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Theoretical predictions for spatial covariance of the electroencephalographic signal
during the anesthetic-induced phase transition: Increased correlation length
and emergence of spatial self-organization
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In a recent series of papers, the authors have developed a stochastic theory to describe the electrical response
of a spatially homogeneous cerebral cortex to infusion of a general anesthetic agent. We showed that by
modeling the GABAergidpropofol-like) drug effect as a prolongation of the inhibitory postsynaptic impulse
response, we obtain a prediction that there will be a hysteretically separated pair of first-order phase transitions
in the population-average excitatory soma voltage, the first occurring at the point of induction of unconscious-
ness, and the second at the point of emergence from unconsciousness. In the present paper we generalize our
earlier “zero-dimensional” homogeneous cortex to a one-dimensi¢h@) line of cortical “mass,” thus
allowing for the possibility of spatial inhomogeneities in neural activity. Following the spirit of our earlier
adiabatic (“slow membrane’) philosophy, we impose a spatioadiabatic approximation that permits us to
compute analytic expressions for changes in EEl&ctroencephalographicorrelation length and EEG spatial
covariance as a function of anesthetic effect. We establish that the correlation length of the EEG fluctuations is
expected toincreaseat the approach to the transition points, and this finding is consistent with both the
homogeneous-cortex prediction of increased correlation ¢ioréical slowing down”) near transition, and the
recent, comprehensive anesthetic study by Jital. [Conscious. Cogril0, 165(2001 ] reporting an increase
in EEG coherence near the points of loss and recovery of consciousness. In addition, we find that if the
long-range(corticocortical excitatory-to-inhibitory connectivity in the 1D cortex is stronger than the long-
range excitatory-to-excitatory connectivity, then the spatioadiabatic system can organize itself into large-
amplitude spatial patterngdissipative structuresy consisting of giant stationary quasiperiodic voltage fluc-
tuations distributed along the cortical rod.
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I. INTRODUCTION dent, Gaussian-distributed random processes.
As described by Franks and Li¢8], the electrical effect
In a recent series of papers—3], the authors have been of GABAergic anesthetic agents is poolongthe duration of
developing a theoretical model that explores the electrodythe inhibitory postsynaptic potenti@lPSP event generated
namic behavior of a spatially homogeneous cerebral cortein response to an impulsive influx of GABAyfamino bu-
subject to the action of a GABAergic general-anesthetidyric acid neurotransmitter arriving at the GABAreceptors
agent. We model the cortex as a collection of interconnectedf the postsynaptic neuron. We assume that this prolongation
macrocolumns aggregates of cooperating neurons overof the inhibitory impulse response depends on anesthetic
whose spatial extent it is assumed possible to replace indeoncentration, and model this in termsXofags, a dimen-
vidual neuron properties with population averages. This isionless number that scales the IPSP rate congtdsee Eq.
the mean-field philosophy. In the present paper we investi¢2.9) below] appearing in the equations for inhibitory presyn-
gate the implications of retaining the mean-field requiremenaptic input into the excitatorjeq. (2.29] and inhibitory[ Eq.
within the macrocolumn, but allowing intermacrocolumn (2.2d)] neural populations.
spatial variability to develop along a one-dimensio(iED) Central to our approach is the adiabatic or “slow-
rod of cortical mass. membrane” approximation. In this limit, we assume that the
Our theoretical framework is a set of coupled stochastitime constants associated with the excitatory and inhibitory
differential equations(SDE9 for h, and h;, the macro- membrane “capacitors” are very much longer than the time
column-averaged transmembrane soma voltage of the excitgenstants for the electrical activity generated by the various
tory and inhibitory neurons. Thie, state variable is the key neurotransmitter input events. That is, the time course for the
observable, as its fluctuations are assumed to be the sourcelyf and h; membrane voltages is taken to be much slower
the scalp-measured electroencephalogragBiEG) signal  than the time course of the incoming excitatory and inhibi-
[1]. The driving force for these fluctuations is the nonspecifictory postsynaptic potentials. This enables a considerable sim-
subcortical inpupjy (j,ke{e,i}), modeled as four indepen- plification of the macrocolumn equations of motion, since
the synaptic input voltages, having rapidly equilibrated, can
be replaced by their steady-state values.
*Electronic address: msr@waikato.ac.nz; URL: Also central to our theory is the notion that the cortex
phys.waikato.ac.nz/cortex always operates close to a homogeneous equilibrium state
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determined by the stationary solution of the system SDEsterized by a pair of distinct, general-anesthetic-induced, first-
The stationary behavior of the variables andh; is shown order phase transitions, the first transition occurring at the
in the inverted-S trajectory of Fig. 1. point of loss of consciousnessOC), and the second at the

These equilibrium curves were obtained by setting to zergoint of recovery of consciousne§R0C).
all time and space derivatives, as well as zeroing the four These state-change predictions follow from the inverted-S
subcortical noise termd’(,,), in Egs.(2.1)—(2.3) below, and  form of Fig. 1: because the middle branch is unstable, there
then solving for the steady-state voltagsh? as a function  will be an abrupt, discontinuous changetigat LOC (point
of Agaga. Unfortunately, because of the strongly coupledA3) as the anesthetic amouRgag, is increased; and simi-
and nonlinear nature of the system equations, it is not podarly at theQ; emergence point as the anesthetic amount is
sible to write down an analytical expression for these equiteduced.
librium curves; instead one needs to follow an iterative nu- If this cortical phase-change picture is correct, then the
merical scheme similar in concept to Wilson and Cowan’smodel predicts that there should be gross changes in the na-
[5] “isocline intersection” technique in order to map out the ture of the EEG signal in the vicinity of the jump point$}
locus of excitatory and inhibitory steady-state soma voltagesa “biphasic” effect(EEG power surge at LOC and RQ[T];

(Full numerical details are given in Chapter 3[61.) (i) a redistribution of spectral energy toward lower frequen-

The equilibrium manifold of Fig. 1 provides the concep- cies in the unconscious statéii) a reduction of spectral
tual landscape on which we can identify distinct corticalentropy at LOC[8]. These effects have all been observed
states. The upper branch representsabtive state charac- clinically. In addition, if the unconscious state is the more
terized by high neuronal firing rates; the lower branch repreordered state, then a thermodynamic analogy arguifgnt
sents the low-firingquiescenstate. Points on the active and suggests that there should be a sudden release of “latent
quiescent branches are stable with respect to small perturbheat” at LOC. Stullkenet al. [9] found that the metabolic
tions; this pair of stable loci are separated by the reentrargnergy requirement of the cortdas measured by oxygen
midbranch identifying the locus of unstable equilibrium depletion in the cerebral blood flowgenerally declined
points. Although the cortex could “visit” a midbranch point, steadily with increasing anesthetic concentration, but de-
it cannot remain there, since the slightest fluctuation willclined precipitously in the vicinity of the cortical switchover
cause it to “fall” onto either the upper or lower stable detected by alteration in EEG activity. This result is consis-
branch. tent with the notion of a thermodynamic “latent heat” effect.

In our adiabatic picture, the EEG signal arises from fluc- In this paper we extend the adiabatic approach of our
tuations inh, about its equilibrium manifold; these fluctua- earlier papers to allow for smapatial fluctuations about the
tions originate from the white-noise stochagtig input and  equilibrium manifold. In the original adiabatic approxima-
enterh, andh; by way of nonlinear interdependenciesg.,  tion, both the long-range inputs, and the local inputs;, to
the S;; sigmoidal voltage-to-firing-rate transfer functions the macrocolumn were assumed to be spatially homogeneous
Egs. (2.5); and they;, synaptic-input weighting functions and to equilibrate instantaneously. Mathematically, this was
Eqg.(2.4)] whose strengths depend directly on neuron voltag&ccomplished by setting the space and time derivatives equal
and indirectly on anesthetic concentration. to zero in the equations governing the behavior of iéhe

As discussed if1,2], the main result of our white-noise- (two equationsandl  (four equations This is equivalent to
driven cortex model was the prediction of an abrupt “anes-collapsing the impulse responses fek, and I, into
thetodynamic” change of state. This state change is charags-function “spikes.”
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Here we allow for the possibility of spatial variability time lags with axonal propagation formulated in terms of a
across a 1D cortex by developing a first-order treatment wavave equation. They investigated analytically the stability of
refer to as thespatioadiabatic approximatiorThis treatment the spatially homogeneous stationary state with respect to
still assumes rapid equilibration in time for th#g andl;,  small perturbations and found temporally damped traveling
but retains the second-order space derivative in the pair okaves for a variety of boundary conditions. They did not
¢ wave equations. The result is a modified Green’s functiorconsider the possibility of a soft-mode transition to a spa-
for the ¢, that is aé function in time, scaled by an expo- tially organized system in their stability analysis, nor did
nential decay in space. they look for such behavior in their nonlinear simulations.

The presumption of a spatioadiabatic limit allows us to The earlier cortical model of Nunefl3,14 also ex-
derive analytically the spatial covariance lof, presumed Presses axonal propagation in terms of a wave equation, but
equivalent to the spatial covariance of the scalp-measure@ssumes that the cortical system is linear. Nunez solved his
EEG signal. The model predicts two interesting and distincinodel for a 1D loop cortex and for a 2D cortex with periodic
types of behavior, depending on the “wiring” rati®? ~ and spheroidal boundary conditions, obtaining global
=Aeo/Aoj, Where theA,, are the corticocortical inverse- modes—weakly damped traveling waves that interfere to
length scales for the long-range—e ande—i intermacro-  form standing waves—whose temporal frequencies approxi-
column connections. mately match observed cerebral rhythms. Jirsa and Haken

(1) For R= 1.5 (the default case: long-range- e connec- [;5,16] gener_alizeq the linear Nunez mod#B] to inc_lude a
tivity dominates long-range—i connectivity, a stability S.IngId nonlllnearlty for the averaged effect of action poten-
analysis shows that the system relaxes over time to the hdials and derived a nonlinear wave equation for excitatory
mogeneous steady state defined by the Fig. 1 inverse-8ynaptic activity in a 1D neural tissue. When driven by a
curve. For thisR wiring regime, theh, covariance decays temporal sine-wave stimulus on spatially periodic bound-
exponentially in space, with a correlation length that di-2aries, the_ﬂeld modes of synaptic activity _formed nonsinusoi-
verges at the induction poirt; and again at the emergence dal standing waves. In a later paper, Jirsa and Kglsg
point Q;. We find that the correlation length for the quies- Qemonstrate_d. that the mtroducnon of Iong—range connection
cent state is longer than that in the active state. This is coflhomogeneities can cause their spatially homogeneous
sistent with our phase transition picture, which views themModel to become unstable, leading to the formation of a
unconscious state as being more ordered than the consciod@'ies of distinct spatiotemporal patterns whose character is
state. There is good supporting evidence of increased corré€términed by the strength and location of the two-point
lation length at the LOC transition in the quantitative-EEG long-range connection within the 1D loop of cortical tissue.
coherence experiments reported recently by Jethad. [10].

(We briefly discuss these results in Seg. V. Il. THEORY

(2) In contrast, folR= 1.5 (long-rangee—i is now domi-
nand, we find that the homogeneous steady state is no longer
stable with respect to small perturbations. As a result, the We model the cerebral cortex as a collection of intercon-
system undergoes a transition tonanequilibriumsteady —nected macrocolumnee Fig. 2 of(1]). These are neural
state, as verified by numerical simulation of the 1D cortex inmasses containing approximately 100000 synaptically con-
the spatioadiabatic limit. Ouinearizedtheory suggests that, nected neurons of which 85% are excitatégyand 15% are
in this far-from-equilibrium regime, the EEG distribution inhibitory (i). The primary variables of interest in the model
will organize itself to display a spatial covariance that is theare the macrocolumn-averagedcitatory soma voltageh,
sum of an exponentially decaying term plus a term that isand the macrocolumn-averagethibitory soma voltageh, ,
periodic in space. However, simulation runs of thenlin-  both of which can vary in time and space.
earizedspatioadiabatic equations show that the outcome is We utilize a set of coupled stochastic differential equa-
actually more complicated than linear theory can predicttions for the macrocolumn developed|it], and based on a
instead of exhibiting small-amplitude spatially periodic set of eight partial differential equation®DES by Liley,
variations about the homogeneous steady state, we find th&@adusch, and Wrigh{18] for a one-dimensional cortex.
the cortical activity along the 1D cortical “rod” explodes These foundation PDEs can be regarded as a mean-field gen-
into giant fluctuations in soma voltage that rapidly coalesceeralization of Tuckwell's “subthreshold neuror19]. For
into stable, clumped regions of high-firing activity adjoining the Tuckwell neuron, there is only one ion species involved
regions of low-firing activity. This emergence of a sustainedin excitation (e.g., sodium and a second ion species in-
mosaic of EEG activity is akin to the self-organization thatvolved in inhibition (e.g., potassiupa—thus their Nernst po-
can emerge in other dissipative systems in physics such dgntials become the respective synaptic reversal potentials
the chemical spiral waves of the Brusselator and the hexagdy,’ and h{®’ (see Table | for valugs and the membrane
nal convection cells in a Rayleigh-Bard fluid (both dis- conductances of the neuron are taken as being proportional
cussed if11]). to the signed deviation of the soma voltage from the relevant

It is useful to place the present work in the context ofreversal potentidlthe Tuckwell conductances map to the di-
other mean-field cortical models. Robinsenal. [12] pre-  mensionless);, weighting factors in Eq(2.4) below].
sented a 2D continuum model that incorporates sigmoidal In the mean-field picture of macrocolumn-average popu-
voltage-to-spike-rate conversion, excitatory and inhibitorylations of cooperating neurons, no attempt is made to follow
synaptic connections, and the effects of dendritic and axondhe detailed time dynamics for the formation of individual

A. One-dimensional cortical model
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TABLE I. Symbol definitions and model constants for the 1D Liley-Cadusch-Wright neural macrocolumn model. In contrast to our
earlier paper$1-3], here the sigmoid maximum firing rag&'?* has been lowered from 1000 to 100's

Symbol Description Value Unit
e, i (As subscript excitatory, inhibitory cell populations
he,i Population mean soma voltage mV
Teii Membrane time constant 0.040, 0.040 s
het Cell resting potential —-70, 70 mV
het Cell reversal potentialNernst potential 45,-90 mv
leeie Total e—e,i —e voltage input to excitatory synapses mV
leiii Total e—i,i—i voltage input to inhibitory synapses mV
i (i kefei)) Weighting factors for the;, inputs
Peeie Exogenougsubcortical spike input toe population 1100, 1600 4
Pei,ii Exogenougsubcortical spike input toi population 1600, 1100 4
e Long-range(corticocortica) spike input toe,i populations st
Aceei Characteristic corticocortical inverse-length scale 0.040, 0.065 (mm) 1
EPSP, IPSP Excitatory, inhibitory postsynaptic potential mV
Yei Neurotransmitter rate constant for EPSP, IPSP 300, 65 1s
Ge,i Peak amplitude of EPSP, IPSP 0.18, 0.37 mV
e [e.g., Eqs(2.2),(2.6)] Base of natural logarithms 2.7182. .
Ngaei Total number of locak— e,e—i synaptic connections 3034, 3034
NZ Total number of local —e,i—i synaptic connections 536, 536

ceei Total number of synaptic connections from distant
e populations 4000, 2000

n Mean axonal conduction speed 7000 mm s
Se(he),Si(hy) Sigmoid function mapping soma voltage to firing rate s
Sp, g Maximum value for sigmoid function 100, 100 S
O i Inflection-point voltage for sigmoid function —60, —60 mV
Je.i Sigmoid slope at inflexion point 0.28,0.14 (mv) 1t
4 Length of macrocolumn “cell” 1 mm

action potentials as described by the classical Hodgkinpropriatey,; or ;; (ee OF ¥;e) reversal-potential weighting
Huxley [20] equations. But the concept oftareshold volt-  function, then summed on the right of EQ.1b) [Eq. (2.139]
ageis retained, and this appears within the sigmoid transfeto give the deviation ofy; (h,) from its resting voltagehi’eSt
functions that map fronfaverage membrane voltagh to  (h'®). In the absence of any synaptic inpti, (he) will
(average firing rate S(he ;) [Eqgs. (2.5 below]. Effectively,  relax exponentially, with time constant (), to its resting
the sigmoids are “smoothed” step functions that describe thg oltage. By assumption, the soma voltage time constants
distribution of threshold voltages after averaging across th@nq . are taken as being much larger than the relaxation
10° neurons in the macrocolumn. times for the synaptic input events, allowing th&jit time
Each sigmoid nonlinearity enters the system equationgerivatives appearing on the left of Eq2.2) to be set to
scaled by a number representing the “strength” of the rel-zero. This separation of fagbostsynaptizand slow(soma
evantlocal (symbol 8) or distant(symbol ) synaptic con-  time scales is thediabatic approximatiorinvoked in our
nection. Thus, for examplehlffi is the number oe—i syn-  earlier homogeneous cortex modeling.
aptic connections local to the macrocolumn, and appears in The wave equation€.3) for ¢, and ¢; describe, respec-
the termNZ;S(he) on the right-hand side of E¢R.2b) for the tively, the propagation of flux activity from distant excitatory
lej excitatory-to-inhibitory synaptic input. To this locally cortical sources coupling into the excitatory and inhibitory
generated flux in Eq2.2b) is added the incoming—i flux  synaptic inputs of the macrocolumn mass. The symiigls
¢; originating from excitatory activity at distant macrocol- and ¢; are shorthand for.. and ¢.;, but the double-
umns[Eq. (2.3b], pluse—i subcortical activitype; flowing  subscript notation can be abbreviated safely since all long-
into the inhibitory neural population from excitatory sourcesrange cortical connections are exclusively from excitatory
in the subcortex. This subcortical activity is assumed to besourcegtherefore equations fap;. and ¢;; are not needed
stochastic with a mean spike rafpe;) and a random com- The two A, constants are the inverse-length connectivity
ponent proportional ta/{pe;) as defined in Eq(2.6b). scales for the corticocortical fibers. As in our previous work,
All synaptic inputs—localintracortica), distant(cortico- ~ we assume thep; are “fast” variables (compared with
cortical, and exogenougsubcortical—into the population- soma-voltage time scaleso set their time derivatives to
average inhibitory(excitatory neuron are scaled by the ap- zero (adiabatic assumption However, the approach used
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here(described in Sec. Il Bdoesnot assume spatial homo- The fourl",, terms in Egs(2.2) represent the stochastic com-
geneity, so retains the?/ x> space derivatives, and this limit ponents of the system, and these are assumed to enter via

we refer to as thepatioadiabaticapproximation. random noise in the foup;, subcortical inputs,
The set of stochastic differential equations for the nonho-
mogeneous 1D cortex now follow: T'1(X,1) = @eeV(Pee) GeveV £1(X 1), (2.69
oh To(X,) = aei(PeiyGeveVEEx(X,T), (2.6
7o = (WE ) e o)l el ) + e o), A0 = ei{Per) Gevee VL&
(2.1a T3(X,1) = @ieV(Pie) GivieVE (X, 1), (2.60
ah; T4(x,0) = ;i (pii) G yvieE £q(x,1), (2.60
Tiﬁ—tlz(hireSt_hi)+ Peilhi)lei(he) + ;i (h) 1 (hy),
2.1 where the four corresponding,, terms are zero-mean
' Gaussian-distributed s-function-correlated spatiotemporal
3 2 white-noise sources,
—+ 7| ledhe) =[NZSs(he) + et Geye
ot Ye| ledhe)=[ eeel o)t de <pee>] eYe <§m(X,t)>=0, (2.79
b, 229 (Em(X D E(X 1)) = Spd(x—X) S(E—1"), (27D
Jd 2 and thea;,, are dimensionless constants introduced to ensure
— ) =TNB. ) ) ik
ot *%e| lei(he) =[NeiSe(he) + i+ (pei) JGevee that the fluctuations are small. Tlieappearing in Eq92.6)
is the length of the macrocolumn “cell,” taken aé
+Ta(x0), (22D —1 mm, and ensures that the produft&(x,t) has units
5 ) s 12 independent of space. In numerical simulation, each
o th=TNBe . _ . infinite-variance white-noise sourcgx,t) is approximated
(at 7] lie(h) =[NESi(hi) +(pie) IGi vie+T5(x,1), using a computer-generated sequence of unit-variance
(2.20 Gaussian-distributed random numb&ém,n),
d 2 R(m,n) _
Y i (h) =[NES;(h) +(pii) 1G; vie+ T4(x,1), E(x,t)— [units of (mm) Y%~ 2] (2.8
(2.29 VAXAt
at discrete position and time coordinates mAXx, t=nAt,
. \2 — 2 — R where Ax is the grid spacindin mm) and At is the time
i tuhee] —v P be=vAedNee 7r TV Aee|Se(he), increment(in s). These scaled random numbers have vari-
(2.33 ance o= (AxAt) "1, with o= in the continuous limit
’ Ax—0, At—0.
5 ) 52 ) The effect of GABAergic anesthetic is included in the
IS B S U S N T 7 T model as a modulation of the, inhibitory neurotransmitter
at+vAe'> V2 $i=vAeiNei &t+vAe')SE(hE)’ rate constant, |
(2.3b
— Yi
where the foury;, are normalized weighting functions pro- LORE R P 2.9
portional to the displacement of thg soma voltage from
the ionic reversal potentiddjfe", wherehgaga IS @ dimensionless scale factor assumed to be
proportional to the GABA anesthetic concentration. Thus an
h'®'—h, increase iNn\gaga reducesthe IPSP rate constant arid-
~k=J—. (2.4 creaseghe IPSP duration.
J rev res
|hj —hy 1 For a complete definition of all other constants appearing

) ] ) in the foregoing equations, see Table I.
The S.(h,),S;(h;) are sigmoidal transfer functions that map

the soma voltagéin mV) to average output spike rate

B. Spatioadiabatic approximation
pulses per second patioadiabatic approximati

In common with our earlier papers, we retain the adiabatic

Sp or “slow-membrane” approximation in which thk, pj,
Se(he) =77 XA —0u(ho— 0]’ (258 and ¢, synaptic inputs are assumed to be “fast” processes
GelNe™ that equilibrate on time scales much shorter than the time
max scales forh, and h;. However, in contrast to our earlier
Si(h)= S _ (2.5  work, we will now explicitly allow (weakl spatial variation
1+exgd —gi(hi—6)] in the system by retaining th&/ dx? terms in Eqs(2.3). We
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refer to this treatment as the spatioadiabatic approximation, P ds.| #%h
and its details are given in the Appendix, where we find that —~ fegh. — (2.143
the system equations become X eleq X
dh 2 2
e Fahe h) T, (2.108 Th o I%| The 2.148
ox2  “dhe|  gx2
a—m=F2(he,hi)+Fi(x,t), (2.10p  This approximation will be utilized in the linearized spatio-
ot adiabatic cortex developed in the following section.
where theF,F, aredrift terms defined by ) ) ) ]
C. Linearized stochastic equations
1 Our principal assumption is that the cortex always oper-
_ t a B
Fa(he,hi)= Te{ (he™=he) + Yred(he)| (Nget Nee)Se(he) ates in a state close to its homogeneous equilibrium defined
by settingdhe;/dt=0 in Eq. (2.10 and #*¢e;/dx*=0 in
1 P, Eq. (2.11). The distribution of equilibrium states available to
— +(Pee) | Ge€! Yo+ Napsatie(he) the cortex is depicted in Fig. 1. The inverted-S form is char-
Age 9X acteristic of a system capable of making first-or@er., dis-
continuou$ jumps between stable branches at the “knee”
XINES (h)+(pie) 1Giel ¥i |, (2.113  turning points labeled\; and Q;. Cortical phase-transition
¢ properties, such as the “biphasic” power surge at induction
and emergence, were discussediih
1 . 5 Suppose there is a small voltage deviation
— res a ~ ~
Fa(he,h)= - (hi™=hi)+ ¢ei(hi) | (Ngi+ Nej) Se(he) (he(x,t),hi(x,t)) away from the homogeneous steady-state
coordinate hg ,h?), and that this deviation is both time and
1 3o space dependent. Then the excitatory and inhibitory soma
A_2 Fﬂpei) Ge€l vet+ Naagatii(hy) voltages at positiox and timet can be written
i OX
el
he(x,t)=h3+hg(x,t), (2.153
X[NES (h) +(pii)1Giel yi | , (2.11b -
hi(x,t)=h; +h;(x,t). (2.15p
and thel’,,I'; arediffusive noiseerms, Substituting Eq.(2.15 into Eq. (2.10 and linearizing
T (X,1) = ooy (X, 1) + bigéa(X.1), (2.123 about the homogeneous stationary state gives
2
i) =beiéa(x,)+bidy(xt), (2120 It kg
- e -
. _ d | he(X,t) he(X,t)
whoseb;, coefficients depend on the GABA anesthetic effect =il = ) .
Aeaga and the b ,h;) soma-voltage coordinate: hi(x,t) d hi(x,t)
Jort Kio 2 J22
Dee= e Ne) a’ee\/<pee>Gee\/?/7eTev (2.139
I'o(X,1)
bie=Ncasatie(Ne) die\(Pie) GieVl/ yi7e, (2.13D Ti(x,1) eq' (2.18

bei= tei(h) aeiV(peiGeeVl/ veri,  (2.130
bi=Ncasati () ai \(pi)Gievelyir. (2.130

We note that, apart from thé&# ¢, /9x> 1D Laplacian terms

where thex,,«; are Fick's-law spatial diffusion coefficients
(units mnt/s),

 hed N)SIINEGee

in Egs. (2.11), these spatioadiabatic equatidi2s10—(2.12) e A2 yeTe ' (2173
are identical in form to the homogeneous adiabatic set listed

in our previous papefsee Egs(2.9—(2.10 in [2]]. In the ei(h®) SN G e

Appendix we show that thé, and ¢; long-range corticocor- K= eLioTe elrer (2.17H
tical inputs can each be expressed as a series expangign in Agiyeri

about the homogeneous steady stpiee Eqgs.(Alla)—

(Allb)]. This leads to the following approximation for the and thel,,, are the four Jacobian elements for the homoge-
&zqﬁeJ 19x? terms, valid for small perturbations about the ho- neous systerfi.e., theF,F, drifts of Eq.(2.11) have their
mogeneous steady state: respectived?/ gx> terms set to zefp
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JF,
J1=— :{_ 1+ ‘p(ele)[(Nge"_ Neﬁp)se(hg) + <pee>]Gee/ Yet lpee(hg)[(Nge"_ Nge) S((el)]Gee/ Ye
eleq
D NBS (O 1
T Ngasatic [NieSi(hj )+<pie>]GiE/7i}T_1 (2.183
e
JF,
Jio=—| =Ncnsathie(hONESDG el yi7e, (2.180
i | eq
JF
3= = e h) (NG +NE)SIG el yer (2.180
dhe eq
JF,
Joi=——| ={— 1+ yDL(NE+NE)So(hO) +(Pei)1Gee! et Nanpah{INES (RY) +(pii ) 1Giel ;
i | eq
1
+7\GABA¢H(hiO)Niligsz)Gie/Yi};1 (2.180
|

with partial derivatives of the weighting and sigmoid func- - too
tions also evaluated at equilibrium, hi(g,t)= f_m e '¥hi(x,)dx, (2.20h
AP -1 ~ Hoo
e'=Jh, = e P (2.193 &)= Le PE(x,t)dx. (2200
j e

These relations define mappings from the linear posiitm

@) ;i -1 the wave numben. The corresponding definitions for the
T eS|’ (2199 inverseq—x transforms are
] 1
N 1 [+
and he(Xat): EJ7 equhe(qvt)dqv (2213
S, IS; R Hoo
sl= a—hz , SP= ah (2.199 hixt)=5—| eh(anda, (2.21b
€q eq —o0
1 [+
D. Infinite brain Ex,t)= fo e'%%¢(q,t)da. (2.210
We can picture the adult human cerebral cortex as having
a “length” (in a 1D modeling sengeof ~40 cm, whereas Fourier transforming the Langevin equatio(’s16), we

the extent of a single macrocolumn isl mm. Therefore, obtain
on the macrocolumn scale, it is not too unreasonable to think

of the cortex as having an “infinite” extent. This idealization ¢ | he(q,t) Ji—keq? Il he(a,b) fe(q,t)
simplifies the Fourier transform mathematics to follow, and gt Folat = Jor— 0% ool Fr(at + - )
allows us to ignore completely the boundary conditions that i(a,t) 21 M 22| hi(q,t) I'i(q,t) eq

would otherwise need to be imposed on a rod of 1D macro- (2.22
column “mass” whose length was finite. where
For a continuous, infinite, 1D neural system we define the

spatial Fourier transforms qf tHe, excitatory andﬂli |nh|p|— fe(q,t) _ beeEl(Q-t)Jr bieés(q,t), (2.233
tory soma-voltage fluctuations and of the white-noise
sources, respectively, as the tilde varialigsh; , ¢: fi(q,t):begz(q,t)‘*'bnz4(q,t), (2.23h
Re(g,t) = f+me—iqxﬁ (x,t)dx (2.203 and where the Fourier transformed white-noise terms satisfy
e —o e the correlation property
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(En(aD)EN(Q" 1)) =276mnd(q+q") S(t—1t'). N2+ (It Jo— k0N + 311020~ J10p
2.2
(2.24 + (K3 d 12— Kedan)G2=0. 3.1

In order to make Eq2.22 amenable to analysis via stan-
dard stochastic calculus techniques, we transform it into
two-variable Ornstein-UhlenbedkOU) system of equations.

é)n making the identifications

This is done in two steps. First, we define a diagonal22 1= It Jzz, (329
diffusion matrixD, I (3.2
D 0
= ! , (2.25 C3= KiJ1o— Ked2o, (3.29
0 D,

we can rewrite Eq(3.1) as
whose elements are obtained by using the 24 corre-

lation identity to compute the expectation values of the A2+ (C1— keQ?)N +(Co+C30%) =0 (3.3

I'e,I'; noise terms, givin . . .
e gving with eigenvalue solutions

(Fe(a,HIe(q",t"))=27D,8(q+q") (t—t ),(2 264 M1 Ao=—3(c1— ke0?) + $\(C1— keq?)?— 4(cr+C307).
' (3.9
(fi(q,t)fi(q’,t’)>= 27D,56(q+q’)o(t—t'), From previous analysis of ttee=0 homogeneous system,

(2.26b  we know that for allstable equilibrium pointsc; <0 and
c,>0. Further, provided the soma voltage never exceeds the

where excitatory reversal potentidhy'=+45 mV, then theye,
) 5 weighting function of Eq(2.4) will always be positive, and
D1=(bee)egt (Pie)eq (2278 hence, by Eq(2.179, k,>0 also. We find that for the de-

fault model values listed in Table ;>0. This follows

D= (bei) ot (bii) 2g (2.27H  pecause & <k, (i.e., the long-range corticocorticaki

diffusivity is weakerthan the long-range-e diffusivity),

and the bjx)eq are the equilibrium values of the noise coef- while bothJ;, andJ,, are negative withd;,|<|J,,. Never-
ficients defined earlier in Eq2.13. . o theless, the possibility exists fog to become negative if, for

The second step is to redefine the drift matrix in Eq.some collection of communicating macrocolumns, e

(2.22 so that it carries an explicit negative sidrere we are  iffysivity dominates. This will be the case if
following the Chaturvedet al. [21] sign conventioh The

OU system resulting from these two steps then reads |35
Ki>|—Ke:03<O. (3.5
~ ~ ~ J1g)
ALECRI R LC IO "
It Ri(q,t) B hi(q,t) Z(q.0) ' Tgking the known signs af; and, into account, we can
rewrite Eq.(3.4) as
where N1 o=3(]Co| + ke0?) £ 5 V([ €] + ke P~ 4(Cp+ C3Q(23) .6)
—Jutked? —J
A(g)= e 5 - (2.29 The homogeneous steady state becomnestablewhen
—JdatKid® —Jz the real part of either eigenvalue becomes negative. If the

real part of either eigenvalue goes to zero, then the homoge-

$heous steady state imarginally stable and there are two

(2.18. distinct possibilities to considefa) If the eigenvalues are
complex and Re\; ,\,)— 07", then there is a so-calldthrd-

ll. STABILITY OF SPATIOADIABATIC SYSTEM mode instabilityleading totemporal oscillations(b) If both
eigenvalues are real and positive with the smaller eigenvalue
N\,—07, then there is &oft-mode instabilitymeaning that

The steady states of the spatioadiabatic cortex model ahe system will exhibispatial oscillations We now examine
Eq.(2.10 can be stable only if the voltage fluctuations abouteach possibility in turn.
the homogeneous steady state remain damped. Because of(a) When the discriminant of Eq(3.6) is negative, the

the leading minus sign in E¢2.28), system stability requires eigenvalues will form a complex conjugate pair with real
that both eigenvalues of th&(q) drift matrix havepositive  part

real parts. The eigenvaluas ,\, of matrix A are given by
the solutions of the following quadratic equationNn Re(A1,\p)=3(|Cq|+ keG?)

and thel,,, Jacobian elements are as defined earlier in Eq

A. Eigenvalue analysis
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which is always positive. Therefore there is no possibility ofterms I’y ;(x,t) set to zero. We approximated the “infinite
a hard-mode instability, with its attendant temporal oscilla-brain” of Sec. Il D by a~100-cm length of “cortical rod”
tions, developing in the present spatioadiabatic model of then which periodic boundary conditions were impoged.,

1D cortex. the rod effectively is deformed into a 100-cm closed lpop
(b) The eigenvalues will be real when the discriminant is  In order to increase the strength of the diffusivity rela-
positive, tive to thee-e diffusivity (thereby allowing the; parameter
to go negativiewe introduce a dimensionless factior 1 to
(Jc1|+ ke?)?>4(cy+ c307). 3.7

scale the inverse-length connectivity constafits and A ;

They will be real and positive if, in addition t3.7), we " OPPosite directions:

require that the smaller eigenvalig be positive, wheré. , Al =fA A=A /f 3.11)
iS given by, ee eer el el 1
and define a dendritic “wiring” ratio

No=3(|ce|+ ke0?) — 3V([Co| + ke0?) 2 —4(Co+ quz)(-

3.9 A
y o R=—. (3.12
We see that,—0" along the positive real axis with Al
remaining real and positive {B.7) is satisfied. In particular,
at the point where.,=0 we have From Egs.(2.17), Ke'iocllAgeyei, so the respective and i

) diffusivities will scale inversely and directly &2:
Cz+C3q =0. (39)

: = kelf?, k] =12k 31
As outlined above, the default model hag>0 andc, K™ Ke A (313
>0, so the(3.9 condition cannot be satisfied for any real Thys an increase ifi factor simultaneously strengthems
wave vectorg. However, if the corticocortical connectivity \yhjle weakeningx,. Setting f=1 gives the unadjusted
alters in such a way that the long-range diffusivity i  model diffusivity values and default wiring rat@=0.615;
dominates the-e diffusivity «. and condition3.5 becomes -1 58 R=1.536) is sufficient to cause to just go nega-
true, thencs changes sign, and the system can exhibit sUStiye in the immediate vicinity of thé\; conscious— uncon-
tained spatially periodic voltage perturbations about the hogcigys transition point atgaga=1.31 (see Fig. 1; and set-

mogeneous steady state. From H8.9), this marginally  ting f=5.0 causes;, to be negative for the entire range of
stable configuration will be characterized by wave veaqtar (h?,h?) equilibrium values plotted in Fig. 1
N 1

c Shown in Fig. 2a) is the spatioadiabatic eigenvalue dis-
9= \/ == (soft-mode instability: spatial oscillations tribution for A\gaga=1.25 on the top branch of Fig. 1 for an
|cs assigned connectivity scale factbre1.80, wiring ratioR
(3.10 =1.994. The zero crossing occurs at wave number
=0.5205 cm '}, predicting a marginally stable eigenmode of

We note that from Eq(3.8) any spatial mode with wave - :
numberg< g, will render a positive eigenvalue, so the modeWa\’(':'h:mgth Zr/qs=12.1 cm. To demonstrate that this mode

will decay exponentially with time back to the homogeneous'S 109 lived and that slower spatial modes die away, we ran
steady state. a numerical simulation of the deterministic part of the linear-

In contrast, ifqg>qs, the eigenvalue will be negative, so ized spatioadiabatic system defined' iF‘.E(@l@- We gave
the amplitude of the eigenmode will grow exponentially. the 1D systenithe cortical “rod”) an initial excitatory volt-

Therefore the homogeneous steady state cannot support sjEfe Perturbation away from homogeneous steady state de-
tial modes that oscillate faster than the critigalwave vec- ined by

tor, and the presence of such modes will force the cortex to 8 (—1)k+1

seek an alternative resting state. Although the form and lo- Ao(x,t=0)= > ———sin(kqx/8) (3.143
cation of this new state cannot be predicted from linearized k=1 k

theory, by running numerical simulations of the nonlinear- S

ized cortical equations we can gain some insights into thé@nd with inhibitory voltage left unperturbed,

nature and structure of the far-from-equilibrium steady state. -

Nonlinearized model runs are described later in Sec. IV C. hi(x,t=0)=0. (3.14b

First, though, we describe linearized simulation runs de-

signed to verify the existence of marginally stable steadylne summatiori3.143 for h, represents the first eight terms
states. of a harmonic expansion of a sawtooth wave f¢f@2], see

p. 132, Eq.(23.9] in which the eighth and final harmonic is
the long-lived q5 soft mode. The soma voltages were
sampled alN= 100 equally spaced grid points along the cor-
To test the theoretical prediction of sustained spatial OStijcal rod, with gnd Spacing&x:0_966 cm chosen to ensure
cillations about the homogeneous steady state, we ran a s@rat thek=1 sawtooth fundamental is exactly periodic on
ries of nonstochastic numerical simulations of the linearizegne adjusted rod length= NAx. (Failure to ensure an exact
equations of motioii2.16) for ho(x,t) andh;(x,t) with noise  spatial fit results in a step discontinuity at the “join” of the

B. Simulation tests for soft-mode instability
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(a) Eigenvalue vs Wave Number
4000 T T T T T T T T T FIG. 2. (a) Eigenvalues and
(b),(c0 q=0.5205cm?! eigen-
mode behavior for f=1.8 at
4 Ncasa=1.25 on the top branch of
Fig. 1. (a) plots the eigenvalue vs
- wave number distribution. Eigen-
value pair is complex with posi-

3000} Top branch
Agaga = 1.25
f=18 R =199

ny
o
[=]
o

Eigenvalue [s~1]
>
S

0 & tive real part for G<q
1000 . | | | | . . . . <0.101 cm?, then becomes
0 01 02 03 04 05 06 07 08 09 1 purely real for g>0.101 cm ™.

The smaller eigenvalue crosses
the wave number axis aj=qg
=0.5205 cm . For g<gqs, both
eigenvalues are positiveor have
positive real parts so their eigen-
modes will decay with time. For
g>qs the smaller eigenvalue is
negative and therefore the high-
T spatial-frequency eigenmodes will
be unstable.(b) Initial voltage
. perturbation (in mV) at 100
points along the cortical “rod:”

hi(x,00=0, he(x,00=3¢_k™*

Wave Number g [em™1]

(b) Initial Spatial Perturbation
2

Soma Voltage [mV]
o

_2 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 (- 1) 1sin(kax/8) (i.e., a band-
. . limited sawtooth. (c) Near-
02 (¢) Near-relaxed Spatial Distribution relaxed voltage state of the corti-
- T T T T T T T T T T

cal rod after 8000 iterationdime
step At=4 us) of the coupled
nonstochastic equations of motion
for he(x,t) andh;(x,t). The low-
frequency eigenmodes ¢f) have
decayed away, leaving only

0.1

Soma Voltage [mV]
o

01 - the marginally stablegs eigen-
mode (of wavelength 2r/qs
0.2 L 1 L - L - L L L =12.07 cm) carried in bothy(x)
0 10 20 30 40 50 60 70 80 90 r
andh;(x).

Rod coordinate [cm]

two ends of the loop; this discontinuity generates high-and we assume that the fluctuation covariance depends only

frequency wave numbeis>q, and these cause the simula- on the separatiofx—x’| of the sensing electrodeéand not

tion to explode exponentially at the jojn. on their absolute positionsandx’) so that the two-variable
The initial voltage configuration of the rod is shown in spatial covariancés(x,x’) can be collapsed to an explicit

Fig. 2(b). Panel(c) illustrates the nearly relaxed voltage con- dependence on a single variable, thmsigned electrode

figuration after 8000 FTCSforward-time, centered-space separation,

iterations: the low-frequency modes have substantially de-

cayed, leaving only the long-lived mode evident in the G(x,x")=G(|x—x']). 4.2
in-phase voltage variations in both the excitatory and inhibi-
tory rod voltages. We will calculate the spatial covarian@(x,x’) by first de-

termining the covariance in Fourier space,

IV. SPATIAL DISTRIBUTIONS FOR EEG ~ ~ ~
: . - G(9,9")=(he(a)he(q")), 4.3
A. Spatial covariance ofh,
To quantify the degree to which the voltage fluctuations atand then Fourier inverting to givé(x,x’),
separated points andx’ are correlated, we define a steady-

state spatial covariand@®(x,x’), 1 b
. . G(x,x')= J J e'™e4x'G(q,q")dq dq
G(x,x")=lim{he(x,t)he(X’ 1)), 4.1 (27) - "
t—o0 4.4
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to 1)~
- elq‘X—X |G(q)dq'

:277 .

(4.9

whereG(q) is defined below in Eqg4.7) and (4.9).

In Sec. Il C we transformed the Langevin cortical equa-
tions into the two-variable Ornstein-Uhlenbeck system of

Eqg. (2.28. We may now apply the stochastic methods de
scribed by Chaturvedit al. [21] and Gardinef23] to com-

pute the 2 steady-state covariance matfx

- ~ [(Reta,Re(a’, ) <ﬁe<q,t>ﬁi<q',t>>]
G(g,9")=lim| _ ~ .y ~
t—=| (hi(a,D)he(a’,t))  (hi(a,0)hi(q’,1))
(4.63
=2mw3(q+9")G(q), (4.6b
where
- D [A—tr(A)IID[A—tr(A)I]"
G(a)=5 A (4.7)

2 t(A)del(A)

Here,A=A(q) is theg-space drift matrix of Eq(2.29, and
D is the diffusion matrix of Eq(2.25. The operators tr()
and det() denote the matrixrace and determinantrespec-
tively.

Our primary interest lies with th&,; element of theG

matrix, since this element gives the prediction for the Fourier

space covariance for the-e fluctuations. Expanding Eq.
(4.7), we obtain

Ve D, N AZD;+ALD,
D 2(A11+A2)  2(A1t A (A1A2—AAL)
(4.8

[G(

PHYSICAL REVIEW E 68, 021902 (2003

diffusivity.
Taking signs into account, we can rewrite £4.9) as

D1/Ke+ C4
2(q2+ |C1/Ke|)

Cq

- 2(92=|cy/cy))
(4.11

[G(Q)]n:

where, in the second denominator, the ™ operator follows
the sign ofcs (i.e., “+"if c3>0; “—"if c3<0).

We can calculate the inverse Fourier transforms of Eq.
(4.11) by way of the following Fourier identities:

+ o0
- iqr _ _
27) & rar 2400l 412
[T 2 s, @19
2m) . ° =—osin(B|r|). _
2 o qZ_BZ ZB

Thus, depending on the sign of, the form of thee-e spa-
tial covariance is either the difference tffo exponential
decayswhose respective &/decay lengths arke; andL,,

D1/K6+

Ca
2 L, exp(—|x—x'|/Ly)

G(Ix=x"])=

c
— ZALz exp —|[x—x'|/L,), ¢c3>0,

(4.149

or the sum of arlL-length exponential decay plus a sine-
wave variationof wavelength 2rL,,

where all quantities are understood to be evaluated at equi-

librium. Substituting Eq.(2.29 and applying some partial-
fraction algebra allows us to rewrite E@.8) as

C3Cy
2(c30?+¢y)

D1+ KeC4
2( Keqz_ C1)

[G(a)]= (4.9

wherec,,c,,c; were defined in Eq93.2), andc, is given
by

2 2
c _J1Do+J2Dy
4 CiC3t KeCy

(4.10

Equation(4.9) is now amenable to Fourier inversion from

g space back tx space, but the precise form of the result

will depend on the relative signs for the coefficient pajr
andc; [first denominator of Eq4.9)]; and on the coefficient
pair c; andc, (second denominatbrFor the default model
values listed in Table I, we find,<0. As pointed out in Sec.
[l A, we havek,>0, c;<0, c,>0, andc3>0, but with the
possibility thatc; could change sign if the long-rangei
diffusivity is allowed to dominate the long-range-e

D;/ket+cC
G(|x—x’|)=%Llexp(ﬂx—x’le)
Cq .
+ZLzsm(|x—x’|/L2), c3<0,
(4.19
where the quantities
L]_E\ |Kelcl|, (416}
LZE \/|C3/Cz| (417}

define the characteristic lengtteither a correlation length or
a scaled wavelengthor the spatial covariance patterns.

B. Correlation-length predictions
Figure 3 plots the Eq94.16) and (4.17) predictions for

the L, andL, correlation lengths as the anesthetic effect is
varied. Panela) shows that the domain over which EEG
fluctuations are strongly correlated is expectednitcrease

significantly on approach tg the point of induction of un-
consciousnesflabeledA; on the active branch of Fig.)1
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(a) R =0.62 (default) (b) R=1.53
7 3
E I E
6} Ly 58 ] -
— — L . FIG..S. Variation ofL ; anszl
g correlation lengths as a function
= 2 1 ] of anesthetic effeck gaga for the
D spatioadiabatic 1D cortex. Four
o 15 0, A3 | representative values for the long-
—C' range corticocortical wiring ratio
o R=Ace/Agi are shown; largeR
© 1 values correspond to a relatively
g more effectiveinhibitory connec-
8 05 Yo, 1 tivity. PointsA; andA;, lie on the
LY. Al‘:/——\\ active, high-firing branch, and
o — Q3 are on the quiescent, low-
2 25 0 05 1 15 2 25 firing branch. In all cases, fluctua-
tions become much more corre-
(c) R=157 (d) R=1.78 lated in space on approach to
3 3 induction (1) of unconsciousness,
E I and again for the return path on
25l 25 | approach to emergendé&) back
=3 E into consciousness. The cusp in
S, ) ] 5 the L, graphs[at )\GABA%_l.O in
£ . (c), and at Agaga=~0.6 in (d)]
2 i marks the point at which the,
Q 15} 9 As 1.5 0 As 1 parameter of E((3.20 goes nega-
5 ’ ! tive; for points to the right of the
=) 1 | cusp,L, becomes an inverse wave
© number for a sinusoidal compo-
5 | | nent, of wavelength 2L,
3 05 v 05 ¥ 10, =27lqs, in the predicted spatial
" 4L 1 " él’ E— covariance pattern.
0 0.5 1 15 2 25 0 0.5 1 15 2 25
Anesthetic Effect, A;aga Anesthetic Effect, A;aga

and again on approach t, the point of emergence from section, the linearized system becomes unstable incthe
unconsciousnes); on the quiescent branch of Fig.. This <0 regime when driven by white noise.
increase in correlation length for the 1D spatioadiabatic cor-
tex is consistent with the increase in correlation tifmetical C. Stochastic simulations of spatioadiabatic 1D cortex
slowing down reported in[3] for a homogeneous cortex
near the anesthetodynamic transition.

We note, however, that there is a marked difference in the [N order to test thecs>0 linearized spatial covariance
active-branch behaviors df, andL, whenR, the relative Predictions of Eq(4.14, we ran a series of stochastic simu-
strength of the long-range inhibitory connectivity, is in- lations of thenonlinearizedspatioadiabatic equation set de-

) ) . fined by Eqgs.(2.1) and (Al1),(A2). lllustrated in Fig. 4 are
creased. In Fig. (), wheread (th'.d.( gray.curvelncreases representative comparisons between the linearized theory
strongly on approach to the transition poAy, we see that

: and nonlinearized simulation for six different locatidtisree
L (thin dark curve turns over and approaches zero atdie o, the active branch and three on the quiescent bjasiah

transition. In pane(c), the turnover has become a cusp nearsep, from the Fig. 1 trajectory of homogeneous steady states.
Aeaea=1.0, followed by a renewed increasing trend. The For each simulation run, the cortex was represented by
cusp marks the point at which parametgrbecomes zero N=100 equally spaced points along a rod with joined ends.
[recall Eq.(4.17): L,=+/|c3/c,|], and the increasing trend Each grid point was driven by the four independent white-
corresponds t@; going increasingly negative; therefore the noise sources defined in Eq2.6) and (2.8), with the four
interpretation oL, postcusp changes from being @Hecay noise-scale factors set tg,,=0.01. The rod was allowed to
correlation length(precusp to being an indication that the evolve from its homogeneous steady state for 1000 time
covariance now has a spatially periodic component whoseteps, therGg,(|x—x'|), the spatial covariance of thie,
wavelength 2rL, increases on approach to the first-orderexcitatory-voltage fluctuations, was calculated using the
transition atA;. Sadly, this wavelength prediction is of du- MATLAB XCORR cross-correlation function, callefl.,, in
bious utility, since, as will become apparent in the following the expression

1. Case ¢>0: Strong e—e diffusivity
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(@) A (c) As
— 100
S Agaga = 0-31 300125 Agapa=1-31
E
© 200
o
= 100
=
|
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FIG. 4. Comparison of Eq4.14) covariance prediction&hick gray curvesand nonlinear stochastic simulation resulitack dot$ at
discrete points along the cortical rod. The top three paf@gl¢b), and(c) trace the induction trajector; — A,— Az along the active branch
of Fig. 1; the bottom three pangld), (e), and(f) trace the emergence trajectdy« Q,« Q5 along the quiescent branch. For all six panels,
the k,; diffusivities were maintained at their default valueee Fig. 8a): f=1, R=0.62], soc;>0 everywhere. For each panel, ten
numerical simulations were run, the ten-run average covariance was calculated at each cortical position, and joined with a thin black pen. The
spatial width of the covariance curve increases strongly on approach to ind(gtien (c) (note the change ir-axis scal¢ and also on
approach to emergen¢d) — (f). For all runs, the integration time step was seA&t0.01 ms, but the spatial resolutidx and rod length
L=NAx were adjusted to ensure numerical stability and accuracyAkhepatial resolutiongin cm) were(a) 0.05,(b) 0.2,(c) 2, (d) 1, (e)
0.2, and(f) 0.1.

frcor (he) nificant because it may provide clinicians with an early

Gsim([x—x'|)= N (4.189  warning that a patient’s state of consciousness is about to
change.
whereh, is the 100-element vector d¢f, values along the 2. Case §<0: Strong e—i diffusivity
rod. The average of ten such runs was calculétieid black We then turned our attention to thg<0 regime. We first

line) and compared with the theoretical predicti@iick  ran numerical simulations of the linearized spatioadiabatic

gray line. Despite the large run-to-run variation in covari- equations, attempting to generate the spatially periodic cova-

ance plots within a given pangparticularly evident at the riance pattern predicted by E¢.15 and characterized by

near-transition point#\; (induction and Q; (emergencd, the soft-mode wave vectoy, defined in Eq.(3.10—but

the ten-run averages of Fig. 4 generally show excellentvithout success. It soon became apparent that the inhibition-

agreement with theory. We also ran stochastic simulations adominance conditiort;<<0 is also the condition for system

the linearized(Langevin equations(2.16), and, unsurpris- instability when driven by white noise. Spatial white noise

ingly, these simulations also confirmed excellent agreementontainsall wave numbers &q<; any wave numbers

with the predicted fluctuation covariance curessults not  >q. will have eigenmodes that grow exponentially, and

shown. therefore the homogeneous stationary state is no longer
Both sets of simulations confirm the important predictionstable. See the discussion following E§.10.

that the EEG fluctuations should become increasingly corre- Since the homogeneous state is unstablecfar0, the

lated over space near the transition points. This result is sigsortex must move to a new state of lower energy. But where
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is this alternative state? And what is its nature? Because linrlandom, depending delicately on the noise sequence at the
earized theory cannot answer these questions, we ran a ser@sset of pattern formation. But once the rod has formed a
of stochastic simulations of the nonlinearized spatioadiabatidissipative pattern, noise loses its dominant role.
equationg2.1) and(Al),(A2).

We altered the Eq(3.12 long-range “wiring” ratio R in
order to make the—i connectivity relatively stronger than
the e—e connectivity, thereby causingg to become nega- The controlled induction of anesthetic unconsciousness is
tive. We found that the nonlinear simulation behaviors weresudden, dramatic, and—of vital importance—reversible. The
dramatically different for this regime: sooner or later the sto-anesthetodynamic model of cortical function we have been
chastic fluctuations would become completely swamped byleveloping suggests that this change of brain state can be
the formation of strongly growing diffusive “fingers” that viewed—at least at a gross electrical level—as a drug-
would grow toward, and then overshoot, the second homoinduced first-order phase transition as populations of cooper-
geneous stable state. For certain settings ©fg, and R, ating neurons switch from an activ&onscious”) state to a
these diffusion finger-pattern inhomogeneities would persisguiescent{“unconscious”) state.
indefinitely. We found that the easiest way of stimulating Encouragingly, there is an accumulating body of clinical
pattern formation is to start the cortical rod in its homoge-support for the major predictions of the phase-transition
neous configuration on the unstable midbranch. Figure Bheory:(a) EEG power surge at the induction and emergence
shows a typicalc;<O nonlinearized simulation run for transition points[7,24]; (b) spectral redistribution toward
Neaga=1.25, R=2.98, and Fig. 6 illustrates the range of lower frequencies at the transition, resulting in a reduction in
diffusive patterns that can evolve. Although each finger has &EG spectral entrop|8]; (c) nonlinear reduction in oxygen
very similar upside-down catenarysuspended-chaifiike = consumption(measured via changes in cerebral metabolic
curvature, the location on the rod at which the fingers form igate as anesthetic concentration is increag®kl (d) hyster-

V. DISCUSSION
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FIG. 6. Selection of excitatory
voltage patterns formed spontane-
ously on the spatioadiabatic 1D
cortical rod Agaga=1.25, R
=2.98. Simulation settings are
identical to those used for Fig. 5.
In each case, the rod was started at
its spatially homogeneous mid-
branch value (dotted horizontal
line), then driven by temporal and
spatial white noise. These are the
stationary dissipative patterns that
have stabilized after 5000 itera-
tions. (Dashed horizontal lines
show the upper- and lower-branch
homogeneous stationary stajes.

Excitatory Soma Voltage [mV]

Rod coordinate [cm]

esis separation, with respect to drug concentration, betweesntire gray-matter cerebral cortex. This is a “single-
the point of loss of consciousness and the point of recoverglectrode” theory in the sense that the overall average state
of consciousned¥,25|: the patient wakes up atlawerlevel  of the (presumed homogenegusortex can, in principle, be
of drug concentration than that required to put her to sleepdetermined with a single electrode pair: the reference wire
However, we need to point out that our interpretation of thelocated in the extracellular fluittefining the zero of poten-
hysteresis separation between LOC and R@@responding tial), and the sensing wire located in the “population aver-
to pointsA; and Q; on Fig. )—as a confirmation of our age” excitatory neuron. Because there is no notion of space
phase-transition theory—is probably controversial. The pharin a spatially homogeneous model, the precise location of the
macokinetic modelers in the anesthetics community wouldensing electrode is, by assumption, unimportant. We note
argue that the drug-effect hysteresis is an artifact caused that existing commercial monitors for depth of anesthesia
the fact that the drugoncentrationis (usually) measured in  (e.g., Aspect Systems A-2000, which measures the EEG
the blood, while the drug’'effectoccurs some time later at bispectral index; Datex-Ohmeda Entropy Module, which
the brain, and that this displacement error causes an apparaneasures EEG spectral entrp@re single-channelevices
hysteresis. Our model suggests that even after allowance faonsisting of an electrode pair giving a differential scalp
displacement error, a real hysteresis should remain, and thabltage, plus a third wire for the ground attachmétite
attempts to cancel the hysteresis loop by adjusting pharmdtrue” ground reference—the extracellular fluid potential—
cokinetic parameters are, in fact, an overcorrection. is, of course, unavailable to a scalp-based mohitbhus,

Our three earlier papefd&—3] assumed a steady-stat®-  both in theory and in clinical practice, a “single-electrode”
mogeneougortex in which the anesthetic-driven properties picture provides a reasonable foundation for understanding
of a single macrocolumn could be taken as a proxy for thehe electrical properties of general anesthesia.
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The present paper represents a first step toward ean simulations of the nonlinear stochastic equations and
multiple-electrodeheory. We accommodate the possibility of found that, for particular values of the anesthetic effect
spatial inhomogeneity in electrical activity by modeling the Agapa @nd wiring ratioR, the cortical rod would spontane-
cerebral cortex as an infinite 1D rod of macrocolumnously fall away from the homogeneous state, evolving into a
“mass:” by applying a spatioadiabatic approximation, the stable, pseudoperiodic pattern of large-amplitude voltage ex-
cortical rod can develop spatial variations about the homocursions. It is interesting to note that in 1980 Ermentrout and
geneous steady state. We linearized the spatioadiabatic sygowan[26] identified the possibility of stationary periodic
tem equations about the homogeneous state, investigatwaﬂéﬂ patterns in their idealized 1D neural net models. They
their stability, and discovered the possibility of long-lived remarked that strong inhibitory influences are necessary in
spatial modeg“soft-mode instability”) when the long-range order to generate stable spatial structures; their finding is
(corticocortica) e—e diffusivity «, was dominated by the consistent with the present work, since, in our system, the
long-rangee—i diffusivity «; such that parameter; be- c3<0 condition arises when the long-range-i inhibitory
comes negativesee Eq(3.5)]. We verified the existence and diffusivity «; dominates the— e excitatory diffusivity « .
longevity of theqs soft mode via numerical simulation on a ~ The biological significance of dissipative structures with
noise-free~100-cm rod with periodic boundary conditions. respect to anesthesia is unclear. One might be tempted to

We computed the theoretical two-electrode covariance fopuggest that the existence of these persistent pseudoperiodic
the EEG fluctuationsG(|x—x’|), and found two different ~Spatial structures shows that, at a given point in time, spa-
regimes of behavior, depending on the signcef For cs tially separated cortical regions can appear to participate in
>0 (which includes the default model settingthe covari- the same neural process with zero time lag. But it seems
ance will be the difference of two exponential decays inunlikely that any such “neural process” could be associated
space. The characteristic lengthsorrelation lengths for ~ With normal consciousness since this israzen patternof
these decays are predicted to increase strongly on approabFgin activity (a neural “crystal’) that would severely con-
to the LOC and ROC transition poirﬁsee F|gs &) and AH! .Stra|n dynam|c Commll.ln|cat|on attempts from nonpa.rtICIpat-
and these theoretical predictions were confirmed in a serid§9 neuronal assemblies. Perhaps the structures might “un-
of stochastic simulations on a joined cortical rd@dg. 4). freezg" into temporal osc[llatlonéhard-mode |nstab|I|t|e$r _

For clinical confirmation of increased correlation lengthstraveling-wave patterns if we were to relax the spatioadi-
near transition, we turn to the recently reported results ofbatic requirement. This possibility will be investigated in
John etal. [10]. John and colleagues analyzed thefuture work.
guantitative-electroencephalographic changes for 176 pa-
tients undergoing general anesthesia. The EEG was reqqrded APPENDIX: SPATIOADIABATIC APPROXIMATION
from 19 electrodes deployed across the scalp at positions
corresponding to the international 10/20 system. A range of As discussed in the Introduction, the spatially homoge-
different anesthetic agents were used, the focus of the inveseous adiabatic approximation adopted in pap&rs3] en-
tigation being the identification of EEG changes that areables a valid description of the gross EEG changes associ-
common to all anesthetics. ated with loss of consciousness. In these earlier papers we

There are two main findings pertinent to the present workassumed that thi, and ¢; inputs equilibrate on time scales
First, the same qualitative changes in EEG power spectrurmuch faster than the average soma voltdgeandh;, and
were observed in the vicinity of LOC for every anestheticthat the cerebral cortex is spatially unifofthis is the mean-
agent—namely, a large increase in power, particularly at lovfield approximation These assumptions were effected by
frequencies, on approach to LOC, followed by a dramaticsettingd/dt— 0 (adiabaticity and 9%/ 9x*>— 0 (spatial homo-
collapse in high-frequencyy band, 25—-45 Hz power at geneity in Egs. (2.2 and (2.3 and then substituting the
LOC. This behavior is consistent with our anesthetodynamicesulting steady-state values for the cortical inp(itus
prediction of a pronounced growth in fluctuation power con-noise back into the(2.1) equations of motion for the exci-
comitant with a spectral redistribution toward zero frequencytatory and inhibitory soma voltages. The result was a pair of
(i.e., critical slowing dowh on approach to the transition coupled stochastic DEs im, andh; alone.
point. In the present paper, we wish to allow for the develop-

The second finding was a general increase in EBRer-  ment of spatial variability in long-range corticocortical firing
encejust prior to LOC and again at ROC, particularly for the rate, with consequent variations in space for the macrocol-
frontal (forehead pair of electrodes. While our spatioadi- umn soma voltage. We accomplish this, to first order, by
abatic model cannot explain why the frontal electrodes aradopting the “spatioadiabatic” limit which set& dt—0 in
favored, this enhanced coherence is consistent with a modglgs.(2.2) and(2.3), while retaining the?/ 9x? terms in Egs.
prediction of increases in correlation length and correlation2.3). Thus the cortical inputs of Eq$2.2) reduce to
time for the EEG fluctuations near the phase-change jump
points. We are presently investigating the possibility of using

—INB 2
the spatioadiabatic model to make quantitative predictions ledNe) =[NeeSe(Ne) + et (Pee) IGeel vet Ta(x.1)/ ve,

for coherence changes as a function of anesthetic effect. (Ala)
For c3<0, the linear stochastic theory fails because the

eigenmodes for high spatial frequences g5 grow without lei(he) =[N§iSe(he) + i+ (Pei) 1Ge€! Yot Fz(x,t)/yé,

bound. To identify the new state formed in this regime, we (Alb)
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lie(h)= ?\GABA[N ?Si(h) +(pie) 1Giel v, This means that in the spatially homogeneous steady-state
corteX, ¢o(he) and ¢;(h;) are both functions oh.. There-
+\&asal 3060/ 77, (Alc)  fore, provided that the perturbations away from the homoge-
neous steady state always remain snfiadl., h, is a weak
i () =X\ asal NES (i) +(p;i ) 1Giel v, function of positionx, and never far from equilibriuin ¢,

and ¢; can still be written as functions df:

be= pe[ Ne(X) ],

+\&asal (X, 1)/ %7 . (Ald)

We set to zero the sigmoid time derivativeS,/dt in
Egs.(2.3 to obtain the spatioadiabatic approximation for the

i . long-range inputs, $i=dilhe(x)].
2 Close to homogeneous equilibrium we may make a Taylor
= A2 ¢e+N Se(he), (A2a)  expansion tath order,
2¢ delhe(X)]= e+ [he(X) - heq]
I e
= A2 —5 +NgiSe(he). (A2b) €q
+ i[h (X)_heq]z %
This neglect of the sigmoid time derivatives is equivalent to 21-°¢ € dhi
assuming that the impulse respori@reen’s function @ ; e
for the Sy(he) source is felt instantaneously throughout the 1 d"¢,
cortical rod: whereas the Green’s functions for the original +.+ m[he(x) hed" —— ~ . (A7)
Egs. (2.3 represent pulses decaying exponentially in space ‘ dhe eq

and propagating at speed
We obtain an expression fat¢g/dh by operating with

1 . _ d/dh, on Eq.(A2a), givin
Bo(x,1) = NS et —|x]/v),  (A3a) 9.(A2a), giving

dp. 1 & e

dh, A2, dh,

. d
+HNEgSelho), (A9)

1
Di(x.)= 5NgA e eMa(t—[x|/v),  (A3D)
which, at homogeneous equilibrium, simplifies to
our adiabatic approximation replaces these impulse functlons

with their v — limit, doe . dS
dh, |~ Needn, (A9)
Do(X,1) = INZA e NedX (1), (Ada) ele el g
®,(x,1) = INZA e NelX 5(1), (Adb) ~ since @*del 9x?)|eq=0. Consequently,
with the spatioadiabatic forms of Eq@&\2) being recovered d"¢e _ d"S,
after convolving, over time and space, the B4) adiabatic dhn ce dhn (A10)
e e

Green'’s functions, eq

w oo Substituting Eq.(A10) back into Eq.(A7) gives a near-
¢e,i(X,t)=j J D (X=X, 1=1")Se(x',t")dx dt’. equilibrium Taylor expansion fow, in terms of derivatives
el (A5) of S, the voltage-to-pulse-rate sigmoidal transfer function,

Substituting Eqs(Al) and(A2) back into Eqs(2.1) gives bl Ne(X)]= S [he(x) — hEINE ds
us a pair of coupled spatioadiabatic equationshfpandh . € € ee dh,
However, Eqs(A2) still contain terms involvingp, ; on the

eeq

right-hand side, so the resulting equations figr will also hem2n d?s,
be dependent oibe ; . o [he(x he'*Nge dn2
We now remove thisp dependence by making a small- € leq

perturbation expansion about the homogeneous steady state. dn

First, we observe that in the homogeneou#/{x>—0) [he(X he9"NZ (Alla

steady-state limit, EqSA2) predict o eq
6= NgeSe(he)eq, (ABa)  similarly, if ¢; can also be assumed to be a functiomg(ix)
e na only, we can write a corresponding Taylor expansion for
i :Neise(he)|eq- (ABb) di[he(X) 1,
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BilNe(x)]= % [y(x) ~ REING g_hse h,

ax?

o P ~Ng; m (A12b)

eq
2

° Hence, close to homogeneous equilibrium, we can replace
the long-range inputs of Eq$A2) by their linearized ap-

proximations,

1 d
2N @
+E[he(x)_hgq] Nei dhg

€q

n
e

1 d
ot N0~ hEINgG ——

ei
dh] NS¢, dS.| ¢°h
¢ leq b= an| 2 tNiSe(he),  (Al3a)
(Al1b) Age @Meleq X
The theoretical calculations for spatial covariance in Sec. IV N 5
of this paper utilize a linearized paradigm, so only the first- mﬁ d_Se J he+N“-S (h,) (A13b)
order terms of EqQ9A11) need be retained. Therefore, when ! Agi dhe o X2 ei~ellle/:

we operate withd?/dx? on both sides of Eqs(All), we

retain only the first-order terms, giving Equations(A13a and (A13b) can now be used to approxi-

P ds,| é%h mate ¢, and ¢; in Egs. (Ala) and (Alb), which are then
_ze~ ¢ —— _2e (Al12a) substituted into Egs(2.1@ and (2.1b to obtain the final
X dhe|, ax spatioadiabatic reduced equatig@s10a and(2.100.
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