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Effects of geometric confinement on the adhesive debonding of soft elastic solids
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The effect of increasing confinement on soft elastic gel layers has been investigated and a means of
analyzing the behavior of such systems has been developed. A probe tack test was used to study the behavior
of thin elastic layers during interfacial debonding from a cylindrical glass indenter. For this gel-indenter
system, confinement is defined as the rati@gf the radius of the indenter, to, the thickness of the elastic
layer. In order to investigate geometric effects, the adhesion energy of the gel was kept constant while the
thickness and modulus of the gels were varied. A fracture mechanics approach, based on the compliance of the
layer, has been employed in analyzing the experimental data. It is shown that a fracture mechanics analysis is
appropriate for these systems, allowing quantitative results to be obtained, despite very irregular contacts. It
has also been shown that the interfacial instabilities observed during debonding maximize the compliance of
the elastic layer. Additionally, four dimensionless parameters that dictate the behavior of confined systems have
been defined, offering a general guide to understanding and characterizing the mechanical behavior of thin
elastic layers.
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[. INTRODUCTION elastic or viscoelastic layer is confined between weakly ad-
hering surfaces.

Understanding the behavior of thin, compliant layers is of It has been shown that the bulk fingering instabilities in
vital importance in a wide variety of applications, including thin elastic layers are not the result of plastic yielding or
pressure sensitive adhesi\/@g and hydroge| bioadhesives viscous flow; they originate instead from the elastic nature of
[2]. The deformation behavior of thin, compliant materials isthe materia[3—6]. The geometry of a flat punch contacting a
dependent not only on material properties, but also on th&hin gel layer, shown in Fig. 1, is useful for fundamental
confinement of the layer, which can be expressed as a rat@fudies of these instabilities. This geometry provides a well-
of the lateral dimensions of the adhesive layer to its thick-defined initial contact radius corresponding to the radius of
nesg3—7]. The relationship between confinement and deforthe punch. The ratio of the punch radiug] to the elastic
mation has been investigated in Newtonian flujs-10,,  layer thickness If) provides a quantitative measure of
viscoelastic fluidg11], and yield stress fluidgl2—14], with ~ Sample con.fmement. Moreover, thg stress distribution im-
the Saffman-Taylor instabilitj15] being the classic example Posed by this geometry, shown in Fig. 2, has been quantified
of work in this area. The adhesive debonding behavior of5:17,18. The nature of the debonding process can be related
confined elastic systems has also been explored and fingdf the stress distribution at the surface of the cylindrical
like bulk instabilities, similar to those seen in fluids, havePunch. Regardless of the confinement ratio, a singularity in
been observed in elastic gels strained in tenfion, 16. The the tensile stress exists at the edge of the cylinder. However,
emphasis in these systems has been on the characterizati®h low values ofa,/h, the stress decreases monotonically
and prediction of bulk elastic instabilities during debonding.toward the center of the punch. ag/h increases, a second
However, an area of current interest involves the interfaciamaximum in stress appears at the center of the punch, and
debonding behavior of compliant elastic systefds4,6. the edge singularity becomes restricted to an increasingly
Ghataket al. [3] and Manch and Herminghaui$] have in-
vestigated the fingerlike instabilities that appear at the inter-
face between a rigid substrate and a thin, elastic film using
nonaxisymmetric geometries. The wavelengths of these in:
stabilities are linearly related to the thickness of the elastic
layer[3,4,6). A better understanding of the underlying phys-
ics of this phenomenon can be achieved with additional test
methods. Here, a method of analysis based on stress distr
bution and material compliance considerations is introduce
to describe the interfacial debonding phenomena observed i A
soft, confined elastic layers. We focus specifically on the
transition from circular edge crack propagation to interfacial FIG. 1. The geometry of the adhesion test, a flat cylindrical
crack fingering as the system confinement increases. Suchpanch with radius, in contact with a thin elastic layer with thick-
situation is representative of the practical case where a sofiessh. System confinement is defined ag/h.
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2 outline the general compliance method used to analyze test
results on thin gel layers, followed by a discussion of the
debonding behavior for axisymmetric contact below a criti-
cal value ofay/h. We then discuss the expected separation
behavior above the critical value of confinement, making
predictions for the mechanical behavior in this regime. We
then describe our experimental results, categorized according
to confinement values, in order to explore in detail the con-
ditions for which contact is no longer axisymmetric.
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Il. COMPLIANCE METHOD

In analyzing probe tack experiments on thin gel layers, it
is useful to consider the expression for stored elastic energy
U for a system with a linear load-displacement relationship:

0.5

1 52
UZE(SP:E, (1)

0 0.2 04 0.6 0.8 1 whereP is the tensile loads is the tensile displacement, and
C is the compliance of the thin layer. The general expression

rlao for the energy release ratg) follows from Eq.(1):

FIG. 2. The normal stress distribution for a flat punch in contact ouU 5% aC P2 5C
with a thin elastic layer as a function of confinemeag (h). The g= A == 2C A == PN 2
stress is normalized by the average tensile str@sés-(lg) [7].

whereA is the circular area of contact between the layer and
smaller fraction of the punch surface. indenter. The energy release rate is the driving force for sepa-

This change in the nature of the stress distribution has @ation of the sample from the indenter. It can be viewed as
profound influence on the debonding mechanisms. For lowhe applied energy per area available to reduce the contact
values ofay/h, the contact area remains circular, shrinkingarea by a unit amount, driving a crack forward and increas-
in size as the indenter is retracted from the elastic 18§gr  ing the compliance of the lay¢19]. The assumption in Egs.

In this case, a circular crack propagating from the edge of th¢1) and (2) is that for a fixed contact geometry, the compli-
layer inward maximizes the compliance of the elastic layerance is constant and defined as

for a given applied displacement and contact area. However,

for thinner samples, the layer compliance is maximized for a 6

more complicated deformation process. In many cases, the C= Pl ®)
thin layer will cavitate internally to relieve the stresses under

the center of the pundii7]. However, it is difficult for very  The gel used in these investigations has this characteristic
soft materials, such as gels, to work against atmospheri@0], making Eq.(2) applicable for both circular and noncir-
pressure to achieve this. Fingerlike instabilities, whichcular contact areas.

propagate along the interfa¢é adhesion is weakor in the The critical energy release ratg), a system parameter,
bulk (if adhesion is strong occur instead. These different represents the energy required to advance a crack during re-
types of failure morphologies are apparent in soft gels ateding contact. For the gels in these experimegts,is
higher confinements where the confinement ratigh is  nearly equivalent to the thermodynamic work of adhesion,
greater than 1. the lower bound folg for a decreasing contact arg20,21].

In this work, we investigate the behavior of confined sys-For a given displacement, the contact area between the in-
tems using an axisymmetric probe tack test fitted with a flatdenter and the elastic layer is determined by the requirement
ended probe. The probe tack technique is a good method fekat G equalsG,. The shape of this contact will be deter-
investigating elastic instabilities in thin gels because bothmined by the requirement that the compliance at a fixed con-
quantitative and qualitative information can be gleaned fromact area is maximized. If the contact remains circular and
the experiments. The data collected from this type of experithe elastic layer is incompressible, the compliance is ap-
ment allow a contact mechanics analysis to be used in inteproximated by
preting results, giving detailed information about the me-
chanical and adhesive behaviors of the thin layers. The a a
contact area images collected add a more qualitative under- 1+1'33‘ﬁ+ 13:‘(5
standing of the failure phenomenon by showing the progres-
sion of debonding throughout the test. Furthermore, the usahereE is Young’s modulus of the layer aralis the radius
of a cylindrical probe allows convenient access to a wideof the actual contact argd21]. This equation was derived by
range of confinement ratios. In the following section, wefitting the finite element data of Ganghoffer and GE22]
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5 T T T lationship between engineering stress and normalized dis-
a5k ] placement for displacement values less than the maximum
value:
* Flagida <o 1
a
35} y ; J Teng_ i i 7
% / : E 3mag
£ 3t 5 J
25k i dgida>0 1 A plot of o¢,/E Vs 6/a, forms a straight line with a slope of
’ i 0.85 that terminates at the value &f.,/a, given by Eq.(6).
2F ; ] During this stage, the energy release r@tes always lower
15k ; 1 than the critical valugj. and the contact radius does not
| : change. At the point of maximum displacemegitbecomes
1 H
0.

L L L equal toG, and the radius of contact decreases. Since, for
ah this value ofay/h, G increases with decreasing contact ratio,
the system is unstable and, in the absence of viscoelastic

FIG. 3. Normalized energy release rate as a function of Conﬁnedissipation the radius of contact jumps fram to zero.
ment. The minimum in the curve represents the critical value at

which a/h begins to affect the separation behavior of a flat punch B. 0<a./h<0.45
from an elastic layer. ’ 0 :
For nonzero values ddy/h that are below 0.45, the be-
and is valid for an incompressible elastic layer where havior is similar to the limiting case @f,/h=0, despite the
=0.5. As discussed in Sec. Ill, this assumption is valid forincreased stiffness of the system. The contact radius jumps
the gels utilized in our experiments. The energy release ratisom a, to zero on separation. However, detachment occurs
for axisymmetric crack propagation is obtained by combin-at a lower value of the maximum displacement. Also, the
ing Egs.(1) and(3): value of ag/h now becomes important in determining the
pull-off condition, obtained by setting= G, in Eq. (5).

a a\3
1+2.67 ] +533 ¢/ |. ) C. ag/h>0.45

For ay/h greater than the critical value of 0.45, the sepa-
Note that more general versions of E¢$. and(5) valid for  ration behavior becomes more complicated Gadecreases
compressible elastic materials are also availablg21,23, with decreasing contact radius. As a result there exists an
but are not necessary for our materials. Figure 3 shows a pl@quilibrium solution G=G_) to Eq.(5), and the contact area
of Eq. (5 as a function ofa/h. This curve experiences a decreases at equilibrium during detachment. However, it is
minimum ata/h=0.45, whereg= 1.27E §?/h . The confine- possible to predict the mechanical behavior by generating
ment ratio at the minimum i/ represents a critical value predicted tack curves, as long as the contact remains axisym-
separating qualitatively different detachment behaviors. Dismetric. SettingG=G,., we can rearrange E¢5) to obtain
cussed below are the expected separation behaviors for dif- 5
ferent values ofay/h; in all cases, the contact area is as- G _ 2e
sumed to remain circular, with a single value of Eay 3wBaj
characterizing the detachment. We also assume that the ap-
paratus itself is much stiffer than the elastic layer, so thatvheree = 6/h represents the effective straiB=ala, is a
displacement applied to the elastic layer is directly con-ractional contact radius describing the progression of the
trolled. This assumption is generally true for our gels, but thedetachment, andyy is defined as the initial confinement
quantitative predictions need to be modified for highly con-(ag/h). G./Eay is a meaningful dimensionless parameter
fined layers with a sufficiently large elastic modulus. In thesethat relates the importance of adhesive forces in a system to
cases, the stored elastic energy in the device itself also neettse contribution of the elastic strain energy for a semi-infinite

_2ES” -
9= 3an @

{142.67Bay+5.338%a3}, (8)

to be taken into accounhf4,25. elastic half space.
If values forG,, E, h, anda, are known, Eq(8) can be
A. a,/h=0 solved to determing at any value of the strain. Onceg is

o . . ) known, the average engineering stress can be calculated from
The limiting case is a very thick, unconfined layer, for the following rearrangement of E¢Q):

which a/h is effectively zero. Detachment occurs whén

=, at a displacemend,,,,: o 1
¢ max = £10.85— +1.1382+1.138%3 | . 9
Sy (37T) v g )1/2 E ag
=2 =] - (6)
Ch 2 Eag This situation is similar to the,/h=0 case where¢,,/E is

a linear function of displacement. Initially;.,o/E increases
Combining Eq(3), Eq.(4) with a/h=0, and the definition of linearly with effective straing<g,., and the slope is defined
an average engineering strasg,q= P/rra% leads to the re- by the bracketed term in Eq9) with =1 (a=ag). The
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FIG. 4. Predicted tack curves for confinement values of 1, 3, and FIG. 5. Predicted tack curves for various confinement values
5 (G./Eay=0.1) plotted vs displacement normalized by thickness.plotted as a function of displacement normalized by initial contact
The thickness remains constant, making the variation in confineradius.ay/h changes as the thickness of the sample is varied, while
ment dependent on changiag. Two envelope curves faf,/Ea, ay remains constant.
values of 0.1(dotted ling and 0.3(dashed lingasa, /h approaches
infinity are also shown. constant value ofj, that is assumed. The area under each

curve represents the energy required to separate the two sur-

maximum inog,,/E occurs at the effective strain at which faces and is equivalent to the energy release rate. To demon-
Eq. (8) is satisfied forg=1. After this point,3 andoe,/E  strate this idea, we can equate the total mechanical energy
decrease unté/h=0.45, where pull-off occurs abruptly. Be- put into the system with the energy required to separate the
cause pull-off occurs whea=0.45, we can obtain an ex- two surfaceg26]:
pression for this pull-off displacemem®* by settingG= g,

anda=0.4% in Eq. (5): j Pd&zf GdA. (17
S5* g 1/2
?=0.8€<E—;) . (100 If G is equal toG, throughout separation, Eq10) can be

rearranged to give

Three predicted tack curves, created by plotting values of 1
oengas a function of the effective strain are shown in Fig. gc:—ZJ Pds. (12
4 for various confinement values. The confinement varies as T
8 Is changed. Increas[ng_olh increases the maximum To relate this to the predictions in Fig. 5, we can rewrite this
stress and changes the initial slope of the curves. However

after the maximum stress is reached, the curves all fall alongxpressmn in the following form:

the same equilibrium line for a given value @f/Ea,. Fig- Ge Ton

ure 4 displays two of these “envelope” curves fGg/Eay = gd(&/ao). (13
play Eag E

values of 0.1 and 0.3. Sinc&is normalized byh to give ¢,

a change in confinement corresponds to a fixed valuk of rigyre 5 shows that, as confinement varies, the maximum
and a change ia: the situation of a slow crack propagation gisplacement and stress change, while the area under the

at fixedG. . The predicted stress depends only on the current,,r e remains constant for a giveh . Detachment of in-

value ofa, and not on its initial valu@,. An increase in the  genter from the elastic layer occurs whér 5%, with &*
initial confinement &,/h) decreases the initial compliance given by Eq.(10).

of the layer and increases the stress required for the contact as discussed in more detail in the subsequent sections, the

radius to begin shrinking. contact radius does not remain circular &h>1. Many of
Figure 5 displays predicted tack curves for the same Valihg results of this section remain valid, however, even when

ues of confinement shown in Fig. 4. However, in this caseghape instabilities resulting in nonaxisymmetric contact are

oeng/ E is plotted as a function of/a,. Plotting the curves  gpserved. These issues are discussed in more detail in Sec.
in this way provides a simpler way of presenting the changeg,

in the tack curves that are expected by varyingt a fixed
value ofay. For each of the three curves in FigG/Eay
=0.1. As in the case of Fig. 4, the maximum stress increases
with confinement. However, the shape of the curves now A schematic of the axisymmetric probe tack test apparatus
varies withay /h, indicating that the behavior dependsfon  is shown in Fig. 6. The test method, described in detail else-
Although the shapes of the three curves in Fig. 5 are differwhere, entails bringing a rigid indenter into and out of con-
ent, the areas under the curves are equal, determined by thect with the surface of a thin layer using a piezoelectric

IIl. MATERIALS AND METHODS
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While the specific values oK, vary to some extent from
Motor  4+— system to system, the values given by Egl) are represen-
tative of most flexible polymers in good solvents. Values
obtained forK . for poly(methyl methacrylatein a variety
of solvents are very similar to the values given by Egj),
for example[32]. For the gels used in our experiments, we
can estimateK . from Eq. (14), where ¢, is the average

Load transducer t—

——» Displacement sensor
Flat E

t «— . volume fraction of the polyttbutyl acrylate midblock, for
eytindrieal punch, e, —— i IRblRckErlAmple which 2-ethyl hexanol is assumed to be a good solvent.
For an isotropic material, Poisson’s ratio is related to the
ratio of the shear modulus to the bulk compressive modulus.
) An analogous osmotic Poisson ratigs can be similarly de-
v fined in terms ofG and K [33]:
Microscope B 3— 2(G/K05) 15
FIG. 6. A schematic of the probe tack apparatus for adhesion VOS_6+2(G/KOS) '
testing. The motor advances the punch into, and retracts it away
from, the elastic layer while data are collected. Comparison of the measured values®for our gels[20] to

the predictions of Eq(14), givesG/K,&~0.1, corresponding

stepping motof21,27). Load and displacement data are col-to @ value of 0.45 forv,s. This value corresponds to the
lected through a load transducer and optical displacementelaxed” Poisson ratio for the gel, over time scales long
sensor, while images of the area of contact between the irtnough for the solvent distribution under the punch to equili-
denter and the sample are captured by a video camera difate in response to the applied stress. The short-time value
tached to an inverted microscope with a:2.Bbjective lens. ~ Of the Poisson ratio is equal to 0.5, due to the incompress-
For the tests withag/h<7, the radius of the indenterg) ibility of_ the solvgnt itself. The trans_|t|on_bet\_/veen the_s_e time
was generally 1.25 mm. The test with a confinement ratio opcales is determined by the collective diffusion coefficient of
25 was performed on a different apparatUS, fitted with a dethe gel, which for semidilute solutions can be written in the
vice designed to adjust the parallelism between the film anéellowing form [34]:
the probe. This high confinement apparatus is similar in
scope although slightly different in mechanical dedigs]. _ keT (16)
The elastic layer used in these investigations is a physi- ¢ 6mneéy’
cally cross-linked polymer gel, made by dissolving a triblock
copolymer in 2-ethyl hexanol. The triblock has p@hethyl ~ Where 7, is the solvent viscosity0.1 P for 2-ethyl hexanol
methacrylatgend blocks and a poltert-butyl acrylaté mid- ~ at room temperatur¢35]) and &, is the hydrodynamic
block with molecular weights of 29 000 and 100 000 respecscreening length. For semidilute solutions of a polymer in a
tively. The triblock copolymer was synthesized according togood solvent, the screening length can be expressed in the
the methods of Varshnest al. [28] and has been described following scaling form[30]:
previously. The gel is a thermally reversible, low modulus
elastic solid at room temperature with a gel point near 60 °C éh=ag, ™. (17)
[20,21,29. The volume fraction of copolymer in solution
determines the modulus of the resulting gel. In this work,Measured values of;, for polystyrene in benzen4] and
volume fractions between 0.036 and 0.2, corresponding t&olyacrylamide in watef36] are in good agreement with this
Young’s moduli between 300 and 10000 Pa, were used. prediction, witha~0.5 nm.
The gels have a finite osmotic compressibility, resulting in ~ From Egs.(16) and(17), we expectD ~10"" cn?/s for
a time-dependent value of Poisson’s ratio as solvent diffuse@ur gels. The longest experimental time scale in our experi-
from regions of low to high hydrostatic tension. In order to ments is about one minute, corresponding to a maximum
develop a generalized framework for evaluating the impordiffusion distance 2 t)"/2 of 40 um, which is less than the
tance of these effects in polymer gels, we utilize an analysigﬁickness of even our thinnest layers, and much less than the
based on the value of the osmotic moduKig, that is ex-  lateral dimensions of the punch over which solvent must
pected for these gels. The osmotic modulus is related to theiffuse in order to modify the mechanical response of the
concentration dependence of the osmotic pressure, which fdayer. This same result can also be obtained by a mathemati-
semidilute solutions typically obeys a simple power lawcally equivalent analysis based on pressure driven flow of
form [30]. The following specific expression accurately de- solvent through the gel887-39.
scribes the concentration dependencekof, for poly(a- While the analysis presented here neglects some quantita-
methyl styrengin toluene[31]: tive details (we have neglected contributions of network
elasticity toK .5, for example, the essential message is clear:
S the gels can .be treated as incompr_essible solids with
K o=, —— ~6.60x 10°$>2 (Pa. (14  =0.5 on the time scale of our experiments. However, the
Py, P presence of a substantial solvent fraction reduces viscoelastic
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FIG. 7. The average stress-displacement curve for an elastic ge  -100
layer experiencing axisymmetric edge crack propagatiag/Hf 0 100 200 300 400 500
=0.78). The indenter was advanced into the sample prior to the 3 (um)

test; the data displayed were collected during retraction of the ) )
punch. The shaded area represents the critical energy release rateFIG. 8. The average stress-displacement curve for an elastic gel

(G.), in this case equal to the thermodynamic work of adhesion. ayer withag/h=1.93. The inset shows the maximum stress peak
reached during the first pull-off cycle. The images correspond to

is peak, displaying the initiation and growth of a fingering insta-
ility, followed by the disappearance of the instability into a cavi-
tated bubble as the indenter is pushed back into the layer.

effects so that the critical energy release rate is relativel
insensitive to crack velocity and to polymer volume fraction.
For the rates and concentrations of relevance hégeis

equal to approximately twice the surface energy of 2ethy%he repeatability and consistency of the nonadhesive debond-

hexanol for a wide range of surfacesq(=0.06 J/rf) [20]. ing process. The inset in the plot displays the maximum

This feature of the gels, together with their well stress peak with arrows pointing to three receding contact
characterized structure and the ability to vary the modulus, peax P gt . 9
jages, during the nucleation of the instability, followed by

shape, and size of the gel samples, makes them ideal moo{ ree advancing contact images. During the first half cycle,

solids for these investigations. debonding commences with the introduction of a finger from
one edge, which slowly grows toward the center of contact.
IV. RESULTS AND DISCUSSION As the indenter is advanced back into the sample the first
time, the finger shrinks and is pinched off, leaving a bubble-
‘like region in the center that cannot be pushed out. The sub-
‘sequent cycles progress in the same manner, with an insta-
bility growing in from one edge to join the central bubble
during separation and then shrinking back on punch advance,
A. 0.45<ay/h<1 leaving the bubble in place. The maximum stress during the

For elastic layers with confinement ratios less than 1, théirst cycle represents the stress required to begin to decrease

contact area remains circular during debonding, as expectéBe contact area between the mdenter and the gel. The maxi-
for low values ofay/h. Figure 7 shows a plot of stress mum stress in subsequent cycles is lower because, once the

versus displacement for a layer experiencing axisymmetric?entral cavity is created, the stress required to continue deb-

- ; ircul Qnding is less. _ _
?:(?/i;{)a% gf?g%%%ogé V:,;Z%]ri fg?;?ﬁ; [I_er:Tela':g:t Cc(|)rr(]:u & For these low modulus gels, the bubblelike cavity that

sisted of bringing the indenter into contact with the Surfaceremains after the instability is initiated can be thought of as a

of the gel layer prior to testing and then retracting it out Ofnearly incompressible inclusion with a shear modulus of

contact. The shaded area under the curve represents the ro. This can _be demO”Str'C?t?d by considering the i :
ergy release rate for this test, 0.07 3/rhis value, calcu- the atmospheric pressure divided by the modulus of elastic-

lated from Eq.(12), agrees well with the expected value. ity. For an ideal gas, the bulk compres;ive modulus describ-
' ing the resistance to volume changes is equal to the pressure

of the gas itself. In the case of the gelE describes the
hydrostatic stress required to change the volume of the gel
Figure 8 displays a stress-displacement plot with the acrelative to the deviatoric stress required to change the shape
companying contact images for a gel layer witly/h of the gel. If the value of this parameter is much larger than
=1.93. The modulus and thickness of this layer are 1000 P&, atmospheric forces dominate over the stiffness of the gel,
and 647um, respectively. As expected from the stress distri-and the trapped bubble will change its shape but not its vol-
bution, preferred debonding was observed at the center afme. For the triblock copolymer gelg/E is between 20 and
contact, although it occurred via an instability nucleating100. It is because of the large value of this ratio that a central
from the edge of the sample. The 2.5 cycles of receding andavity is introduced via an edge instability rather than
advancing contact that were imposed on this layer displayhrough cavitation of the gel in the center, which for low

In order to clearly demonstrate the effect of the confine
ment ratio, this section is divided into four subsections cor
responding to different ranges af/h.

B. 1<a,/h<4
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FIG. 9. Experimental compliance curves for an elastic gel layer © 1500} f J
with ag/h=1.93. A is the measured contact are#dP curves are {6 b
shown for each of the 2.5 cycles. Cycle 3 represents the last half
cycle of the experiment. The solid line depicts the axisymmetric 500 a .
compliance determined from E@) and assuming a circular con- 0 \ , , ,
tact with the same total area as the irregular contéet ¢ra?). 0 10 20 30 40 50

8 (um)

values ofp/E occurs foroeng/ E>~1[7,18]. The gel cannot . _
overcome compressive atmospheric forces to form internal FIG. 10. The average stress-displacement curve fqr a Iayer with
voids. This accounts for the compliance and displacemerﬁo/h:5-07- The Images C_OffgSponql_t_O the curve, displaying the
offset effects observed in the experimental data. The centrQnSet and growth of fingering instabilties.
bubble, acting as an inclusion, restricts compression of th
gel back to zero displacement, resulting in a displaceme
shift.

It is useful at this point to distinguish between open and
closed detachment zones. In Fig. 8, the top five images dis- C.ao/h>4
play open detachment zones in which debonding propagates The stress-displacement curve for a more highly confined
from the edge and the detachment zone is accessible to tkample &,/h=6.07) is shown in Fig. 10. In this case, the
atmosphere. The bottom image in Fig. 8 displays a closethdenter was pulled out of initial contact with the layer until
detachment zone, in which detachment has occurred betweagparation. The Young’s modulus of this layer is 5000 Pa,
the sample and indenter, but the detachment zone is not opevhile its thickness is 20@m. The images accompanying the
to the atmosphere. It is the closed detachment zones thatress-displacement curve show contact instabilities begin-
behave as the incompressible inclusions described aboveing to nucleate from one side of the punch before the stress
They form because, for a given value of the contact area, thimaximum is reached. The asymmetry of the detachment is
particular geometry minimizes the total elastic energy of theattributed to the difficulty in perfectly aligning a flat indenter
system. with respect to the sample surface. Both open and closed

Figure 9 displays experimental compliance curves fordetachment zones are apparent in the images in Fig. 10. Mul-
each cycle of this sampleag/h=1.93). Experimental com- tiple instabilities move in from the edge of the sample as the
pliance is represented by/P from Eg. (3), and the contact punch is retracted. From Fig. 10, it is evident that thinner
areas plotted on theaxis are established through analysis of samples have more and smaller fingerlike instabilities. As
the contact area images. In calculating the experimental congiscussed in more detail below, our observation that the size
pliance for cycles 2 and 3, an offset of gfn is included in  of these instabilities is directly related to the thickness of the
the displacement values to account for the presence of tHayer is consistent with other experiments using highly con-
closed detachment zone that is introdu¢see inset of Fig. fined systems with nonaxisymmetric geometfiggt,6).
8). The same relationship between compliance and contact is Figure 11 displayss/P values plotted against the mea-
observed for each cycle. Additionally, th& P values are sured contact areas for this sampég (h=6.07). As in Fig.
only slightly larger than the compliance values for a circular9, the experimental compliance for the noncircular contact
contact zone with the same total area, given by @gand geometry ¢/P) is compared to the compliance prediction
shown by the solid curve in Fig. 9. This very small increasegiven by Eq.(4), which assumes a circular contact. The ex-
in compliance is responsible for the dramatic change obperimental compliancésymbols is clearly higher than the
served in the contact behavior. In other words, this showgompliance for a circular contact area of the same @néd
that the compliance of the layer in this weakly confined re-line). The fingering instabilities maximize the compliance of
gime is only weakly affected by the detailed shape of thethe gel layer beyond what axisymmetric debonding could
contact area. Interestingly, an identical conclusion has beeachieve, reducing the stored elastic energy.

btained for the case where the elastic layer is replaced by a
ewtonian fluid[14].
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A (mm?) FIG. 12. Measured and calculated areas plotted against experi-
FIG. 11. Curves of experimental and predicted compliance for anental displacement. The calculated area curve is determined from
layer with a,/h=6.07. A is the measured contact area. TH®®  Eq.(18), using the experimental load and compliance and assuming
curve (dots is higher than the predicted axisymmetric compliance G.=0.06 J/nf.
from Eq.(4) (solid line), displaying that the instabilities introduced
during debonding maximize the compliance of the thin layer. confined layer &,/h=25, E~300Pa, h=100um, a,
) . ) . =2.5mm) in which instabilities are also observed on ad-
Not only is the compliance treatment useful in quantifying, ancing contact. During this test, the cylindrical indenter was
the difference in behavior observed in confined systems, bl anced into the layer and then retracted until complete
with the same equations it is possible to generate contaGeparation. In Fig. 14, the first four images display the pro-
area values directly from measured load and displacemenfession of advancing contact, while the bottom-most image
data. Using experimental load and compliance values fronyas taking during punch retraction. As the punch advances
Eq. (3), Eq.(2) can be used to determine eiti&ror A. For ino the sample, initial contact is made at an asperity, after
the case in whiclij; is kr;own, a contact area profile can be ywhich the contact grows by the appearance of fingers with
determined by plotting>“/2G. as a function of compliance \yayelengths on the order of a few times the layer thickness.
and integrating this curve to calculate the changg &t each  The fingers eventually form channels that pinch off to form

point along the load-displacement curve: voids, which are pushed to the edge of contact as the punch
A continues to compress the layer. During pull-off, the void

A(8=A)=mai— = P2(5)d(8/P). (18 ~ motion reverses toward the center of contact, followed by the

2Gc J s5=0 propagation of fingers from the edge that grow together to

achieve complete separation. Again, both open and closed

Using_thi_s approach,_it is po_ssible to determine_z the amount Ofietachment zones appear during the course of the experi-
material in contact with the indenter at any point during deb-,ent. and the experiment is reversible.

onding without actually seeing the contact area. Note that the e methodology described in Sec. IIC to predict tack
contact area does not need to remain circular in order for this,,\es cannot be extended to the very large values, o
approach to be valid, since no assumptions are made aboyfat result in contact geometries similar to that illustrated in

the detailed nature of the compliance function. The only aSFig. 14. This type of contact cannot be viewed simply as a
sumption is that for a given contact geometry the relationship

between load and displacement is linear. 2500
Figure 12 compares the measured and calculated contact
areas for the sample witlyy/h=6.07. The contact areas cal- 2000 |
culated using Eq(18) are in good agreement with the actual
areas measured from the contact images. This straightfor- _ oor
ward analysis is possible when the energy release rate is € 000l
known and does not vary with crack velocity over the range g
of values tested. This criterion is met for the gels discussed ® 500}
here, but it is not satisfied for elastomeric materials in gen-
eral [40]. For this reason a quantitative analysis of the be- or
havior of confined viscoelastic solids is much more compli-
cated. SO 20 a0 60 80 100
8 (mm)
D. ag/h>20

_ _ _ FIG. 13. The average stress-displacement curve for a gel layer
Figures 13 and 14 display a stress-displacement curve angth a,/h=25. The indenter was advanced into the layer and then
the accompanying contact area images for a very soft highlyetracted until complete separation.
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approximating the contact as a sine wave, we @ke5, and
obtain the following expression for the compliance of the
film by comparing Eq(20) to Eq. (1):

B 3h  sinh(g)cosiqg)—q
~ malEq  cosl(q)+q?

C(a) (21)

The compliance is maximized aj=2.12, \/h=2.96),
where it has the value of 0.964A.E ~ h/AJE.

An expression for the pull-off displacement can be ob-
tained by approximating the actual contact area as half the
apparent contact area of the pun@=Ay/2),

h

C=2aE

(22

This form of the compliance can be combined with E&.
and (3) (with G=g.) to give an expression for the pull-off
displacement* :

5 Ih=(G./Eh)*2. (23

Apart from a small difference in the prefactor, this value
is identical to the pull-off displacement given by EG.3),
obtained by assuming pull-off occurs when a circular contact
zone shrinks to give a radius of Ol5This result can be
explained by the fact that the fingering instability separates
the contact into zones that behave in some ways as if they are
mechanically independent. Adhesive detachment for a highly
confined system therefore occurs in the following manner.
The load initially increases very quickly as the imposed dis-
placement is increased. For an incompressible system, the
compliance is given by Ed4). For high values op/E, the
compliance is eventually increased by the appearance of de-

FIG. 14. Contact images corresponding to the curve shown if@chment fingers that propagate in from the edges of the
Fig. 13. The first four images were taken during advancing contactpunch. For low values op/E, the compliance is increased

while the last image shows the morphology observed during receddy internal cavitation. In either case, EQ2) provides an
ing contact. upper value for the compliance, representative of a contact

geometry in which the fingering, or internal debonding re-
circular contact that is modified by detachment fingers thasulting from cavitation, is fully developed. In general, the
propagate from the edges. For the expected limiting behaviotompliance will be intermediate between these two ex-
for ag/h—o, a critical displacement exists, above which tremes, and increases throughout the test from the value
one expects complete detachment to occur. This critical disgiven by Eq.(4) to the value given by Eq22). Detachment
placements* can be estimated by a procedure outlined byoccurs ats= 6* in both cases. The initial slope, final pull-off
Monch and Herminghaus], which is closely related to the displacement, and integrated areas of the tack curves shown
previous treatment of Ghatadt al. [3]. These authors con- in Figs. 4 and 5 are representative of the actual tack curves,
sidered the elastic energy required to impose the followindput the fingering instabilities cause the real tack curves to be
sinusoidal displacement on an elastic film of thicknless more rounded, with a lower value of the maximum stress

than the value that is predicted.

8= 8y sin(2ax/\). (19)
For an incompressible filfPoisson’s ratie=0.5), the elastic E. Characteristic dimensionless parameters
strain energy associated with this perturbation is The overall deformation behavior of thin compliant sys-
5 ) tems is determined by several dimensionless quantities. The
()= AoSEQ  coslf(q)+q 20 first of these isay/h, which describes the geometric confine-

ment of the system, an@./Ea,, which describes the impor-
tance of adhesive forces relative to elastic forces. These pa-
whereq=2wh/\ andA, is the total interaction area between rameters have been combined to give a failure map
the two surface57(-a(2) for a flat punch of radius). In our  describing the deformation modes experienced by elastic lay-
case fingering appears during contact with the indenter. Bers[7]. For samples in which internal cracks are not present,

6h  sinh(q)coshq)—q’
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the deformation modes are edge crack propagation, correhat manifests during interfacial debonding is dependent on
sponding to adhesive failure propagating from the edge ofhe layer thickness, with more highly confined samples ex-
the contact zone, and bulk instabilities, typically correspondyperiencing fingerlike interfacial instabilities. The origins of
ing to internal cavitation. A transition from edge crack propa-these instabilities can be related to the nature of the stress
gation to cavitation occurs when the average stress applied fistribution within the layer. A compliance-based fracture
adhesive material exceeds the elastic modulus. An implicitnechanics analysis has been applied to experimental data in
assumption in this prior treatment is th@E, the ratio of the  grder to quantify the underlying physics of the debonding
external pressure to the elastic modulus of the material, is NGhorphologies. The various confinement-dependent behaviors

substantially greater than unity. Higher valuespdE sup- ¢ gifferenta, /h ranges have been elaborated, and the ex-
press internal cavitation, so that edge crack propagation prgs

erimental debonding behaviors for increasing values of
ceeds at values of the average stress that can be well :
: - o/h have been described.
excess of the elastic modulus of the layer. Also, only “circu- . .

. . g X In order to express our results in an appropriately gener-
lar” edge crack propagation was considered in R@, as ized form, we have defined the following four dimension-
opposed to the fingering modes that are described above. Trl% ’t that pl . want Ig' determining th
detailed deformation behavior of very soft elastic layers jg €SS parameters that piay an important role in determining the

actually quite rich and must be represented by a deformationicParation behavior of thin elastic layers. ,
map of at least three dimensions, WIitHE, a,/h, and (1) .aolh. The ratio between the punch radius .anq th'e
G./Ea, representing the three orthogonal axes. adhesive layer thlcl_<ness_ de_termlr]g_s th_e stress distribution
Finally, it has been assumed to this point that the defortnder the punch. Fingering instabilities in the shape of the
mation behavior is entirely determined by the balance becrack front are observed fa/h>1.
tween the elastic energy associated with deformation of the (2) Gc/Eay. This ratio describes the relative importance
layer and the adhesion energy required to separate it from @ adhesive forces. For highly confined systems, the adhesive
surface. Analysis of this problem for very large values oflayer thickness is a more natural length than the punch radius
ap/h predict characteristic wavelengths of the adhesive indgy, and a more natural dimensionless grougi¢Eh. The
stabilities that are 3.96 times the elastic layer thickié$s square root of this quantity gives the overall effective strain
While this value is qualitatively consistent with the resultsthat can be applied to the adhesive layer prior to detachment.
that we have obtained, some quantitative differences can be (3) p/E. The ratio of the atmospheric pressure to the elas-
attributed to the energy required to deform the free surfaceic modulus determines the system’s potential for internal
This energy is related to a ratio involving the elastic moduluscavitation. If the value of this parameter is much larger than
of the layer and the Laplace pressure associated with curvd:, internal cavitation is suppressed. Internally debonded ar-
ture of the free surface. For very large valuesadh, this eas appear at high values af/h by the propagation of
curvature is controlled byh, so that the characteristic fingers from the edge of the contact zone. If these fingers
Laplace pressure is comparableth. The quantityy/Eh  pinch off so that the cavities are no longer open to the exter-
therefore emerges as an additional dimensionless parameteal environment, they behave as incompressible inclusions,
that describes the importance of surface energy relative tprovided thatp/E>1.
the deformation energy. We have made the implicit assump- (4) y/Eh. This quantity relates the energy required to
tion in our analysis thay/Eh is small. In fact, becausg,  deform the free surface of the material to the elastic energy
~ 2y for our gels,y/Eh~2(G./Eag)(ay/h), a quantity that  required to deform the bulk of the material. While the char-
varies between 0.06 and 2 in our case. While we do noacteristic wavelength of the adhesive fingering instability is
believe that these values of Eh are large enough to sub- expected to increase for large values of this quantity, the
stantially modify the results that we have obtained, they willqualitative features of the debonding process are not strongly
affect the details, resulting in an increased value of the chamffected fory/Eh<1.
acteristic wavelength of the adhesive instabili{fi6s

V. CONCLUSIONS ACKNOWLEDGMENT

The effect of confinement on the debonding behavior of This work was supported by the National Science Foun-
compliant elastic layers has been investigated. The behaviatation under Grant No. 0214146.

[1] C. Creton, inProcessing of Polymersvol. 18 of Materials [6] W. Monch and S. Herminghaus, Europhys. Lei, 525

Science and Technologgdited by H. E. H. Meijer(VCH, (2002.

Weinheim, Germany, 1997p. 707. [7] A. J. Crosbyet al,, J. Appl. Phys88, 2956 (2000.
[2] N. A. Peppas and J. J. Sahlin, Biomateriak 1553(1996. [8] A. Sharma and R. Khanna, Phys. Rev. L&, 3463(1998.
[3] A. Ghataket al,, Phys. Rev. Lett85, 4329(2000. [9] G. Reiter, R. Khanna, and A. Sharma, Phys. Rev. L&f%f.
[4] V. Shenoy and A. Sharma, Phys. Rev. L&®, 119 (2001J. 1432(2000.
[5] K. R. Shull, C. M. Flanigan, and A. J. Crosby, Phys. Rev. Lett.[10] S. Poivetet al, e-print cond-mat/0210064.

84, 3057(2000. [11] E. Lemaireet al, Phys. Rev. Lett67, 2009(199J.

021805-10



EFFECTS OF GEOMETRIC CONFINEMENT ON TH. . .

[12] P. Coussot, J. Fluid Mecl380, 363 (1999.

[13] A. Lindner, P. Coussot, and D. Bonn, Phys. Rev. L&%.314
(2000.

[14] D. Derkset al, J. Appl. Phys93, 1557(2003.

[15] P. G. Saffman and G. Taylor, Proc. R. Soc. London, S&43
312(1958.

[16] C. Creton, J. Hooker, and K. R. Shull, Langmuiv, 4948
(2001).

PHYSICAL REVIEW E 68, 021805 (2003

[26] K. R. Shull, Mater. Sci. Eng., R36, 1 (2002.
[27] D. Ahn and K. R. Shull, Macromoleculez9, 4381(1996.
[28] S. K. Varshneyet al, Macromolecule®4, 4997 (1991).

[29] C. M. Flanigan, A. J. Crosby, and K. R. Shull, Macromolecules

32, 7251(1999.

[30] P.-G. de GennesScaling Concepts in Polymer Physi@Sor-
nell University Press, Ithaca, NY, 1979

[31] I. Nodaet al., Macromoleculed4, 668 (1981).

[17] C. Creton and H. Lakrout, J. Polym. Sci., Part B: Polym. Phys.[32] H. Vink, Eur. Polym. J10, 149 (1974).

38, 965 (2000.
[18] C. Fond, J. Polym. Sci., Part B: Polym. Ph@§, 2081(2002.
[19] J. G. Williams, Fracture Mechanics of PolymergHalsted
Press, New York, 1984
[20] C. L. Mowery et al,, Langmuir13, 6101(1997.
[21] K. R. Shullet al, Macromol. Chem. Phys.99 489 (1998.
[22] J. F. Ganghoffer and A. N. Gent, J. Adhd8, 75 (1995.
[23] V. Y. Lin, C. Y. Hui, and H. D. Conway, J. Polym. Sci., Part B:
Polym. Phys38, 2769(2000.
[24] M. Barquins and D. Maugis, J. Adheg3, 53 (1981).
[25] G. Josseet al. (unpublished

[33] I. M. Ward and D. W. HadleyAn Introduction to the Mechani-
cal Properties of Solid Polymer@Viley, New York, 1993.

[34] M. Adam and M. Delsanti, Macromoleculd$, 1229(1977).

[35] C. Marsden and S. Manigolvents Guidélnterscience, New
York, 1963.

[36] E. Geissler and A. M. Hecht, Macromoleculk4 185(1981).

[37] A. M. Hecht and E. Geissler, Polym@id, 1358(1980.

[38] E. Geissler and A. M. Hecht, J. Chem. Phyg, 1548(1982.

[39] G. W. Scherer, J. Non-Cryst. Solid€2 18 (1992.

[40] D. Maugis and M. Barquins, J. Phys. T1, 1989(1978.

021805-11



