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Computer simulations of hard pear-shaped particles
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We report results obtained from Monte Carlo simulations investigating mesophase formation in two model
systems of hard pear-shaped particles. The first model considered is a hard variant of the truncated Stone-
expansion model previously shown to form nematic and smectic mesophases when embedded within a 12-6
Gay-Berne-like potentia]|R. Berardi, M. Ricci, and C. Zannoni, ChemPhysCh&m443 (2001)]. When
stripped of its attractive interactions, however, this system is found to lose its liquid crystalline phases. For
particles of length to breadth ratic=3, glassy behavior is seen at high pressures, where&s-férseveral bi-
layerlike domains are seen, with high intradomain order but little interdomain orientational correlation. For the
second model, which uses a parametric shape parameter based on the generalized Gay-Berne formalism, results
are presented for particles with elongation 3, 4, and 5. Here, the systems wkk-3 and 4 fail to display
orientationally ordered phases, but the system Wit shows isotropic, nematic and, unusual for a hard-
particle model, interdigitated smectg, phases.
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I. INTRODUCTION [11] was a triangular arrangement of mutually parallel Gay-
Berne sites, leading, overall, to approximately pear-shaped
In recent years, flexoelectricity has become an increasmolecules. On compression, a system of such molecules or-
ingly important feature in the design of materials for use indered from an isotropic liquid to a smectic arrangement in
liquid crystal devices. Flexoelectric behavior, which leads towhich the molecular orientations in successive layers were
field-induced director distortion, results, at a molecular level almost perfectly antiparallel. Subsequently, Steteal.[12]
from competition between electric and steric dipolar interacinvestigated the behavior of pear-shaped molecules using a
tions. As well as leading to modified bulk properties, flexo-model with two interaction sites per particle; each particle
electricity has been mooted to be a possible driver forrcomprised a Lennard-Jones site embedded near to one end of
switching in devices with bistable anchoring surfa¢és a Gay-Berne site. Isotropic, nematic, and smectic phases
Indeed, it has been suggested that the switching mechaniswere observed, local antiparallel alignment being seen in the
of the zenithally bistable devic2] may rely, in part, on nematic phase. Measurements of the splay and bend flexo-
flexoelectric behavior. electric coefficients gave a nonzero splay coefficient and, to
The early studies of Meydi3] and Prost and Marcerou within error estimates, a zero bend coefficient in accordance
[4], showed that the mechanisms underlying flexoelectricitywith Meyer’s theory. Similar simulations by Billeter and Pel-
can be understood in two ways. In the original explanatiorcovits[13], using qualitatively the same model but with dif-
from Meyer, flexoelectric behavior was explained in terms offerent energy parametrizations and an alternative method for
particles with a strong anisotropy in their charge repartitionthe calculation of the flexoelectric coefficients, confirmed the
Thus, it was shown that, upon polarization by an appliedresults of Ref[12]. In this case, however, no stable nematic
field, pear-shaped particles exhibit a splay director distortionphase was found between the isotropic @dlodally antipar-
whereas banana-shaped particles exhibit a bend distortionllel) smecticA phases.
Subsequently, Prost and Marcerou showed that flexoelectric- Whilst the results from these systems proved encouraging,
ity could also be obtained using particles with a nonzeraheir reliance on multisite generic potentials remained a rela-
guadrupole moment. This did not contradict Meyer’s originaltive inefficiency. This was resolved somewhat in recent work
work, however, since in reality flexoelectric mesogens areby Berardi and some of the current authptd], in which a
known to possess either one or both of these propdifies single-site model was developed, using Zewdie's generaliza-
Although well studied theoreticallj6—8|, few computer tion approach15,16, to represent tapered or pear-shaped
simulations using flexoelectric particles have been performegarticles. Here, using the geometrical shape of ziecurve
to date. While particle based simulations showing ferroelecas a template for the particle shape, a numerically calculated
tric behavior are reasonably well establislisde, e.g., Refs. mesh of contact distance values was fitted using a truncated
[9,10]), models with the dipolar and/or quadrupolar symme-Stone expansion which, in turn, was employed in the simu-
try steric interactions needed for flexoelectric behavior ardations themselves. Results from this study were very en-
relatively scarce. couraging, as both nematic and smeétighases were found,
Neal and co-workers performed one such study usin@gnd, through appropriate manipulation of the well-depth an-
molecules represented by rigid assemblies of three Gaysotropy terms, equivalent phases with petar order were
Berne sited11]. One of the assemblies considered in Ref.generated.

1063-651X/2003/6@)/02170811)/$20.00 68 021708-1 ©2003 The American Physical Society



BARMES et al. PHYSICAL REVIEW E 68, 021708 (2003

In this paper, we seek to explore the fundamental proper- Il. SIMULATIONS OF HARD PEARS
ties of single-site pear-shaped models such as that used in
Ref. [14], by investigating mesophase formation in systems
of hard, noncentrosymmetric particles. Hard-particle simula- 1. Model details
tions have proved to be an effective and efficient testbed for -~ . first simulations of hard pear-shaped particles used a
many of the theories of liquid crystal physif&7], and have  giojc version of the potential described in REE4]. This

confirmed that shape anisotropy along can be sufﬁcpnt_ fo ives the interaction between two particlesindj, as
the onset of nematic and even smectic order. Two distinc

A. The truncated Stone expansion model

systems are described here. The first is a hard version of the o if ro<a(U;,U;,f)
truncated Stone expansion potential described in Refi. PHP = ) N oo (h)
The second employs a novel approach, based on a parametric 0 if rij=o(u,uj,r),

variant of the generalized Gay-Berne shape paranégdr o _
which yields an analytical expression for the contact distanc&here o(u;,u; ,r;;) represents the contact distance between
between two pear-shaped objects. two pear-shaped particles with orientationsand u; and

The content of the remainder of this paper is arranged a8 —r, /r; andr; is the intermolecular vector. Following
follows. In Sec. Il A we give a brief description of the trun- o apj)prtj)ach ofJZeri§15,16|, this contact distance was
cated Stone-expansion potential before presenting and di%‘xpressed as an expansion of the form

cussing results obtained from Monte Carlo simulations of

same. In Sec. Il B we introduce the parametric approach fog,, '(Jj ,Fij)zﬁ(ai ,ﬂj ';ij)

generating shape parameters for nonellipsoidal particles, and

apply it to generate shape parameters for thei@epears -3
considered in Refl.14]. Results obtained from Monte Carlo LEL
simulations of such systems are presented in Sec. Il B 3. Fi-

nally, the two sets of simulations are compared and discussathereS-1'2:1s is a Stone functiori19], and the expansion

in Sec. lll. coefﬁcienIS(rLl,LZ,L3 are given by

Lilolal O ¢
oL, L, LS 23U UL r), (D)

J E(l], ,CII ,Fij)SLl’LZ'LS(Cli ,GJ ,Flj)dﬁ,dﬁ]dFlj

()

Ly, s™ A o
S*Ll'LZ’L3(Ui,Uj,rij)SLl’Lz'L3(ui,Uj,rij)duidedrij

Simulations were performed with two parametrizations oflengths of 0.5-1.610° MC sweeps were used for equili-
this model, with length to breadth ratik, of 3 and 5, respec- bration and production phases, but at the highest densities
tively. In both cases the shape parameter expan@pwas  considered, equilibration runs were extended up to 5
restricted to indicegL,,L,,L3}=1,...,6; theexpansion x10° MC sweeps. Two separate simulation sequences were

coefficients used fok=3 were identical to those given in performed. The first was a compression sequence starting
Ref. [14], while those fork=5 are listed in Table I.

TABLE I. The nonzeroo, ., ., coefficients for the Stone-
expansion model anki=5.

Ouir first simulations were performed on a system of 1250
particles with elongatiork=3 using constantNPT Monte  [000] 1.90456 [011] 0.51113 [101]  0.51113
Carlo (MC) techniques. This system was chosen since it wa§022] 2.01467 [202]  2.01467 [033] —0.11376
shown in Ref[14] that the attractive version of this model [303]  —0.11376 [044]  0.91479 [404]  0.91479

2. Simulation results

with elongationk=3 has isotropic, nematic and smectic [055]  —0.29937 [505] —0.29937 [066]  0.41523
phases. In addition to the normal positional and orientationdl606] 0.41523 [110] —0.03942 [121] —0.45400
MC moves, one fifth of the attempted particle moves werg 211] —0.45400 [123] 0.59579 [213] 0.59579

orientation inversions, implemented through the reversal 0f132] 0.17137 [312]  0.17137 [143] -—0.27083

the appropriatel; vector. Volume change moves were at-[413] ~ —0.27083 [220] —0.56137 [222] —2.78379
tempted, on average, once every two MC sweeps, where orié&24] 241676 [231] 0.31104 [321] 0.31104
sweep represents one attempted move per particle in the sy33] 0.45382 [323] 0.45382 [242] 0.38115
tem. Within these volume change moves, each box dimer-422] 0.38115 [244] —1.69388 [424] —1.69388
sion was allowed to change independently so as to minimizg246 1.40664 [426] 1.40664 [330] —0.07836
the influence of the periodic boundary conditions during thg 440  —0.17713 [442] —0.52246

formation of possible smectic phasg20]. Typically, run
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from a low density phase with a fully isotropic initial distri- of numerous bilayerlike domains. While the local order
bution of particle orientations. The second was an expansiowithin these domains was very high, orientational correla-

sequence, the starting configuration for which was generateiibns between the domains were weak. This multidomain
by taking a high density configuration obtained from thestructure persisted even when runlengths were extended sig-
compression sequence and inducing the particle axes to alignificantly.

with the (0,0,1) direction. This was achieved by applying a The failure of these hard-particle systems to reproduce the
uniform field with this orientation to the system and assum-density-driven nematic-isotropic transition shown by the
ing a strong molecular coupling via a positive dielectric an-equivalent soft particle model is a surprising result; by con-
isotropy. trast, the nematic-isotropic transition densities of the hard

The equation of state and nemat(®,), and polar{P;)
order parameter dati21] obtained from these simulations
are shown in Fig. (). Surprisingly, the results obtained
from the compression sequence show no spontaneous order-
ing, and at all densitie&P,) falls short of the values typical
of a nematic phase. In contrast, the expansion sequ@vitte
a field-aligned initial configurationperformed on this sys-
tem has some reasonably higR,) values, consistent with
nematic order being present at the higher densities consid-
ered. The discrepancy between these two sets of order pa-
rameter values is also seen in the equation of state data and
indicates a failure of this system to equilibrate at densities
p*>0.30. We return to the causes of this nonequilibration
below.

An equivalent compression sequence was performed us-
ing a system of 1000 particles with elongatiks5. This
system was studied since increasing particle shape anisot-
ropy generally promotes mesophase formation. While the
equation of state data obtained for this system showed a
slight inflection and(P,) attained values of 0.BFig. 1(d)],
the behavior expected for an isotropic-nematic transition was
again absent. Configuration snapshots from high density runs FIG. 2. (Color onliné Configuration snapshot for the truncated
performed using this systeife.g., Fig. 2 showed that the Stone-expansion model witk=5 andP* =2.5. Color coding in-
modest order parameter values resulted from the formatiodicates orientations.
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Gaussian overlap modg22] are virtually identical to those equilibration noted above, we have measured the particle
of the equivalentsoft) Gay-Berne system3,24. Indeed, mobility in our systems by computing the mean square dis-
the failure of our hard pear systems to form nematic phaseglacement

could be taken as an indication that particle shape did not

contribute significantly to the mesophase formation pro-

cesses seen in Rdfl4]. To assess both this and the non- (Sr2(n))y={(r,—ro)?, (4)

(31 A — g o : (231 JE A — gy e :
4.0

20

(c) Parallel particles. (d) AntiParallel particles.

FIG. 4. Contact surfaces for the truncated Stone-expansion modekwigh(a,b) andk=5 (c,d).
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wherer,—rq is the displacement vector moved by a particleior we have observed here is simply a simulation bottleneck
in n consecutive MC sweeps and the angular brackets indiassociated with the isotropic-nematic transition or a genuine
cate an average over all particles and the run length. In M@re-empting of the nematic phase by a glass. While we are
simulations with fixed maximum particle displacement, notin a position to give a categorical answer to this question,
Brownian diffusion dictates thatér?(n)) should increase the evidence we do have suggests the latter to be the case.
linearly with n in a fluid phase. Instead, tiér2(n)) data for ~ All of our k=3 simulations withp*>0.30 (i.e., those in
k=3 [Fig. 3(@)], show that, as the density was increased, théoth the compression and expansion sequerieeslow par-
mobility of the particles decreased dramatically, indicatingticle mobilities, the effective diffusion coefficient decreasing
the onset of glassy behavior. This observation is certainlynonotonically with increase in applied pressure. This indi-
consistent with our earlier conclusion that equilibration wascates that if there is a region of fluid, nematic phase stability,
not achieved at high densities; for both of our simulationit lies beyond the pressure values considered here; we have
sequences fdk= 3, the sampling of configuration space will certainly found no evidence that the nematic phase seen in
have been poor fos* =0.30. For thek=5 system, the mea- Ref.[14] is preserved when the=3 model is stripped of its
sured mobility again showed a marked decrease with inattractive interactions. From this change of phase behavior,
crease in density, although it did not reach the very lowwe infer that, for this system, the presence of attractive in-
levels found atk=3 [Fig. 3(b)]. We note, however, that teractions affects the local packing of the particles—the at-

(8r?(n)) does not distinguish between single particle diffu- tractive wells, being located at> o(U; ,Uj,r;;), provide a
sion and en-masse mobility of larger assemblies such as thReans by which the particles can escape from the interlocked
bilayer domains seen in Fig. 2. arrangements that dominate the equivalent hard particle sys-
The low mobilities found at high densities in these sys-tem at high densities. We are not aware of any other model
tems can be explained by considering details of the shapsystem for which both shape anisotropy and attractive inter-
parameters obtained by truncating expansi¢?) at actions are required to promote a nematic-isotropic transi-
{L1,Lo,Lgt=1,...,6. Toillustrate this, we show, in Fig. 4, tion. For thek="5 hard particle system, while the measured
sample shape parameters for parallel and antiparallel particl@obility did decrease with increase in density, it did not drop
configurations(i.e., (uj-u;))=—1 and 1) for bothk=3 and  as far as that found &=3. That said, the tendency of this
k=5. These reveal that the contact functions used in ougystem to form local bilayerlike packing arrangements is in
simulations were not purely convex, as had been supposedonflict with the usual mechanisms of nematic phase forma-
but had significant ridges. We suggest that in k&3 simu-  tion (e.g., diverging orientational correlationgeading us to
lations, these nonconvex features were sufficient to preveronclude that here, too, the nematic phase is probably never
particles from sliding past one another and so gave rise tetable.
locked configurations. For th&=5 particles, for which Faced with this unexpected phase behavior, we present, in
strong local ordering was achieved, we note that the shapge following section, an alternative, parametric approach to
parameter for antiparallel particlg¢8lustrated in Fig. 4d)]  developing noncentrosymmetric single-site models. By ap-
has an equatorial ridge which presumably leads to the inteplying this approach to the Beer pears used as a basis for
locked bilayer structures so prevalent in Fig. 2. the truncated Stone-expansion models used in this section,
These problems are similar to those encountered in Refve then derive a series of pear-shaped models for different
[25] where simulations were performed using a seven sitgarticle elongations and perform MC simulations to investi-
linear hard sphere chaifLHSC) model. This model was gate their ability to form mesophases.
found to form metastable glassy states in the vicinity of the
isotropic-nematic transition due to the nonconvex shapes of B. The parametric hard Gaussian overlap model
the particles which inhibited their ability to slide past one

another. The tendency of these systems to become irretriev- 1. Computation of the contact distance

ably interlocked was overcome in R¢R5] by the use of We start with the generalized expression for the shape
reptation moves. This solution was not available to us hereparameter that governs the interaction between a pair of
however, since ours is a single-site model. uniaxial, but nonidentical, ellipsoidal gaussiaris8]. This

Once in a stable nematic phase, the LHSC model provedxpression, which itself is an approximation to the hard el-
to be reasonably well behaved, exhibiting a stable nematitipsoid contact function for nonidentical ellipsoid26],
region and undergoing a reversible nematic—sme&tian-  gives the contact distance between parti¢clesdj of elon-
sition. This raises the question of whether the glassy behawationsl;,|; and breadths; ,d; as

1 az(Fij'ai)2+ a’iz(";ij'aj)_z)((?ij'ai)(Fij : l]j)(ltli'l]j) ]1/2
X 1_X2(ai'aj)2

a (Ui, Uj,Tij)=0g

©)

with

d7 +d?
0T N2
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/
2_{(!?—d?)(lf+d?) v

CL13-d)(12+d?)

(12-d)(12-d))] "

(IF+d))(17+d?)

If, alternatively, brackets containing the length and breadth values are grouped as
A=(17-d}), B=(f-d}),
C=(If+d)), D=0f+d)),

the shape parameter can be rewritten as

~ A ~ A TN N S e )
AC(rij . Ui)2+ BD(I’,J 'Uj)Z_ZAB(rij 'Ui)(rij 'Uj)(ui' UJ) e

CD—AB(U; - U;)?

(6)

U(l]i ,l]j yFij):UO 1-

In practice, this form, being free of possible division by zerothat approximate other convex and axially symmetric particle
or complex numbers, is better suited for implementation inshapes. We note, however, that since the PHGO'’s departure
computer simulation codes. from the conventional HGO shape parameter is based, in
The limitation of expressioli6) is that it is restricted to  part, on the interparticle vectoy; , it ignores some possible
partiCleS with enipSOidal Symmetry. The thrust of this SeCtionc|ose contacts and iaot therefore, suitable for mode”ng
is to illustrate that, since Ed6) is valid for any set of par-  particles with concave surface regiofesg., dumbbells For
ticle axis lengthd;,l;,d;,d;, it can also be used for some gystems that do satisfy the convexity criterion, however, the
s_ltuatlons in which these axis Iengths, rather than being helgpproximations inherent in the PHGO approach are out-
fixed, are allowed to vary parametrically. _ weighed by the advantages: it yields an analytical form for
As an illustration of this, we consider the properties of Athe shape parameter, making it suitable for either MC or MD
pear-shaped p?‘”‘c'e: When i'gs sharp end _interacts, it "Simulation and is eésy to embed into a Gay-Berne type
sembles a particle with a relatively largal ratio, whereas model; it introduces little computational overhead, beyond

its blunt end corresponds to did ratio rather nearer to . . ) .
unity. In generating smooth variation between these two Iim-T[hat required to simulate the standard HGO model; and, since

iting cases, a multitude of parametric forms is possible: her% is a simple generalization of the HGO model, it can readily

we restrict ourselves to makingandd; simple polynomials e used to represent some or _aII of th? particles in a_multl-
~oa - component mixture or a multisite modéhdeed, extension
of the polar angler(;- u;), that is

to polydispersity and/or dynamic particle shape variation is

-~ - ~ quite straightforward
di(rij-u)=agoet - +agn(ri-up)" (7)

A A N~ A 2. Parametrizing Beier pears
li(rij-up)=ay ot - - - +ay m(rij-up)™ (8) .
In order to test the PHGO approach, we have used it to
fgenerate shape parameters for pear-shaped particles based on
@iner-curves(i.e., the same target system as was employed
) . A A In Ref.[14]). For this, the ideal particle shape was first de-
of this parametric approach om(u;,u;,r;;) is transparent: o mineq geometrically using a combination of twozie
through the coefficients, B, Ci anP’ it simply introduces curves as shown in Fig. 5. This geometry is very similar to
higher order dependence ofu; ,u;,r;;) on the scalar prod-  that used in Ref[14], the exception being that we took
ucts ;- u;) and (; - u;). On a more practical level, we note pointsq, andqs to be coincident. This has the advantage of
that restricting the shape parameter expansion to polynomiafsaking the Beier points’ coordinates more easily scalable
in these dot products has the benefit of making it readilywith the desired length to breadth rakoThe coordinates of
usable in a molecular dynami¢®D) simulation. To reflect the Bezier points used are given in Table II.
the generalization introduced by this approach, we name the From these points, it is possible to extract the coordinates
resultant class of models the parametric hard Gaussian ovesf any point on the curvg27]. By taking these Bger curves
lap (PHGO. to correspond to the contact surface between a pear shaped
As we show in the following sections, by working particlei and a point probg [i.e., takingl;=d;=0 in Eq.
through a specific example, this parametric approach can b@)], it can readily be shown that these points need to be
used to generalize the HGO model to give shape parametefisted by the particle-point shape parameter

While this restriction limits, to some extent, the range o
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" " " " TABLE lIl. Values of ay ,, anda, , for the PHGO model with
20 1 Q2 ¢ 43 . k=3, 4,and 5
10l / ho k=3 k=4 k=5
ag0 0.501852454 0.501377232 0.497721868
0.0} q; a4 . ag1 —0.141145314 —0.129608758 —0.123155821
) N a2 —0.060542359 —0.074219217 0.024405876
1.0t \ h ags 0.225813650 0.484166441 0.723627215
) “ ag4 0.832274021 0.923492941 0.389831429
20 L q ." Gy ‘..q ays —1.015039575 —1.987232902 —3.018638148
s e age ~2.504045172  —2.943008017 —1.951629076
20 -10 00 10 20 ag7 1.375313426 2.808075172 4.413215403
ags 3.196830129 3.815344782 2.998417509
FIG. 5. Beier point geometry corresponding to the pear shapea, g —0.699241457 —1.426641750 —2.241573216
used for the PHGO model. For an elongation 3, 0¢=1.0, and ag.10 —1.430400139 —1.682476460 —1.416614353
h=2.0. ao 1.498259615 1.995906501 2.493069403
a g —0.002027616 —0.004518187 —0.008067236
a(u;,rij)
_ di(rij - upli(rij - up) antiparallel. The orthogonal caéghich is not shown since it
[|i2(FiJ. 0)+ (U fij)Z{diZ(fij . l]i)_|i2(fij . Gi)}]l’z' is rather unprepossessirig a more severe test since here the

point of contact is often well away from the line of centers.
9 We have found that this case gives an asymmetrical lobe
. . . . . hape, which we have found to be consistent with the equiva-
To achieve this, various polynomlal fgrm§ were considere ent surface given by the models of REL4]. Importantly,
for the expansions ofli(r;;-u;) andli(r;;-u;) in Egs.(8),  we note that all three of the PHGO contact functions consid-
these being fitted numerically using a simplex least squaregred in this way are almost perfectly convex, and, so, should
minimization meth0(ﬂ28:| Good fits were obtained by taklng not be prone to the |0cking-up suffered by the truncated
eleven terms in the particle breadth polynomial and two instone function expansion models simulated in Sec. Il A. In
the length polynomial. Full sets of the coefficients obtainedhe following section, we go on to investigate both this as-
are given in Table Il for partiCles with overall aSpeCt ratios sertion and the genera| app||cab|||ty of our parametric mod-
k=3, 4, and 5. els to molecular simulation by performing consta¥PT

In order to assess the accuracy of this fitting procedureponte Carlo compression sequences on PHGO pear systems

we present in Fig6 a plot comparing the target Ber curve  wjth k=3, 4, and 5.
and the corresponding fitted shape parametekfob. The
strong correspondence between these datasets, while encour- 3. Simulation results
aging, does not guarantee that t_he particle-particle potential In order to test our models, we have examined their phase
will be as required. To assess this more fully, we C(_)rppme%ehavior via MC simulations in the isothermal-isobaric en-
the contact surfaces between two pears as a functiany of semple usingu=1000 particles and a series of increasing
uniformly distributed on the unit sphere. For this, the orien-pressures. Three particle elongatioks: 3, 4, and 5, have
tationsu; andu; were held fixed and the three casgs-u;  been studied, their phase behavior being assessed through the
=(0,0,1), uj=—u;=(0,0,1), andu;=(0,0,1);;=(0,1,0)  variation of the number densify* and the polar and nematic
were considered. The parallel and antiparallel surfaces are

shown fork=5 in Figs. 7a) and qb). As required, an ap- 3.0 ' T data
proximately ellipsoidal contact surface is obtained when the 20 | fit —— |
two particles are parallel, and a pear shape when they are
1.0 ¢ 1.0 +
TABLE Il. Coordinates for the pear-shapedZ& points used y 0.0} 05
for the PGHO model.
40+ 0.0 +
q X y 20! -0.5 : : . )
1 0.2 0.3 04 05 0.6
d; — 30 0.0 3.0 L . .
d2,03 0.0 2koy 0.0 0.5 1.0 1.5 2.0
Ua 300 0.0 X
Js 1.0 —%kao FIG. 6. Fit of the PHGO mode(line) to the Beier curve
Je -1.0 —2koy (points for k=5. Equivalent curves fok=3 and 4 are similar but

with better agreement.
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FIG. 7. Contact surfaces for the PHGO model with an elongatie®. For shorter elongations, the shapes are similar but smoother.

order parameteréP,) and{P,), respectively. The volume tional ordering for these system{$,) remained nearly con-
change scheme used here was the same as that used with #tent at around 0.0 whiléP,) failed to reach the values
Stone expansion model and typical run lengths werg>0.6) characteristic of nematic order. However, for both
0.5x 10°—1x 10° for equilibration and production. elongationsP* (p*) had an inflection suggesting proximity

The improved equilibration behavior of these systemso a weak phase transition. These features coincided, ap-
meant that the very long runs used previously were unnecegroximately, with the broad maxima seen in the correspond-
sary here. The results of these simulations are illustrated bing (P,) curves. This suggests that even if no nematic phase
the plots presented in Fig. 8. For the sake of brevity, resultgss shown by these systems, some other high density phase
for thek= 3 system are not shown here since they are qualimay have been formed here. We note that for these systems
tatively the same as those found for 4. the particle mobilities, monitored via their mean square dis-

The behavior of the order parameters for the two lowermplacements, changed little throughout the density range con-
values ofk indicates that there was no long range orienta-sidered in these simulations.

6.0 . v 0.20 7
5.0 t E (P1) ---e---
0.15 } 1
4.0 -
e
P 30 - 010
20 } &
0.05
10} P
M.....““m
0.0 . . . 0.00 + . .
0.12 0.16 0.20 0.24 0.28 0.12 0.16 0.20 0.24 0.28
p' y FIG. 8. Results from constant
(a) k=14 NPT simulations of the PHGO
model obtained withk=4 (a,b
4.0 ' ' ‘ 1.0 andk=5 (c,d) and system sizes of
08 | N=1000 particles.
3.0t
o 0.6
P’ 20 = o4l
o
10} {7 o2t
0.0 | 2»--¢ - mmeumucssses o+ 405 000
0.0
0.08 0.12 0.16 0.20 0.24 0.08 0.12 0.16 0.20 0.24
p P
©) k= d k=5
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FIG. 9. Pair correlation functiong™(r,) and gﬁ“‘"(ru) resolved parallel and perpendicular to the molecular orientation for PHGO
particles with elongatiok=4.

More insight into the high density arrangements adoptedrientationally ordered phase. A corresponding plateau in the
by these systems has been obtained through computation Bff (p*) curve and a configuration snapsliBtg. 11) confirm
the pair correlation functions resolved para[lg[“"(ru)] and this assessment. At higher densities, secondary features are
perpendiculaf g™(r, )] to the particle orientations; (the ~ a@pparent in bottP,(p*) and P*(p*), indicating the pres-
superscript mol is used to indicate that molecular, rather thaRNC€ Of & second phase transition. The nature of this third
director orientations were used to calculate these fungtionsPh@se was determined by computation of the pair correlation
These are shown in Fig. 9 fér=4, and indicate local smec- functions resolved paralle[g(r))], and perpendicular
ticlike arrangements with anti-parallel alignment of nearestg, (r,)] to the directom as shown in Figs. 12) and 12b).
neighbors within layers. However, the decay of the oscilla-These graphs show that for pressures above that of the sec-
tions in gﬁ“"'(ru), coupled with the low correspondind,) ond phase transi?iorgH(rH) became periodic, indicating the _
values, indicate the absence of long-ranged smectic ordepnset of a smectic phase. Moreover, the decay of the oscil-
Configurations snapshots illustrate these structures modations ing, (r ) further indicates this to be a smecic A
clearly. As can be seen from Fig. 10, wits4, upon com-  shapshot configuration from this high density region con-
pression, these systems formed convoluted, space filling bfirms this identification, a highly interdigitated bilayer smec-
layer structures, the bilayers being planar in some regionic A, phase being seen, in which the molecules in adjacent
and highly curved in others. The presence of these curvel@tyers are almost perfectly antiparallel. This antiparallel ar-
regions makes these systems qualitatively different fronfangement is apparent from the peak splitting observed in
those seen in the=5 truncated Stone-expansion mog¢ia-  g)(r|); the short peaks correspond to the distinct natural
call Fig. 2, where the orientations of the bilayer domains Separations of particles in the two possible antiparallel ar-
changed discontinuously with position. rangements. Similar behavior has been observed in simula-

For thek=5 PHGO pear model, a very different situation tions of Gay-Berne systems with longitudinal terminal mo-
was found. While(P,) remained resolutely at zero for all lecular dipoles/29]. Comparison of they(r)) and g, (r,)
densities, confirming an absence of polar ordBs) showed data obtained at different pressures in the rarige
the well known “S” shape characteristic of an isotropic- =2.4-3.8, shows an interesting compressibility behavior.

nematic transition and reached the values expected for @dpon increasing the pressure in this range, the system den-
sity rises and intralayer particle separations decrease slightly

but the bilayer separations incred$égs. 12a) and 12b)].

From the measured)(r) data it is found that the distance
between the main peaks, which corresponds to the separation
of the bilayers, increases from 7.38 to 7.66. The distance
from the main peak to the first minor peak, which corre-
sponds to the strongly interdigitating “tail-tail” configuration
increases from 2.49 to 2.76, whereas that to the second mi-
nor peak, corresponding to the weakly interdigitating ‘head-
head’ alignment remains effectively constant at 4.85. Thus,

e =
- TR é d [ . . . . .
f‘\‘—* - ' - ‘~ : the in-plane compression induced by this increase in pressure

leads to a 10% increase in the separation within the interdigi-
tated bilayers that comprise the smectig ghase.

(a) isotropic (b) domain ordered 1. DISCUSSION AND CONCLUSIONS

FIG. 10. (Color onling Configuration snapshots of systems of  In this paper, we have investigated the mesogenic behav-
N=1000 PHGO particles with=4 atP* =1.80(a) and 5.00(b). ior of two classes of model hard pear-shaped particles, both
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(a) isotropic (b) nematic (c) smectic

FIG. 11. (Color onling Configuration snapshots of systemshbf 1000 PHGO particles witk=5 andP* =1.00a), 1.50(b), and 2.80
(©).

based on a target shape built using @iBecurve. The first plicity and ready transferability of the PHGO model suggest
model considered used a truncated Stone expansion approditiat it may be of considerable utility in the generic modeling

to generate the particle-particle contact distance numericallg@f self-assembling systems. Here, we have found that the
Although the Gay-Berne version of this model was well be-smooth, convex contact surfaces of a PHGO hard pear model
haved, giving nematic and smecficmesophaseil4], these  Yield stable nematic and bilayered smedalic phases. Inter-
were not found on removal of the attractive interactions. €stingly, these phases are only seen when the particle aspect
Rather, the nonconvex regions of the contact surfaces irfatio is increased te=5, whereas hard ellipsoid systems are
duced the particles to interlock, leading to the formation of<nown to form a nematic wittk values as low as 2.7580].

multidomain and glassy phases. For this model, therefore, ffuturé work exploring the behavior of the PHGO hard pear

appears that the nematic-isotropic transition is not driven bg‘)del will include a more thorough study of its flexoelectric

particle shape alone: long-ranged orientational order is onl roperties, and an investigation into the applicability of the
seen when the shape is softened somewhat, by the incorp HGO shape parameter in theoretical approaches commonly

ration of attractive interactions. Used fo study liquid crystals.

The second hard-pear model considered here was bas_ed ACKNOWLEDGMENTS
on the PHGO approach, a route to noncentrosymmetric
shape parameters which we have introduced in this paper. F.B. acknowledges Sheffield Hallam University’s Materi-
While the PHGO shape parameter is not determined from als Research Institute for support and the EU for financial
full evaluation of the appropriate Gaussian integral, the apsupport through Contract No. TMR.FMRX CT970121 in re-
proximation it makes, that locally a noncentrosymmetric parspect of extended visits he made to Bologna. D.J.C. thanks
ticle closely resembles an appropriately chosen ellipsoid, i$an Withers for discussions which stimulated the develop-
intuitively reasonable. Furthermore, the computational simment of the PHGO approach.

gy{ry)
P
a,(ry)

-0 8 6 4 2 0 2 4 6 8 10 0.0 1.0 2.0 3.0 4.0 5.0 6.0
tlog Hog

(a) gy(ry) (b) gi(ry)

FIG. 12. Pair correlation functiorg, (r,) andg(r) resolved parallel and perpendicular to the director for PHGO model particles with
elongationk=5.
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