v̄LeiD 2

2 v̄2
]2

]x2Gf i5 v̄LeiNei
a S ]

]t
1 v̄LeiDSe~he!,

~2.3b!

where the fourc jk are normalized weighting functions pro
portional to the displacement of thehk soma voltage from
the ionic reversal potentialhj

rev,

c jk5
hj

rev2hk

uhj
rev2hk

restu
. ~2.4!

The Se(he),Si(hi) are sigmoidal transfer functions that ma
the soma voltage~in mV! to average output spike rate~in
pulses per second!,

Se~he!5
Se

max

11exp@2ge~he2ue!#
, ~2.5a!

Si~hi !5
Si

max

11exp@2gi~hi2u i !#
. ~2.5b!
02190
-

The fourGm terms in Eqs.~2.2! represent the stochastic com
ponents of the system, and these are assumed to ente
random noise in the fourpjk subcortical inputs,

G1~x,t !5aeeA^pee&GegeeA,j1~x,t !, ~2.6a!

G2~x,t !5aeiA^pei&GegeeA,j2~x,t !, ~2.6b!

G3~x,t !5a ieA^pie&Gig ieA,j3~x,t !, ~2.6c!

G4~x,t !5a i iA^pii &Gig ieA,j4~x,t !, ~2.6d!

where the four correspondingjm terms are zero-mean
Gaussian-distributedd-function-correlated spatiotempora
white-noise sources,

^jm~x,t !&50, ~2.7a!

^jm~x,t !jn~x8,t8!&5dmnd~x2x8!d~ t2t8!, ~2.7b!

and thea jk are dimensionless constants introduced to ens
that the fluctuations are small. The, appearing in Eqs.~2.6!
is the length of the macrocolumn ‘‘cell,’’ taken as,
51 mm, and ensures that the productA,j(x,t) has units
s21/2, independent of space. In numerical simulation, ea
infinite-variance white-noise sourcej(x,t) is approximated
using a computer-generated sequence of unit-varia
Gaussian-distributed random numbersR(m,n),

j~x,t !→ R~m,n!

ADxDt
@units of ~mm!21/2s21/2# ~2.8!

at discrete position and time coordinatesx5mDx, t5nDt,
where Dx is the grid spacing~in mm! and Dt is the time
increment~in s!. These scaled random numbers have va
ances25(DxDt)21, with s2→` in the continuous limit
Dx→0, Dt→0.

The effect of GABAergic anesthetic is included in th
model as a modulation of theg i inhibitory neurotransmitter
rate constant,

g i→g i5
g i

lGABA
, ~2.9!

wherelGABA is a dimensionless scale factor assumed to
proportional to the GABA anesthetic concentration. Thus
increase inlGABA reducesthe IPSP rate constant andin-
creasesthe IPSP duration.

For a complete definition of all other constants appear
in the foregoing equations, see Table I.

B. Spatioadiabatic approximation

In common with our earlier papers, we retain the adiaba
or ‘‘slow-membrane’’ approximation in which theI jk , pjk ,
and fk synaptic inputs are assumed to be ‘‘fast’’ process
that equilibrate on time scales much shorter than the t
scales forhe and hi . However, in contrast to our earlie
work, we will now explicitly allow ~weak! spatial variation
in the system by retaining the]2/]x2 terms in Eqs.~2.3!. We
2-5
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refer to this treatment as the spatioadiabatic approximat
and its details are given in the Appendix, where we find t
the system equations become

]he

]t
5F1~he ,hi !1Ge~x,t !, ~2.10a!

]hi

]t
5F2~he ,hi !1G i~x,t !, ~2.10b!

where theF1 ,F2 aredrift terms defined by

F1~he ,hi !5
1

te
H ~he

rest2he!1cee~he!F ~Nee
a 1Nee

b !Se~he!

1
1

Lee
2

]2fe

]x2
1^pee&GGee/ge1lGABAc ie~he!

3@Nie
b Si~hi !1^pie&#Gie/g iJ , ~2.11a!

F2~he ,hi !5
1

t i
H ~hi

rest2hi !1cei~hi !F ~Nei
a 1Nei

b !Se~he!

1
1

Lei
2

]2f i

]x2
1^pei&GGee/ge1lGABAc i i ~hi !

3@Nii
bSi~hi !1^pii &#Gie/g iJ , ~2.11b!

and theGe ,G i arediffusive noiseterms,

Ge~x,t !5beej1~x,t !1biej3~x,t !, ~2.12a!

G i~x,t !5beij2~x,t !1bii j4~x,t !, ~2.12b!

whosebjk coefficients depend on the GABA anesthetic effe
lGABA and the (he ,hi) soma-voltage coordinate:

bee5cee~he!aeeA^pee&GeeA,/gete , ~2.13a!

bie5lGABAc ie~he!a ieA^pie&GieA,/g ite , ~2.13b!

bei5cei~hi !aeiA^pei&GeeA,/get i , ~2.13c!

bii 5lGABAc i i ~hi !a i iA^pii &GieA,/g it i . ~2.13d!

We note that, apart from the]2fe,i /]x2 1D Laplacian terms
in Eqs.~2.11!, these spatioadiabatic equations~2.10!–~2.12!
are identical in form to the homogeneous adiabatic set lis
in our previous paper@see Eqs.~2.9!–~2.10! in @2##. In the
Appendix we show that thefe andf i long-range corticocor-
tical inputs can each be expressed as a series expansionhe
about the homogeneous steady state@see Eqs.~A11a!–
~A11b!#. This leads to the following approximation for th
]2fe,i /]x2 terms, valid for small perturbations about the h
mogeneous steady state:
02190
n,
t

t

d

-

]2fe

]x2
'Nee

a dSe

dhe
U

eq

]2he

]x2
, ~2.14a!

]2f i

]x2
'Nei

a dSe

dhe
U

eq

]2he

]x2
. ~2.14b!

This approximation will be utilized in the linearized spati
adiabatic cortex developed in the following section.

C. Linearized stochastic equations

Our principal assumption is that the cortex always op
ates in a state close to its homogeneous equilibrium defi
by setting]he,i /]t50 in Eq. ~2.10! and ]2fe,i /]x250 in
Eq. ~2.11!. The distribution of equilibrium states available
the cortex is depicted in Fig. 1. The inverted-S form is ch
acteristic of a system capable of making first-order~i.e., dis-
continuous! jumps between stable branches at the ‘‘kne
turning points labeledA3 and Q1. Cortical phase-transition
properties, such as the ‘‘biphasic’’ power surge at induct
and emergence, were discussed in@1#.

Suppose there is a small voltage deviati
„ĥe(x,t),ĥi(x,t)… away from the homogeneous steady-st
coordinate (he

0 ,hi
0), and that this deviation is both time an

space dependent. Then the excitatory and inhibitory so
voltages at positionx and timet can be written

he~x,t !5he
01ĥe~x,t !, ~2.15a!

hi~x,t !5hi
01ĥi~x,t !. ~2.15b!

Substituting Eq.~2.15! into Eq. ~2.10! and linearizing
about the homogeneous stationary state gives

]

]t F ĥe~x,t !

ĥi~x,t !
G5F J111ke

]2

]x2
J12

J211k i

]2

]x2
J22
G F ĥe~x,t !

ĥi~x,t !
G

1FGe~x,t !

G i~x,t ! G
eq

, ~2.16!

where theke ,k i are Fick’s-law spatial diffusion coefficient
~units mm2/s),

ke5
cee~he

0!Se
(1)Nee

a Gee

Lee
2 gete

, ~2.17a!

k i5
cei~hi

0!Se
(1)Nei

a Gee

Lei
2 get i

, ~2.17b!

and theJmn are the four Jacobian elements for the homo
neous system@i.e., theF1 ,F2 drifts of Eq. ~2.11! have their
respective]2/]x2 terms set to zero#,
2-6
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J11[
]F1

]ĥe
U

eq

5$211cee
(1)@~Nee

a 1Nee
b !Se~he

0!1^pee&#Gee/ge1cee~he
0!@~Nee

a 1Nee
b !Se

(1)#Gee/ge

1lGABAc ie
(1)@Nie

b Si~hi
0!1^pie&#Gie/g i%

1

te
, ~2.18a!

J12[
]F1

]ĥi
U

eq

5lGABAc ie~he
0!Nie

b Si
(2)Gie/g ite , ~2.18b!

J21[
]F2

]ĥe
U

eq

5cei~hi
0!~Nei

a 1Nei
b !Se

(1)Gee/get i , ~2.18c!

J22[
]F2

]ĥi
U

eq

5$211cei
(2)@~Nei

a 1Nei
b !Se~he

0!1^pei&#Gee/ge1lGABAc i i
(2)@Nii

bSi~hi
0!1^pii &#Gie/g i

1lGABAc i i ~hi
0!Nii

bSi
(2)Gie/g i%

1

t i
, ~2.18d!
c-

in

in
n
nd
ha
ro

th

e

isfy
with partial derivatives of the weighting and sigmoid fun
tions also evaluated at equilibrium,

c je
(1)5

]c je

]he
5

21

uhj
rev2he

restu
, ~2.19a!

c j i
(2)5

]c j i

]hi
5

21

uhj
rev2hi

restu
, ~2.19b!

and

Se
(1)5

]Se

]he
U

eq

, Si
(2)5

]Si

]hi
U

eq

. ~2.19c!

D. Infinite brain

We can picture the adult human cerebral cortex as hav
a ‘‘length’’ ~in a 1D modeling sense! of ;40 cm, whereas
the extent of a single macrocolumn is;1 mm. Therefore,
on the macrocolumn scale, it is not too unreasonable to th
of the cortex as having an ‘‘infinite’’ extent. This idealizatio
simplifies the Fourier transform mathematics to follow, a
allows us to ignore completely the boundary conditions t
would otherwise need to be imposed on a rod of 1D mac
column ‘‘mass’’ whose length was finite.

For a continuous, infinite, 1D neural system we define
spatial Fourier transforms of theĥe excitatory andĥi inhibi-
tory soma-voltage fluctuations and of thej white-noise
sources, respectively, as the tilde variablesh̃e,h̃i ,j̃:

h̃e~q,t !5E
2`

1`

e2 iqxĥe~x,t !dx, ~2.20a!
02190
g

k

t
-

e

h̃i~q,t !5E
2`

1`

e2 iqxĥi~x,t !dx, ~2.20b!

j̃~q,t !5E
2`

1`

e2 iqxj~x,t !dx. ~2.20c!

These relations define mappings from the linear positionx to
the wave numberq. The corresponding definitions for th
inverseq→x transforms are

ĥe~x,t !5
1

2pE2`

1`

eiqxh̃e~q,t !dq, ~2.21a!

ĥi~x,t !5
1

2pE2`

1`

eiqxh̃i~q,t !dq, ~2.21b!

j~x,t !5
1

2pE2`

1`

eiqxj̃~q,t !dq. ~2.21c!

Fourier transforming the Langevin equations~2.16!, we
obtain

]

]t F h̃e~q,t !

h̃i~q,t !
G5FJ112keq

2 J12

J212k iq
2 J22

GF h̃e~q,t !

h̃i~q,t !
G1F G̃e~q,t !

G̃ i~q,t !
G

eq

,

~2.22!

where

G̃e~q,t !5beej̃1~q,t !1biej̃3~q,t !, ~2.23a!

G̃ i~q,t !5beij̃2~q,t !1bii j̃4~q,t !, ~2.23b!

and where the Fourier transformed white-noise terms sat
the correlation property
2-7
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^j̃m~q,t !j̃n~q8,t8!&52pdmnd~q1q8!d~ t2t8!.
~2.24!

In order to make Eq.~2.22! amenable to analysis via stan
dard stochastic calculus techniques, we transform it int
two-variable Ornstein-Uhlenbeck~OU! system of equations
This is done in two steps. First, we define a diagonal 232
diffusion matrixD,

D5FD1 0

0 D2
G , ~2.25!

whose elements are obtained by using the Eq.~2.24! corre-
lation identity to compute the expectation values of t

G̃e ,G̃ i noise terms, giving

^G̃e~q,t !G̃e~q8,t8!&52pD1d~q1q8!d~ t2t8!,
~2.26a!

^G̃ i~q,t !G̃ i~q8,t8!&52pD2d~q1q8!d~ t2t8!,
~2.26b!

where

D15~bee!eq
2 1~bie!eq

2 , ~2.27a!

D25~bei!eq
2 1~bii !eq

2 , ~2.27b!

and the (bjk)eq are the equilibrium values of the noise coe
ficients defined earlier in Eq.~2.13!.

The second step is to redefine the drift matrix in E
~2.22! so that it carries an explicit negative sign~here we are
following the Chaturvediet al. @21# sign convention!. The
OU system resulting from these two steps then reads

]

]t F h̃e~q,t !

h̃i~q,t !
G52A~q!F h̃e~q,t !

h̃i~q,t !
G1ADF j̃e~q,t !

j̃ i~q,t !
G ,

~2.28!

where

A~q!5F2J111keq
2 2J12

2J211k iq
2 2J22

G ~2.29!

and theJmn Jacobian elements are as defined earlier in E
~2.18!.

III. STABILITY OF SPATIOADIABATIC SYSTEM

A. Eigenvalue analysis

The steady states of the spatioadiabatic cortex mode
Eq. ~2.10! can be stable only if the voltage fluctuations abo
the homogeneous steady state remain damped. Becau
the leading minus sign in Eq.~2.28!, system stability requires
that both eigenvalues of theA(q) drift matrix havepositive
real parts. The eigenvaluesl1 ,l2 of matrix A are given by
the solutions of the following quadratic equation inl:
02190
a

.

s.

of
t

of

l21~J111J222keq
2!l1J11J222J12J21

1~k iJ122keJ22!q
250. ~3.1!

On making the identifications

c15J111J22, ~3.2a!

c25J11J222J12J21, ~3.2b!

c35k iJ122keJ22, ~3.2c!

we can rewrite Eq.~3.1! as

l21~c12keq
2!l1~c21c3q2!50 ~3.3!

with eigenvalue solutions

l1 ,l252 1
2 ~c12keq

2!6 1
2 A~c12keq

2!224~c21c3q2!.
~3.4!

From previous analysis of theq50 homogeneous system
we know that for allstable equilibrium pointsc1,0 and
c2.0. Further, provided the soma voltage never exceeds
excitatory reversal potentialhe

rev5145 mV, then thecee

weighting function of Eq.~2.4! will always be positive, and
hence, by Eq.~2.17a!, ke.0 also. We find that for the de
fault model values listed in Table I,c3.0. This follows
because 0,k i,ke ~i.e., the long-range corticocorticale-i
diffusivity is weaker than the long-rangee-e diffusivity!,
while bothJ12 andJ22 are negative withuJ12u,uJ22u. Never-
theless, the possibility exists forc3 to become negative if, for
some collection of communicating macrocolumns, thee-i
diffusivity dominates. This will be the case if

k i.
uJ22u
uJ12u

ke⇒c3,0. ~3.5!

Taking the known signs ofc1 andke into account, we can
rewrite Eq.~3.4! as

l1 ,l25 1
2 ~ uc1u1keq

2!6 1
2 A~ uc1u1keq

2!224~c21c3q2!.
~3.6!

The homogeneous steady state becomesunstablewhen
the real part of either eigenvalue becomes negative. If
real part of either eigenvalue goes to zero, then the homo
neous steady state ismarginally stable, and there are two
distinct possibilities to consider.~a! If the eigenvalues are
complex and Re(l1 ,l2)→01, then there is a so-calledhard-
mode instabilityleading totemporal oscillations. ~b! If both
eigenvalues are real and positive with the smaller eigenva
l2→01, then there is asoft-mode instability, meaning that
the system will exhibitspatial oscillations. We now examine
each possibility in turn.

~a! When the discriminant of Eq.~3.6! is negative, the
eigenvalues will form a complex conjugate pair with re
part

Re~l1 ,l2!5 1
2 ~ uc1u1keq

2!
2-8
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which is always positive. Therefore there is no possibility
a hard-mode instability, with its attendant temporal oscil
tions, developing in the present spatioadiabatic model of
1D cortex.

~b! The eigenvalues will be real when the discriminant
positive,

~ uc1u1keq
2!2.4~c21c3q2!. ~3.7!

They will be real and positive if, in addition to~3.7!, we
require that the smaller eigenvaluel2 be positive, wherel2
is given by,

l25 1
2 ~ uc1u1keq

2!2 1
2 A~ uc1u1keq

2!224~c21c3q2!.
~3.8!

We see thatl2→01 along the positive real axis withl1
remaining real and positive if~3.7! is satisfied. In particular
at the point wherel250 we have

c21c3q250. ~3.9!

As outlined above, the default model hasc2.0 andc3
.0, so the~3.9! condition cannot be satisfied for any re
wave vectorq. However, if the corticocortical connectivit
alters in such a way that the long-rangee-i diffusivity k i
dominates thee-e diffusivity ke and condition~3.5! becomes
true, thenc3 changes sign, and the system can exhibit s
tained spatially periodic voltage perturbations about the
mogeneous steady state. From Eq.~3.9!, this marginally
stable configuration will be characterized by wave vectorqs ,

qs5A c2

uc3u ~soft-mode instability: spatial oscillations!.

~3.10!

We note that from Eq.~3.8! any spatial mode with wave
numberq,qs will render a positive eigenvalue, so the mo
will decay exponentially with time back to the homogeneo
steady state.

In contrast, ifq.qs , the eigenvalue will be negative, s
the amplitude of the eigenmode will grow exponential
Therefore the homogeneous steady state cannot support
tial modes that oscillate faster than the criticalqs wave vec-
tor, and the presence of such modes will force the corte
seek an alternative resting state. Although the form and
cation of this new state cannot be predicted from lineari
theory, by running numerical simulations of the nonline
ized cortical equations we can gain some insights into
nature and structure of the far-from-equilibrium steady sta
Nonlinearized model runs are described later in Sec. IV
First, though, we describe linearized simulation runs
signed to verify the existence of marginally stable stea
states.

B. Simulation tests for soft-mode instability

To test the theoretical prediction of sustained spatial
cillations about the homogeneous steady state, we ran a
ries of nonstochastic numerical simulations of the lineariz
equations of motion~2.16! for ĥe(x,t) andĥi(x,t) with noise
02190
f
-
e

s-
-

s

.
pa-

to
-
d
-
e

e.
.
-
y

-
se-
d

terms Ge,i(x,t) set to zero. We approximated the ‘‘infinit
brain’’ of Sec. II D by a;100-cm length of ‘‘cortical rod’’
on which periodic boundary conditions were imposed~i.e.,
the rod effectively is deformed into a 100-cm closed loop!.

In order to increase the strength of thee-i diffusivity rela-
tive to thee-e diffusivity ~thereby allowing thec3 parameter
to go negative! we introduce a dimensionless factorf >1 to
scale the inverse-length connectivity constantsLee and Lei
in opposite directions:

Lee8 5 f Lee, Lei8 5Lei / f , ~3.11!

and define a dendritic ‘‘wiring’’ ratio

R5
Lee8

Lei8
. ~3.12!

From Eqs.~2.17!, ke,i}1/Lee,ei
2 , so the respectivee and i

diffusivities will scale inversely and directly asf 2:

ke85ke / f 2, k i85 f 2k i . ~3.13!

Thus an increase inf factor simultaneously strengthensk i
while weakeningke . Setting f 51 gives the unadjusted
model diffusivity values and default wiring ratioR50.615;
f 51.58 (R51.536) is sufficient to causec3 to just go nega-
tive in the immediate vicinity of theA3 conscious→ uncon-
scious transition point atlGABA51.31 ~see Fig. 1!; and set-
ting f 55.0 causesc3 to be negative for the entire range o
(he

0 ,hi
0) equilibrium values plotted in Fig. 1.

Shown in Fig. 2~a! is the spatioadiabatic eigenvalue di
tribution for lGABA51.25 on the top branch of Fig. 1 for a
assigned connectivity scale factorf 51.80, wiring ratioR
51.994. The zero crossing occurs at wave numberqs
50.5205 cm21, predicting a marginally stable eigenmode
wavelength 2p/qs512.1 cm. To demonstrate that this mod
is long lived and that slower spatial modes die away, we
a numerical simulation of the deterministic part of the line
ized spatioadiabatic system defined in Eqs.~2.16!. We gave
the 1D system~the cortical ‘‘rod’’! an initial excitatory volt-
age perturbation away from homogeneous steady state
fined by

ĥe~x,t50!5 (
k51

8
~21!k11

k
sin~kqsx/8! ~3.14a!

and with inhibitory voltage left unperturbed,

ĥi~x,t50!50. ~3.14b!

The summation~3.14a! for ĥe represents the first eight term
of a harmonic expansion of a sawtooth wave form@@22#, see
p. 132, Eq.~23.9!# in which the eighth and final harmonic i
the long-lived qs soft mode. The soma voltages we
sampled atN5100 equally spaced grid points along the co
tical rod, with grid spacingDx50.966 cm chosen to ensur
that thek51 sawtooth fundamental is exactly periodic o
the adjusted rod lengthL5NDx. ~Failure to ensure an exac
spatial fit results in a step discontinuity at the ‘‘join’’ of th
2-9
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FIG. 2. ~a! Eigenvalues and
~b!,~c! q50.5205 cm21 eigen-
mode behavior for f 51.8 at
lGABA51.25 on the top branch o
Fig. 1. ~a! plots the eigenvalue vs
wave number distribution. Eigen
value pair is complex with posi-
tive real part for 0<q
<0.101 cm21, then becomes
purely real for q.0.101 cm21.
The smaller eigenvalue crosse
the wave number axis atq5qs

50.5205 cm21. For q,qs , both
eigenvalues are positive~or have
positive real parts!, so their eigen-
modes will decay with time. For
q.qs the smaller eigenvalue is
negative and therefore the high
spatial-frequency eigenmodes wi
be unstable.~b! Initial voltage
perturbation ~in mV! at 100
points along the cortical ‘‘rod:’’

ĥi(x,0)50, ĥe(x,0)5(k51
8 k21

(21)k11sin(kqsx/8) ~i.e., a band-
limited sawtooth!. ~c! Near-
relaxed voltage state of the cort
cal rod after 8000 iterations~time
step Dt54 ms) of the coupled
nonstochastic equations of motio

for ĥe(x,t) and ĥi(x,t). The low-
frequency eigenmodes of~b! have
decayed away, leaving only
the marginally stableqs eigen-
mode ~of wavelength 2p/qs

512.07 cm) carried in bothĥe(x)

and ĥi(x).
h
a-

in
n-

de

ib

a
y-

only

it
two ends of the loop; this discontinuity generates hig
frequency wave numbersq.qs and these cause the simul
tion to explode exponentially at the join.!

The initial voltage configuration of the rod is shown
Fig. 2~b!. Panel~c! illustrates the nearly relaxed voltage co
figuration after 8000 FTCS~forward-time, centered-space!
iterations: the low-frequency modes have substantially
cayed, leaving only theqs long-lived mode evident in the
in-phase voltage variations in both the excitatory and inh
tory rod voltages.

IV. SPATIAL DISTRIBUTIONS FOR EEG

A. Spatial covariance ofĥe

To quantify the degree to which the voltage fluctuations
separated pointsx andx8 are correlated, we define a stead
state spatial covarianceG(x,x8),

G~x,x8!5 lim
t→`

^ĥe~x,t !ĥe~x8,t !&, ~4.1!
02190
-

-

i-

t

and we assume that the fluctuation covariance depends
on the separationux2x8u of the sensing electrodes~and not
on their absolute positionsx andx8) so that the two-variable
spatial covarianceG(x,x8) can be collapsed to an explic
dependence on a single variable, the~unsigned! electrode
separation,

G~x,x8!5G~ ux2x8u!. ~4.2!

We will calculate the spatial covarianceG(x,x8) by first de-
termining the covariance in Fourier space,

G̃~q,q8!5^h̃e~q!h̃e~q8!&, ~4.3!

and then Fourier inverting to giveG(x,x8),

G~x,x8!5
1

~2p!2E E
2`

1`

eiqxeiq8x8G̃~q,q8!dq dq8

~4.4!
2-10
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5
1

2pE2`

1`

eiqux2x8uG̃~q!dq, ~4.5!

whereG̃(q) is defined below in Eqs.~4.7! and ~4.8!.
In Sec. II C we transformed the Langevin cortical equ

tions into the two-variable Ornstein-Uhlenbeck system
Eq. ~2.28!. We may now apply the stochastic methods d
scribed by Chaturvediet al. @21# and Gardiner@23# to com-
pute the 232 steady-state covariance matrixG̃,

G̃~q,q8!5 lim
t→`

F ^h̃e~q,t !h̃e~q8,t !& ^h̃e~q,t !h̃i~q8,t !&

^h̃i~q,t !h̃e~q8,t !& ^h̃i~q,t !h̃i~q8,t !&
G

~4.6a!

52pd~q1q8!G̃~q!, ~4.6b!

where

G̃~q!5
D

2 tr~A!
1

@A2tr~A!I #D@A2tr~A!I #T

2 tr~A!det~A!
. ~4.7!

Here,A5A(q) is theq-space drift matrix of Eq.~2.29!, and
D is the diffusion matrix of Eq.~2.25!. The operators tr(•)
and det(•) denote the matrixtrace anddeterminant, respec-
tively.

Our primary interest lies with theG̃11 element of theG̃
matrix, since this element gives the prediction for the Fou
space covariance for thee-e fluctuations. Expanding Eq
~4.7!, we obtain

@G̃~q!#115
D1

2~A111A22!
1

A22
2 D11A12

2 D2

2~A111A22!~A11A222A12A21!

~4.8!

where all quantities are understood to be evaluated at e
librium. Substituting Eq.~2.29! and applying some partial
fraction algebra allows us to rewrite Eq.~4.8! as

@G̃~q!#115
D11kec4

2~keq
22c1!

2
c3c4

2~c3q21c2!
, ~4.9!

wherec1 ,c2 ,c3 were defined in Eqs.~3.2!, andc4 is given
by

c45
J12

2 D21J22
2 D1

c1c31kec2
. ~4.10!

Equation~4.9! is now amenable to Fourier inversion fro
q space back tox space, but the precise form of the res
will depend on the relative signs for the coefficient pairke
andc1 @first denominator of Eq.~4.9!#; and on the coefficien
pair c3 andc2 ~second denominator!. For the default mode
values listed in Table I, we findc4,0. As pointed out in Sec
III A, we haveke.0, c1,0, c2.0, andc3.0, but with the
possibility thatc3 could change sign if the long-rangee-i
diffusivity is allowed to dominate the long-rangee-e
02190
-
f
-

r

ui-

t

diffusivity.
Taking signs into account, we can rewrite Eq.~4.9! as

@G̃~q!#115
D1 /ke1c4

2~q21uc1 /keu!
2

c4

2~q26uc2 /c3u!
,

~4.11!

where, in the second denominator, the ‘‘6 ’’ operator follows
the sign ofc3 ~i.e., ‘‘1 ’’ if c3.0; ‘‘ 2 ’’ if c3,0).

We can calculate the inverse Fourier transforms of E
~4.11! by way of the following Fourier identities:

1

2pE2`

1`

eiqr
dq

q21a2
5

1

2a
exp~2aur u!, ~4.12!

1

2pE2`

1`

eiqr
dq

q22b2
52

1

2b
sin~bur u!. ~4.13!

Thus, depending on the sign ofc3, the form of thee-e spa-
tial covariance is either the difference oftwo exponential
decayswhose respective 1/e decay lengths areL1 andL2,

G~ ux2x8u!5
D1 /ke1c4

4
L1 exp~2ux2x8u/L1!

2
c4

4
L2 exp~2ux2x8u/L2!, c3.0,

~4.14!

or the sum of anL1-length exponential decay plus a sine
wave variationof wavelength 2pL2,

G~ ux2x8u!5
D1 /ke1c4

4
L1 exp~2ux2x8u/L1!

1
c4

4
L2 sin~ ux2x8u/L2!, c3,0,

~4.15!

where the quantities

L1[Auke /c1u, ~4.16!

L2[Auc3 /c2u ~4.17!

define the characteristic lengths~either a correlation length o
a scaled wavelength! for the spatial covariance patterns.

B. Correlation-length predictions

Figure 3 plots the Eqs.~4.16! and ~4.17! predictions for
the L1 and L2 correlation lengths as the anesthetic effect
varied. Panel~a! shows that the domain over which EE
fluctuations are strongly correlated is expected toincrease
significantly on approach toI, the point of induction of un-
consciousness~labeledA3 on the active branch of Fig. 1!,
2-11
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FIG. 3. Variation ofL1 andL2

correlation lengths as a functio
of anesthetic effectlGABA for the
spatioadiabatic 1D cortex. Fou
representative values for the long
range corticocortical wiring ratio
R5Lee/Lei are shown; largerR
values correspond to a relativel
more effectiveinhibitory connec-
tivity. PointsA1 andA3 lie on the
active, high-firing branch;Q1 and
Q3 are on the quiescent, low
firing branch. In all cases, fluctua
tions become much more corre
lated in space on approach t
induction ~I! of unconsciousness
and again for the return path o
approach to emergence~E! back
into consciousness. The cusp
the L2 graphs@at lGABA'1.0 in
~c!, and at lGABA'0.6 in ~d!#
marks the point at which thec3

parameter of Eq.~3.2c! goes nega-
tive; for points to the right of the
cusp,L2 becomes an inverse wav
number for a sinusoidal compo
nent, of wavelength 2pL2

52p/qs , in the predicted spatia
covariance pattern.
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the
and again on approach toE, the point of emergence from
unconsciousness (Q1 on the quiescent branch of Fig. 1!. This
increase in correlation length for the 1D spatioadiabatic c
tex is consistent with the increase in correlation time~critical
slowing down! reported in@3# for a homogeneous corte
near the anesthetodynamic transition.

We note, however, that there is a marked difference in
active-branch behaviors ofL1 and L2 when R, the relative
strength of the long-range inhibitory connectivity, is i
creased. In Fig. 3~b!, whereasL1 ~thick gray curve! increases
strongly on approach to the transition pointA3, we see that
L2 ~thin dark curve! turns over and approaches zero at theA3
transition. In panel~c!, the turnover has become a cusp ne
lGABA51.0, followed by a renewed increasing trend. T
cusp marks the point at which parameterc3 becomes zero
@recall Eq. ~4.17!: L25Auc3 /c2u], and the increasing trend
corresponds toc3 going increasingly negative; therefore th
interpretation ofL2 postcusp changes from being a 1/e-decay
correlation length~precusp! to being an indication that the
covariance now has a spatially periodic component wh
wavelength 2pL2 increases on approach to the first-ord
transition atA3. Sadly, this wavelength prediction is of du
bious utility, since, as will become apparent in the followi
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section, the linearized system becomes unstable in thec3
,0 regime when driven by white noise.

C. Stochastic simulations of spatioadiabatic 1D cortex

1. Case c3Ì0: Strong e\e diffusivity

In order to test thec3.0 linearized spatial covarianc
predictions of Eq.~4.14!, we ran a series of stochastic sim
lations of thenonlinearizedspatioadiabatic equation set d
fined by Eqs.~2.1! and ~A1!,~A2!. Illustrated in Fig. 4 are
representative comparisons between the linearized th
and nonlinearized simulation for six different locations~three
on the active branch and three on the quiescent branch! cho-
sen from the Fig. 1 trajectory of homogeneous steady sta

For each simulation run, the cortex was represented
N5100 equally spaced points along a rod with joined en
Each grid point was driven by the four independent whi
noise sources defined in Eqs.~2.6! and ~2.8!, with the four
noise-scale factors set toa jk50.01. The rod was allowed to
evolve from its homogeneous steady state for 1000 t
steps, thenGsim(ux2x8u), the spatial covariance of theĥe
excitatory-voltage fluctuations, was calculated using
MATLAB XCORR cross-correlation function, calledf xcorr in
the expression
2-12
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FIG. 4. Comparison of Eq.~4.14! covariance predictions~thick gray curves! and nonlinear stochastic simulation results~black dots! at
discrete points along the cortical rod. The top three panels~a!, ~b!, and~c! trace the induction trajectoryA1→A2→A3 along the active branch
of Fig. 1; the bottom three panels~d!, ~e!, and~f! trace the emergence trajectoryQ1←Q2←Q3 along the quiescent branch. For all six pane
the ke,i diffusivities were maintained at their default values@see Fig. 3~a!: f 51, R50.62], soc3.0 everywhere. For each panel, te
numerical simulations were run, the ten-run average covariance was calculated at each cortical position, and joined with a thin black
spatial width of the covariance curve increases strongly on approach to induction~a! → ~c! ~note the change inx-axis scale!, and also on
approach to emergence~d! ← ~f!. For all runs, the integration time step was set atDt50.01 ms, but the spatial resolutionDx and rod length
L5NDx were adjusted to ensure numerical stability and accuracy. TheDx spatial resolutions~in cm! were~a! 0.05,~b! 0.2, ~c! 2, ~d! 1, ~e!
0.2, and~f! 0.1.
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Gsim~ ux2x8u!5
f xcorr ~he!

N
~4.18!

wherehe is the 100-element vector ofĥe values along the
rod. The average of ten such runs was calculated~thin black
line! and compared with the theoretical prediction~thick
gray line!. Despite the large run-to-run variation in cova
ance plots within a given panel@particularly evident at the
near-transition pointsA3 ~induction! and Q1 ~emergence!#,
the ten-run averages of Fig. 4 generally show excell
agreement with theory. We also ran stochastic simulation
the linearized~Langevin! equations~2.16!, and, unsurpris-
ingly, these simulations also confirmed excellent agreem
with the predicted fluctuation covariance curves~results not
shown!.

Both sets of simulations confirm the important predicti
that the EEG fluctuations should become increasingly co
lated over space near the transition points. This result is
02190
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nificant because it may provide clinicians with an ea
warning that a patient’s state of consciousness is abou
change.

2. Case c3Ë0: Strong e\ i diffusivity

We then turned our attention to thec3,0 regime. We first
ran numerical simulations of the linearized spatioadiaba
equations, attempting to generate the spatially periodic co
riance pattern predicted by Eq.~4.15! and characterized by
the soft-mode wave vectorqs defined in Eq.~3.10!—but
without success. It soon became apparent that the inhibit
dominance conditionc3,0 is also the condition for system
instability when driven by white noise. Spatial white noi
containsall wave numbers 0<q,`; any wave numbersq
.qs will have eigenmodes that grow exponentially, a
therefore the homogeneous stationary state is no lon
stable. See the discussion following Eq.~3.10!.

Since the homogeneous state is unstable forc3,0, the
cortex must move to a new state of lower energy. But wh
2-13
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FIG. 5. Simulation run show-
ing emergence of self-organize
states in the nonlinearized spatio
adiabatic 1D cortical rod. Simula
tion parameters:N5100 points
with periodic boundaries, Dx
51 cm, Dt50.1 ms, lGABA

51.25, connectivity scale facto
f 52.20⇒R52.98, noise scale
factora jk50.01. ~a! Simulation is
started as a homogeneous distrib
tion of soma voltages set at th
midbranch~i.e., unstable! steady-
state valueshe,i(x)5he,i

0,mid. ~b!
Each cortical point is driven by
spatial and temporal white noise
so tends to ‘‘slide off’’ the poten-
tial crest represented by the mid
branch steady state, and ‘‘falls
toward one or other of the poten
tial valleys near the upper branc
(he

0,top) or lower branch (he
0,bot)

homogeneous steady state
~drawn with a dashed pen!. ~b!
shows the voltage pattern afte
150 iterations, and~c! shows the
fully developed spatial pattern af
ter 5000 iterations.
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is this alternative state? And what is its nature? Because
earized theory cannot answer these questions, we ran a s
of stochastic simulations of the nonlinearized spatioadiab
equations~2.1! and ~A1!,~A2!.

We altered the Eq.~3.12! long-range ‘‘wiring’’ ratio R in
order to make thee→ i connectivity relatively stronger tha
the e→e connectivity, thereby causingc3 to become nega
tive. We found that the nonlinear simulation behaviors w
dramatically different for this regime: sooner or later the s
chastic fluctuations would become completely swamped
the formation of strongly growing diffusive ‘‘fingers’’ tha
would grow toward, and then overshoot, the second ho
geneous stable state. For certain settings oflGABA and R,
these diffusion finger-pattern inhomogeneities would per
indefinitely. We found that the easiest way of stimulati
pattern formation is to start the cortical rod in its homog
neous configuration on the unstable midbranch. Figur
shows a typicalc3,0 nonlinearized simulation run fo
lGABA51.25, R52.98, and Fig. 6 illustrates the range
diffusive patterns that can evolve. Although each finger ha
very similar upside-down catenary-~suspended-chain-!like
curvature, the location on the rod at which the fingers form
02190
n-
ries
ic

e
-
y

o-

st

-
5

a

s

random, depending delicately on the noise sequence a
onset of pattern formation. But once the rod has forme
dissipative pattern, noise loses its dominant role.

V. DISCUSSION

The controlled induction of anesthetic unconsciousnes
sudden, dramatic, and—of vital importance—reversible. T
anesthetodynamic model of cortical function we have be
developing suggests that this change of brain state can
viewed—at least at a gross electrical level—as a dr
induced first-order phase transition as populations of coo
ating neurons switch from an active~‘‘conscious’’! state to a
quiescent~‘‘unconscious’’! state.

Encouragingly, there is an accumulating body of clinic
support for the major predictions of the phase-transit
theory:~a! EEG power surge at the induction and emergen
transition points@7,24#; ~b! spectral redistribution toward
lower frequencies at the transition, resulting in a reduction
EEG spectral entropy@8#; ~c! nonlinear reduction in oxygen
consumption~measured via changes in cerebral metabo
rate! as anesthetic concentration is increased@9#; ~d! hyster-
2-14
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FIG. 6. Selection of excitatory
voltage patterns formed spontan
ously on the spatioadiabatic 1D
cortical rod lGABA51.25, R
52.98. Simulation settings are
identical to those used for Fig. 5
In each case, the rod was started
its spatially homogeneous mid
branch value ~dotted horizontal
line!, then driven by temporal and
spatial white noise. These are th
stationary dissipative patterns tha
have stabilized after 5000 itera
tions. ~Dashed horizontal lines
show the upper- and lower-branc
homogeneous stationary states.!
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esis separation, with respect to drug concentration, betw
the point of loss of consciousness and the point of recov
of consciousness@7,25#: the patient wakes up at alower level
of drug concentration than that required to put her to sle
However, we need to point out that our interpretation of
hysteresis separation between LOC and ROC~corresponding
to points A3 and Q1 on Fig. 1!—as a confirmation of our
phase-transition theory—is probably controversial. The ph
macokinetic modelers in the anesthetics community wo
argue that the drug-effect hysteresis is an artifact cause
the fact that the drugconcentrationis ~usually! measured in
the blood, while the drug’seffectoccurs some time later a
the brain, and that this displacement error causes an app
hysteresis. Our model suggests that even after allowanc
displacement error, a real hysteresis should remain, and
attempts to cancel the hysteresis loop by adjusting phar
cokinetic parameters are, in fact, an overcorrection.

Our three earlier papers@1–3# assumed a steady-state,ho-
mogeneouscortex in which the anesthetic-driven properti
of a single macrocolumn could be taken as a proxy for
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entire gray-matter cerebral cortex. This is a ‘‘singl
electrode’’ theory in the sense that the overall average s
of the ~presumed homogeneous! cortex can, in principle, be
determined with a single electrode pair: the reference w
located in the extracellular fluid~defining the zero of poten
tial!, and the sensing wire located in the ‘‘population av
age’’ excitatory neuron. Because there is no notion of sp
in a spatially homogeneous model, the precise location of
sensing electrode is, by assumption, unimportant. We n
that existing commercial monitors for depth of anesthe
~e.g., Aspect Systems A-2000, which measures the E
bispectral index; Datex-Ohmeda Entropy Module, whi
measures EEG spectral entropy! are single-channeldevices
consisting of an electrode pair giving a differential sca
voltage, plus a third wire for the ground attachment~the
‘‘true’’ ground reference—the extracellular fluid potential—
is, of course, unavailable to a scalp-based monitor!. Thus,
both in theory and in clinical practice, a ‘‘single-electrode
picture provides a reasonable foundation for understand
the electrical properties of general anesthesia.
2-15
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STEYN-ROSSet al. PHYSICAL REVIEW E 68, 021902 ~2003!
The present paper represents a first step towar
multiple-electrodetheory. We accommodate the possibility
spatial inhomogeneity in electrical activity by modeling t
cerebral cortex as an infinite 1D rod of macrocolum
‘‘mass:’’ by applying a spatioadiabatic approximation, t
cortical rod can develop spatial variations about the hom
geneous steady state. We linearized the spatioadiabatic
tem equations about the homogeneous state, investig
their stability, and discovered the possibility of long-live
spatial modes~‘‘soft-mode instability’’! when the long-range
~corticocortical! e→e diffusivity ke was dominated by the
long-rangee→ i diffusivity k i such that parameterc3 be-
comes negative@see Eq.~3.5!#. We verified the existence an
longevity of theqs soft mode via numerical simulation on
noise-free;100-cm rod with periodic boundary condition

We computed the theoretical two-electrode covariance
the EEG fluctuations,G(ux2x8u), and found two different
regimes of behavior, depending on the sign ofc3. For c3
.0 ~which includes the default model settings!, the covari-
ance will be the difference of two exponential decays
space. The characteristic lengths~correlation lengths! for
these decays are predicted to increase strongly on appr
to the LOC and ROC transition points@see Figs. 3~a! and 4#,
and these theoretical predictions were confirmed in a se
of stochastic simulations on a joined cortical rod~Fig. 4!.

For clinical confirmation of increased correlation lengt
near transition, we turn to the recently reported results
John et al. @10#. John and colleagues analyzed t
quantitative-electroencephalographic changes for 176
tients undergoing general anesthesia. The EEG was reco
from 19 electrodes deployed across the scalp at posit
corresponding to the international 10/20 system. A range
different anesthetic agents were used, the focus of the in
tigation being the identification of EEG changes that
common to all anesthetics.

There are two main findings pertinent to the present wo
First, the same qualitative changes in EEG power spect
were observed in the vicinity of LOC for every anesthe
agent—namely, a large increase in power, particularly at
frequencies, on approach to LOC, followed by a drama
collapse in high-frequency (g band, 25–45 Hz! power at
LOC. This behavior is consistent with our anesthetodyna
prediction of a pronounced growth in fluctuation power co
comitant with a spectral redistribution toward zero frequen
~i.e., critical slowing down! on approach to the transitio
point.

The second finding was a general increase in EEGcoher-
encejust prior to LOC and again at ROC, particularly for th
frontal ~forehead! pair of electrodes. While our spatioad
abatic model cannot explain why the frontal electrodes
favored, this enhanced coherence is consistent with a m
prediction of increases in correlation length and correlat
time for the EEG fluctuations near the phase-change ju
points. We are presently investigating the possibility of us
the spatioadiabatic model to make quantitative predicti
for coherence changes as a function of anesthetic effect

For c3,0, the linear stochastic theory fails because
eigenmodes for high spatial frequenciesq.qs grow without
bound. To identify the new state formed in this regime,
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ran simulations of the nonlinear stochastic equations
found that, for particular values of the anesthetic effe
lGABA and wiring ratioR, the cortical rod would spontane
ously fall away from the homogeneous state, evolving int
stable, pseudoperiodic pattern of large-amplitude voltage
cursions. It is interesting to note that in 1980 Ermentrout a
Cowan @26# identified the possibility of stationary periodi
spatial patterns in their idealized 1D neural net models. T
remarked that strong inhibitory influences are necessar
order to generate stable spatial structures; their finding
consistent with the present work, since, in our system,
c3,0 condition arises when the long-rangee→ i inhibitory
diffusivity k i dominates thee→e excitatory diffusivityke .

The biological significance of dissipative structures w
respect to anesthesia is unclear. One might be tempte
suggest that the existence of these persistent pseudoper
spatial structures shows that, at a given point in time, s
tially separated cortical regions can appear to participate
the same neural process with zero time lag. But it see
unlikely that any such ‘‘neural process’’ could be associa
with normal consciousness since this is afrozen patternof
brain activity ~a neural ‘‘crystal’’! that would severely con-
strain dynamic communication attempts from nonparticip
ing neuronal assemblies. Perhaps the structures might
freeze’’ into temporal oscillations~hard-mode instabilities! or
traveling-wave patterns if we were to relax the spatioa
abatic requirement. This possibility will be investigated
future work.

APPENDIX: SPATIOADIABATIC APPROXIMATION

As discussed in the Introduction, the spatially homog
neous adiabatic approximation adopted in papers@1–3# en-
ables a valid description of the gross EEG changes ass
ated with loss of consciousness. In these earlier papers
assumed that theI jk andf j inputs equilibrate on time scale
much faster than the average soma voltageshe andhi , and
that the cerebral cortex is spatially uniform~this is the mean-
field approximation!. These assumptions were effected
setting]/]t→0 ~adiabaticity! and]2/]x2→0 ~spatial homo-
geneity! in Eqs. ~2.2! and ~2.3! and then substituting the
resulting steady-state values for the cortical inputs~plus
noise! back into the~2.1! equations of motion for the exci
tatory and inhibitory soma voltages. The result was a pai
coupled stochastic DEs inhe andhi alone.

In the present paper, we wish to allow for the develo
ment of spatial variability in long-range corticocortical firin
rate, with consequent variations in space for the macro
umn soma voltage. We accomplish this, to first order,
adopting the ‘‘spatioadiabatic’’ limit which sets]/]t→0 in
Eqs.~2.2! and~2.3!, while retaining the]2/]x2 terms in Eqs.
~2.3!. Thus the cortical inputs of Eqs.~2.2! reduce to

I ee~he!5@Nee
b Se~he!1fe1^pee&#Gee/ge1G1~x,t !/ge

2 ,

~A1a!

I ei~he!5@Nei
b Se~he!1f i1^pei&#Gee/ge1G2~x,t !/ge

2 ,

~A1b!
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I ie~hi !5lGABA@Nie
b Si~hi !1^pie&#Gie/g i

1lGABA
2 G3~x,t !/g i

2 , ~A1c!

I i i ~hi !5lGABA@Nii
bSi~hi !1^pii &#Gie/g i

1lGABA
2 G4~x,t !/g i

2 . ~A1d!

We set to zero the sigmoid time derivatives]Se /]t in
Eqs.~2.3! to obtain the spatioadiabatic approximation for t
f i ,e long-range inputs,

fe5
1

Lee
2

]2fe

]x2
1Nee

a Se~he!, ~A2a!

f i5
1

Lei
2

]2f i

]x2
1Nei

a Se~he!. ~A2b!

This neglect of the sigmoid time derivatives is equivalent
assuming that the impulse response~Green’s function! Fe,i
for the Se(he) source is felt instantaneously throughout t
cortical rod: whereas the Green’s functions for the origi
Eqs. ~2.3! represent pulses decaying exponentially in sp
and propagating at speedv,

Fe~x,t !5
1

2
Nee

a Leee
2Leeuxud~ t2uxu/v !, ~A3a!

F i~x,t !5
1

2
Nei

a Leie
2Leiuxud~ t2uxu/v !, ~A3b!

our adiabatic approximation replaces these impulse funct
with their v→` limit,

Fe~x,t !5 1
2 Nee

a Leee
2Leeuxud~ t !, ~A4a!

F i~x,t !5 1
2 Nei

a Leie
2Leiuxud~ t !, ~A4b!

with the spatioadiabatic forms of Eqs.~A2! being recovered
after convolving, over time and space, the Eq.~A4! adiabatic
Green’s functions,

fe,i~x,t !5E
2`

` E
2`

`

Fe,i~x2x8,t2t8!Se~x8,t8!dx8 dt8.

~A5!

Substituting Eqs.~A1! and~A2! back into Eqs.~2.1! gives
us a pair of coupled spatioadiabatic equations forhe andhi .
However, Eqs.~A2! still contain terms involvingfe,i on the
right-hand side, so the resulting equations forhe,i will also
be dependent onfe,i .

We now remove thisf dependence by making a sma
perturbation expansion about the homogeneous steady s
First, we observe that in the homogeneous (]2/]x2→0)
steady-state limit, Eqs.~A2! predict

fe
eq5Nee

a Se~he!ueq, ~A6a!

f i
eq5Nei

a Se~he!ueq. ~A6b!
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This means that in the spatially homogeneous steady-s
cortex,fe(he) andf i(hi) are both functions ofhe . There-
fore, provided that the perturbations away from the homo
neous steady state always remain small~i.e., he is a weak
function of positionx, and never far from equilibrium!, fe
andf i can still be written as functions ofhe :

fe[fe@he~x!#,

f i[f i@he~x!#.

Close to homogeneous equilibrium we may make a Tay
expansion tonth order,

fe@he~x!#5fe
eq1@he~x!2he

eq#
dfe

dhe
U

eq

1
1

2!
@he~x!2he

eq#2
d2fe

dhe
2 U

eq

1•••1
1

n!
@he~x!2he

eq#n
dnfe

dhe
n U

eq

. ~A7!

We obtain an expression fordfe
n/dhe

n by operating with
d/dhe on Eq.~A2a!, giving

dfe

dhe
5

1

Lee
2

d

dhe
F ]2fe

]x2 G1Nee
a d

dhe
Se~he!, ~A8!

which, at homogeneous equilibrium, simplifies to

dfe

dhe
U

eq

5Nee
a dSe

dhe
U

eq

~A9!

since (]2fe /]x2)ueq50. Consequently,

dnfe

dhe
n U

eq

5Nee
a dnSe

dhe
n U

eq

. ~A10!

Substituting Eq.~A10! back into Eq. ~A7! gives a near-
equilibrium Taylor expansion forfe in terms of derivatives
of Se , the voltage-to-pulse-rate sigmoidal transfer functio

fe@he~x!#5fe
eq1@he~x!2he

eq#Nee
a dSe

dhe
U

eq

1
1

2!
@he~x!2he

eq#2Nee
a d2Se

dhe
2 U

eq

1•••

1
1

n!
@he~x!2he

eq#nNee
a dnSe

dhe
n U

eq

. ~A11a!

Similarly, if f i can also be assumed to be a function ofhe(x)
only, we can write a corresponding Taylor expansion
f i@he(x)#,
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f i@he~x!#5f i
eq1@he~x!2he

eq#Nei
a dSe

dhe
U

eq

1
1

2!
@he~x!2he

eq#2Nei
a d2Se

dhe
2 U

eq

1•••1
1

n!
@he~x!2he

eq#nNei
a dnSe

dhe
n U

eq

.

~A11b!

The theoretical calculations for spatial covariance in Sec.
of this paper utilize a linearized paradigm, so only the fir
order terms of Eqs.~A11! need be retained. Therefore, whe
we operate withd2/dx2 on both sides of Eqs.~A11!, we
retain only the first-order terms, giving
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Hence, close to homogeneous equilibrium, we can rep
the long-range inputs of Eqs.~A2! by their linearized ap-
proximations,
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a Se~he!, ~A13a!
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Equations~A13a! and ~A13b! can now be used to approx
mate fe and f i in Eqs. ~A1a! and ~A1b!, which are then
substituted into Eqs.~2.1a! and ~2.1b! to obtain the final
spatioadiabatic reduced equations~2.10a! and ~2.10b!.
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