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Pseudo-Casimir force in chiral smectic liquid crystals
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We present a theoretical study of the pseudo-Casimir force in two chiral smectic systems: a homeotropic cell
and a free-standing film. We consider the interaction induced by the fluctuations of orientational order. We
demonstrate how the character of the force depends on the type of fluctuation modes and on boundary
conditions. We focus on the temperature dependence of the force, which is marked by the vicinity of the
smecticA* —smecticC* phase transition. We find that at this transition the force diverges if the system is
frustrated; otherwise it remains finite. We expose the analogy between the force in these smectic systems and
in previously studied nematic systems, thus demonstrating the universality of the pseudo-Casimir interaction.
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[. INTRODUCTION tails of the theoretical model are explained in Sec. Il.
We calculate and analyze the pseudo-Casimir force in two
The interest in fluctuation-induced interactions startedconfined smectic systems with planar geometry. In Sec. llI
with Casimir’'s pioneering work on the attraction betweenwe consider the pseudo-Casimir interaction in the homeotro-
isolated conducting walls induced by the vacuum fluctuafic cell. We distinguish two cases with the temperature of the
tions of the electromagnetic fieldl]. This work was fol- ~ SystemT being either above or below the SAf— Sm-C*
lowed by studies of the Casimir effect in a large variety ofbulk phase transition temperatufig . In the first case T
physical system§2] such as liquid crystals, which are char- >T¢) the emphasis is given to the effect of anchoring
acterized by “softness” and richness of phases. Ajgéaral.  strengths on the force, and we extend the conclusions of the
considered the pseudo-Casimir force for the simple geometrrevious studie$d, 11,13 to the smectic case. In the case of
of two flat parallel plates immersed in nematic, smectic, andl <T. we restrict our analysis to cells thin enough such that
columnar liquid crystal phasd$,4]. The smectic case was the equilibrium structure is still homogeneous 2; due
actually studied even earlier by Mikhe¢§]. These results to the homeotropic anchoring. This is an example of a “frus-
were generalized to rough substraftes] and finite strength trated” system as the tendency of the smectic director to tilt
of surface interactiofi8]. Prenematic and presmectic wetting is suppressed by the surface interaction. In Sec. IV we ad-
systems with inhomogeneous equilibrium ordering., non-  dress the pseudo-Casimir interaction in free-standing smectic
trivial ground statg were studied in Refd.9,10]. Recently, films. We consider two cases: the free-standing Amfilm
most of attention was paid to the so-called “frustrated sys-and the free-standing S@* film. We introduce a simple
tems” such as the nematic hybrid and the Freedericksz cefhodel of internal anchoring at the free surfaces. We restrict
[11]. Studies were also extended to the chiral nemafi€s  our attention to the films with the homogeneous equilibrium
The extensive theoretical efforts have unfortunately not yeprofile, and do not consider the possibility that in free-
been followed by experimental confirmations. The possibili-standing smectic films the ordering of molecules in surface
ties of the experimental detection of the pseudo-Casimitayers can be different from the ordering in interior layers
force in liquid crystals were thoroughly discussed in Ref.[19]. Throughout this paper we compare our results with the
[13]. Some recently performed experiments on the spinodabrevious studies in nematic systems and demonstrate the uni-
dewetting of thin nematic filmgl4,15 seem to offer a prom- versality of the pseudo-Casimir interaction. Its behavior de-
ising method for the indirect identification of the pseudo-pends on the type of fluctuating modése., “massive” or
Casimir and van der Waals forcgs6,17]. “massless’) and on the boundary conditions, while other
In this paper we present a theoretical study of the pseudddetails of the system do not play an important role. We sum-
Casimir effect in chiral smectics. We consider the interactionmarize and comment our results in Sec. V.
induced by the thermal fluctuations of the orientational order.
T_he ef_fect of the fluctuations of .spon.taneous polarization is Il. THEORETICAL MODEL
simplified by the use of the adiabatic approximatidr8].
The fluctuations of the positional order, discussed in The theoretical model is based on the Landau free energy
Refs.[3-5], are not treated here. Our analysis is based on thexpansion in the vicinity of the Sm®* —Sm-C* phase
phenomenological Landau-type description of thetransition[18,20,21. The primary order parameter of this
Sm-A*—Sm-C* phase transition, while fluctuations are transition—a two-dimensional vectoé=(¢,,&,)—repre-
treated within the Gaussian approximation. The surface insents the average tilt of moleculé<., directoy with respect
teraction is described by the Rapini-Papoular model. The deto the normal to smectic layers, , &, are the projections of
the tilt onto the smectic planex{y). The secondary order
parameter is the spontaneous polarizatiBe (P, ,Py),
*Electronic address: bostjan@fiz.uni-lj.si which is oriented parallel to smectic planes—perpendicular
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to the director and to the layer normal. The polarization fluc- _; i W
tuations are much faster than the director fluctuations Z= T 2
[18,21]. We shall therefore make the usual assumption that

the polarization is always in equilibrium with the director, I O O O A

and perform our calculations retaining only the orientational N O N O I O

order parameteg. This is the so-called “adiabatic” approxi- N N I O N I N |

mation[18]. We will also not consider the fluctuations of the =0 NN 1 W,
positional order, which are not directly related to the

Sm-A* —Sm-C* phase transition. In this approximation the  FIG. 1. Homeotropic cell. The arrows indicate the preferential

Landau free energy density reads orientation of the director at the plates.
1 1 * ;
—f 4 24 2y 1 Ty £24 £2)2 rately. In the SmA* phase the mean-field value of the order
F=Ta 2a(T)(§X &) 4b(§x &) parameteg is equal ta0. In the SmE* phase the mean-field
de de 1 de,  dé\2 value of § is equal to§o= y(a/b)(T,—T), while £, ,=0.
AT e 2 Ky 2 The Hamiltonian densities of fluctuations then read
Xdz *¥dz) 2 ' dx dy ,
-2
1 de,  dé 2 4 dé 2 dé 2 _1 Y (5§H+5§l) 1 d(5§H) 2
+5Ky| = — 2| +5 —X> + == |, @ Miue=5Ks 252 [ T2 Taz
22 dy dx) 2 3\dz dz/ | pos]
d(éé)\%] 1 [[d(s d(8é,)\?
where a(T) is a temperature dependent coefficient that +( (dé)> +§K[( (d g”)Jr (dgl))
drives the phase transition abds a constant positive coef- z X y

ficient. The so-called Lifshitz term A[£,(d&,/d2) d(sg) d(8&,) 2
—&,(dé,/d2)] is responsible for the helical structure of the (d—_T)
Sm-C* phase, whileK; are the elastic constants. It is more y
convenient to represent the order paramgtar the rotating  here in the first term the upper line corresponds to the
SmC* phase. The transformation read§=¢;coslcd introduced the correlation lengths of fluctuations;
—¢, sin(0:2),§,=§ sin(:2)+ £, cos@z), where q. is the :(a/KS_qg)—llz andp=[2(—a/K3+q§)]’1’2. From Eq.
wave vector of the helix. The free energy density is NOW(3) it is seen that in the SmM* phase bothsg| and 8¢,
expressed with new parametefsand, : modes are “massive” with the correlation length whereas

1 1 in the SmEC* phase thes§| mode is “massive” with the

f=fp+—[a(T)— qui](§f+§f)+—b(éﬁ+§f)2 correlation lengthp and thes¢, mode is “massless” with
2 4 infinite correlation length.

, ()

1
EK IIl. HOMEOTROPIC CELL
1
2

e 5wl

dx  dy dy dx
2 5 The homeotropic cell consists of a Sii- material
(d_g) + (di) 2) trapped between two parallel flat plates separated by the dis-
dz dz tanceh (Fig. 1). Smectic layers are parallel to the plates. The
preferential orientation of the director at the boundaries is
where we have sét; =K,=K for simplicity. The coefficient perpendicular to the plates. In this case the surface contribu-
a(T) —KsqZ has the forma(T—T,), whereT, is the tem- tion to the free energy density reads
perature of the Smi* —Sm-C* phase transition in bulk
material andw is a positive material constant. 1 1
The surface interaction free energy is in both studied sys- fs=§W1§25(z)+ §W2§25(z— h), (4)
tems described by the phenomenological Rapini-Papoular
form Frp=3W, [sir?(&—&.)dS where & is the preferred where we allow for different anchoring strengthg ,W, at
value of the order parameter at the surface, arglands the plates, and retain only the harmonic term of the Rapini-
either for| or L. The anchoring strength is characterized byPapoular form. It is more common to represent anchoring
the coefficientw; . strengths in terms of extrapolation lengths defined \gy
The Hamiltonian of fluctuations is obtained by expanding=Ks/W;.
the free energy of a system around the equilibrium configu- As a consequence of these boundary conditions, the
ration. The order parameter is written as the sum of theSm-A* structure in the homeotropic cell is stable even below
mean-field value plus the fluctuating pagt- &+ 66=(&p  the bulk SmA* —Sm-C* phase transition temperatuTg .
+6€),€,01 6€,), and inserted into the free energy expres-In this case the system is in a “frustrated” state. Until the
sion [Eg. (2)]. We neglect higher order fluctuation terms, temperature is low enough, the anchoring on the plates pre-
keeping only the harmonic part of the Hamiltonian. Fromvails over the tendency of smectic to tilt. The temperature of
here on SmA* and SmE* phases have to be treated sepa-the transition from the Sm* structure to the deformed

3
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Sm-C* structure depends on the thickness of the cell. The ( )\1—1)\2—1+ 2
critical thicknessh. (at some fixed temperature<T,) is Lo ——— 1=
evaluated by minimizing the free energy of the system while PNy " H+Az7)
retaining only quadratic terms in the order paramgter

Niho—(y2p)?
he= 2, arcco(lz—). (5)
g V2p(N1+)y)

—-1/2
sinh(ph)+ cosl(ph)) , (8

and in the case gh?<0, Z, reads

11 —12
)\l )\2 - .

“(ﬁsm(phwrcoiph)) )
For the limiting case of the infinitely strong anchoring, ( P(Ap Ay %)
=0, \,=0) the critical thickness is equal to.= \2mp.
The transition from the SmA* to the SmE* structure inthe  where withp we now denote the absolute value. The first
homeotropic cell is analogous to the’ Edericksz transition  case corresponds to a harmonic oscillator in repulsive poten-
in the nematic homeotropic cé®2]. While the Fredericksz  tial and the second case to a harmonic oscillator in attractive

transition is driven by the quadratic coupling between ampotential, as can be seen from E@). The total free energy
external magnetic field and the director, in our case the tranof fluctuations can now be written as

sition is induced by an “internal,” temperature dependent,
smectic field. In this paper we will consider only the case of

h<hc, where the equilibrium structure between the plates is _ (T>T.)= keTSKs (= ( Ny NG T p? sinh(ph)
homogeneous SM*. flue 2m Kluy \pateag Y
A. Fluctuations free energy
: : +coshiph) | pdp (10
In order to obtain the free energy of fluctuatioks,,.,
we have to evaluate the partition functidn
for T>T. and
Z=eXp(—BFf|uc)=J exp(— BH[6&(r), 8¢, (r)])
kBTS Ks A IS +p
XD(5&|(r))D(3E, (1)), (6) Fro(T<To)= <. In(p()\l— sinh(ph)
where 8=1/kgT. Due to the translational invariance of the !
studied system in the-y plane, it is convenient to introduce kB TSKs((2p?
the Fourier transformations of fluctuating fields| , (r) +coshiph) |pdp+—— - .
:quxr[i(QXX"'ny)]gH,J_(qu)a where q:(qx1Qy)- The
Hamiltonian is now reduced to an ensemble of independent AN -p?
harmonic oscillators, H= Eq(Hq[gu]Jqu[gl]) In the Xl —p()\_1+)\_1) sin(ph)
Sm-A* phase, fluctuation modegq and¢, are degenerate. ! 2
The HamiltonianH H reads
q[f”] q[é:i] +COS(ph)) pdp7 (11
> 2
~ 1 h K ~ dg,
HQ[&,L]:EK?:S[j (71 Rscain ( d;) dz
0 for T<T., meanwhile replacing the sum ovgrby an inte-
gral.
+7\1_1§|_,i+)\2_1§+,i]' (7
B. Pseudo-Casimir force
where S is the area of the plates, = ,(z=0), and The structural force is defined as
& =§, (z=h). The partition function can now be factor- .
ized asZ=T114Z,[§]1Z4[£,1=114Z; and the free energy of F=- M']m. (12)

fluctuations can be written a8 .= —2KgT2gInZ,. The
partial partition functior¢, is analogous to the propagator of
a quantum-mechanical harmonic oscillat@8], with the ex-  Here the interaction free enerdy;,, is measured from a
ception that in the case of finite anchoring strengths, fluctuareference bulk free energyll]. We follow the procedure
tions at the boundaries should also be allowed. Such a prolwhere the interaction part of the free energies is identified by
lem was treated in Refl11]. factorizingF ¢, [EQgs.(10) and(11)] into a bulk contribution

The partial partition functiorZ, depends on the value of proportional toSh, a surface contribution independentfof
parametemp?= 5 2+ (K/K3)g>. If p?>0, thenZ, is pro-  and an interaction contribution, as described in [Ref].
portional to For T>T,., the force reads
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1 symmetric boundary conditior{strong-strong or weak-weak
2 P anchoring at the platgshe force is attractive, whereas in the
0.5 case of antisymmetric boundary conditigissrong-weak an-
choring at the platgshe force is repulsive. In our system it
R o is not very obvious which parameters determine the effective
anchoring strengths. It seerfisig. 2) that there are actually
b two different regimes. Wheh/ <1, the effective anchor-
-0.5 d ing strengths are determined hy/h and\,/h. In the case
of A\;/h<1 the anchoring is effectively strong; and corre-
-1 spondingly, ifA; /h>1, the anchoring is effectively weak. In
107 107 1 10 10 the second regime, whet® 7>1, the effective anchoring
h/n strengths are determined by parameterén and\,/ 7, us-

ing the same criteria as in the first regime. This can be ex-
~T,. The dependence of the reduced amplitBdn the parameter plained if we recall that the anchoring is effectively strong
hiz is presented for different sets of anchoring strengtias: ~ When the interaction between the substrate and liquid crystal
My /7=0.5, \y/5=0.5; (b) Ny/p=1, N\,/5=0.05; (c) N,/n IS stronger than the internal interaction in the liquid crystal

FIG. 2. Pseudo-Casimir force in the homeotropic cell Tor

=0.1, \,/%=0.01; and(d) \;/5=10, N,/ 5=0.05. [24]. The strength of the surface interaction is measured by
the extrapolation lengtha;. The internal interaction in-
ksTSKs = p2dp cludes_ two cont_ribu_tions, as can be seen from Bﬁ;.lthe
Cas™ — K ) = . “massive” contribution whose strength is characterized by
T Un (PN )(PFA; )exp(z h—1 7~ %, and the elastic contribution which scalestas'. At
(p—A;H(p—A.h P small h/ 5 the elastic contribution dominates, and the effec-

(13)  tive strength of the anchoring is obtained by comparing pa-

rameters\; andh. At large h/ » the “massive” contribution

This integral can be eyaluated num_eri_c_ally. AN a”a'Y“C_a_' €Xis dominant, and consequently, the effective strength of the
pression can be obtained for the limiting case of infinitely

X anchoring depends on parametgrsand 7.
strong anchoring at the plates (= 0,=0), All the lengths in Fig. 2 are scaled by the correlation
h length 5. The values of parameteks/h change by varying
exp{ —2—k) the parameteh/». Therefore the pseudo-Casimir force in
the first regime K/ »<<1) exhibits crossovers from attractive
to repulsive and vice verdéigs. 2b)—(d)]. The parameters
5 \i/n are fixed, therefore the character of the force in the
x(EJr Ek+ h_kZ)_ (14)  second regimef(/5>1) does not change. It should be kept
2 7 7? in mind that » is temperature dependent, and that the char-

) ) o ) acter of the force is, consequently, also temperature depen-
This result is analogous to the pseudo-Casimir force mducegem_ At large separationi{>1), the reduced amplitude

by massive fluctuation modes in the homeotropic nemaliq; saturates at a constant value. This shows that in this regime

ce_II [8]. The character of the pse_udo-CaSImlr force is dEter'he force has the same functional form as the leading term in
mined by the character of fluctuation modes, and correspong;

ing boundary conditions. In this case the fluctuation modeshe case of infinitely strong anchoringq. (14)], which de-

are massive, and therefore the force is short range. Sonféys as expt2h/7)/h. The saturation value is the largest

profiles of the pseudo-Casimir force for different sets of an-When the anchoring at the plates is either very strong or very

choring strengths are shown in Fig. 2. Presented is the ré_/yeak. It can be shown that in the case of very strong _anchor—
duced amplitude of the pseudo-Casimir force as compared t§9 at both plates X, /»,A,/7<1) the reduced amplitude
the force in the case of symmetric infinitely strong anchoringsaturates aR=1-2(\,/7+X\,/7) [Fig. 2c)], whereas in

o

keTSK; 1 S

FeadM=00=0)=—5 =2 5 3 —

conditions: the case of very weak anchoring at both plates
(N /7m,No/p>1) the saturation value IR=1-2(n/\,
FcadN1,A2,h,7m) + 7/\5). In the antisymmetric case where the anchoring at
- FeadN\1=0X,=0h,7)" 15 one plate is very weak\(; / 7>1) and at the other plate very
strong (\,/n<<1), the reduced amplitude saturatesRat
This is a generalization of the former work in nematig$ —1+2(n/N1+ N,/ 7n) [Fig. 2(d)]. The behavior of the force

where the contribution of massive fluctuation modes wasat large separations is substantially modified in the case of
considered only for the case of symmetric anchoring condiA;/7»=1, where the anchoring at one or both plates is nei-
tions (\;=N\,). The profiles in Fig. 2 can be explained by ther strong nor weak. It can be shown that in the first case the
the interplay of four characteristic lengths: distance betweeforce decays as exp@h/z)/h? and consequently, the re-
plates f), correlation length of fluctuationsz), and two duced amplitude goes to zero laty>1 [Fig. 2(b)]. In the
extrapolation lengths\(;, \,). Itis known from the previous case of\i/7n=\,/7n=1, the force decays even faster—as
studies of the pseudo-Casimir effddtl] that in the case of exp(—2h/7)/h°.
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The evaluation of the pseudo-Casimir force in the case of
“frustrated” homeotropic systemT<T,) is performed fol- 0.5 c d
lowing the same procedure as described above. However, it
should be noted that now the bulk reference structure is Foras
Sm-C*, while the structure between the plates is still T 0 NI
Sm-A*. The pseudo-Casimir force in the case DT,
reads

ke TSKs foc p2dp a

Feas™ — _ _
7 K| Jo (p+A7H(p+na5t -10 °5 0 5
(P+N )P+, )exp(2ph)—1 -

(P=ArH(P—AY
— N L FIG. 3. Temperature profile of the pseudo-Casimir force in the

1[(\7,))—1()\1 Ay t—pdcot(ph)y—p(N; t+A5h) homeotropic cell. We introduced a unitless temperature
- > . . . .
2 “1, -1_ 2 1 1 = ah“T/K3. The amplitude of the force is given in the natural unit

0 (M1 7ho 7= P Fp(Ay A, T)cotph) Fo=kgTSK;/Kh® (we neglect a weak temperature dependence of
1 Fo)- The force is plotted for different sets of anchoring strengths:
><p2dp+— _ (16) (@ N /h=0, N,/h=0; (b) \y/h=0.1, \,/h=0.01; (c) \1/h

12p3 =1, \,/h=0.05; and(d) A\, /h=10, \,/h=0.05.

(17). The last term is attractive and increases &s-()%2

It is again instructive to consider the pseudo-Casimir force irlNéar the structural transition, the repulsive divergence of the
the limiting case of infinitely strong anchoring.{=0, A,  S&cond term prevails.

=0), It is also important to note that because in the casé of
<T. and h<h, the system is in a “frustrated” state, the
ke TSKs[ £(3) ()L mean-field force is present as well. The mean-field force is a
Fead\1=0\,=0)=— === f consequence of a difference between mean-field free energy
4m K| p3 0 densities of the bulk referendee., Sm<C*) and the struc-

ture between plate6.e., SmA*). The mean-field force is
17) equal to

X cot(ph) 2d+1
phpdp+ g

2
The first term inF¢,s [Egs. (16) and (17)] has the typical Fur=(fc—fa)S=— % %(TC—T)ZS, (18
form of the pseudo-Casimir interaction induced by massless
fluctuation modes with infinite correlation lengths and is
dominant at smalh/p. This term is actually the same as the wherefc andf, are the free energy densities of the &rh-
interaction induced by director fluctuations in the homeotro-and SmA* phases.
pic nematic cell and was analyzed in detail in R&f3]. The To get an impression of the magnitudes of the pseudo-
second term becomes prominent in the vicinity of the strucCasimir and mean-field force, we use a reasonable set of
tural transition from SmA* to SmC*, where it diverges. material constantsa=4x 10" N/m?K, b=8x10° N/m?,
This repulsive divergence of the fluctuation-induced force iK3=3x10"1?N, T,=368 K, andK;/K=0.1 [18,25,26.
characteristic for the second-order transitions and is logarithWe take the thickness of the cell to be=20 nm and con-
mic, as noted in Ref[11]. The last term results from the sider the limiting case of infinitely strong anchoring. In this
difference of the bulk free energy of fluctuations in $th- case the system can be supercooled downTisT,
and reference Sra* configuration. The behavior of this —1.8 K. The pseudo-Casimir force obviously dominates
system is analogous to the nematicdttericksz cel[11], as  over the mean-field force at very small—T, however, its
we have already mentioned. amplitude in this region is also rather smalFc,s/S(T

The temperature profile of the pseudo-Casimir force in=T.)~—5 pN/um?]. It is more instructive to estimate the
the homeotropic cell, at some fixed thicknésss shown in  magnitudes near the minimum of the pseudo-Casimir force
Fig. 3. We measure the temperature in dimensionless unit$Fig. 3). Its amplitude is here about 50 piim?, which
t=(ah?K3)T. The behavior of the force in the reginte amounts to approximately 10% of the mean-field force. The
>t. was commented along with Fig. 2. On supercooling thepseudo-Casimir force could become more important near the
system (<t.) the force approaches some local minimum,structural transition where it diverges. But this divergence is
and eventually it diverges at the structural transition to theveak. We estimate that when approaching the transition to
Sm-C* structure. The stronger the anchoring at the platesapproximately 0.01 K, the amplitude of the pseudo-Casimir
the deeper the supercooling limit, and the more pronounceihteraction can reach about 200 pidh?, which is still less
the minimum. Except at smati,—t, the behavior of the than 20% of the mean-field interaction. In a more realistic
force in this regime is dominated by the frustration drivencase of finite anchoring strengths, the amplitude of the
part of the interaction—the last two terms in E¢$6) and  pseudo-Casimir interaction is reduced, as can be seen in Fig.
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then equal to Eq(13) inserting\;=A,=\. As mentioned,
this result is analogous to the pseudo-Casimir interaction in-
duced by massive fluctuation modes in nematics. Its depen-
dence on the anchoring strengthwas analyzed in Ref8].

7NN

N

a) B. Free-standing SmE* film
In this case the free energy of fluctuations is calculated
/[ / /7 /1 / using the Hamiltonian of the SI@* phase[Eq. (3)]. The
LT boundary conditions are assumed to coincide with the bulk
NV N VAN structure. The surface free energy density reads
LT
b)

1 1
fs=| 5 Wi(&— &j0)*+ Z W, &2 [ 8(2) + 8(z—h)].
) ) : o 2 2
FIG. 4. Schematic presentation of a free-standing smectic film: (20)
(& Sm-A*, (b) Sm-C*. (The period of the indicated helical modu-
lation in the SmE* film is not plotted to scalg. . .

Here we allow for different anchoring strengths for each

3. However, this does not necessarily mean that its ratio t&/P€ Of fluctuations. Performing the Fourier transfor-
the mean-field force is also smaller. In any case, one coulfhation 8&(r)== exp{|(qxx+qyy)]§,(q z), we obtain H
extract the fluctuation-induced interaction from the experi-= q(Hq[gu]ﬂLHq[gi]), where
mental data, provided that the interaction be measured at
several temperatures, and taking into account that the mean-
field interaction is thickness independent. .

LK
p K_sq

~_ 1 h

IV. FREE-STANDING SMECTIC FILMS Hol&il= 7KsS J;J K &

A free-standing film is formed by drawing a small amount K—gq
of smectic material over a hole in a metal or glass pl&tg.
4). The geometry of this system is identical as in the case of
the homeotropic cell. The smectic layers are oriented parallel N1
t_o the _free _surfac_e. The system again possesses the tr_ansla— +{ |1] (~§i—2 +~§I+ 2) | 1)
tional invariance inx-y plane, which enables us to Fourier
transform fluctuating fields as shown in the case of the ho-
meotropic cell, thus diagonalizing the Hamiltonian. How-
ever, there are now no plates imposing boundary condition
In our model we will asgume tha? therg exists sgme intern the upper line corresponds E(? and the lower tcE, . We
anchoring, which favors the surface ordering of the smecti@d2in introduced extrapolation lengthg=Ks/Wj and A,
to be the same as in the bulk system. This means that the K3 /W, . The pseudo-Casimir force is calculated following
preferred value of the order parameter at the free surfaces € prqcedure described in the case of the homeotropic cell.
a smectic film is equivalent to the equilibrium value inside 't CONSists of two terms:
the film. The mean-field structure of the film is therefore
homogeneous. The anchoring is the same at both free sur-

faces. We will consider two cases: a free-standing Am- _ ksTSK3 J'°° redr
film (T>T,) and a free-standing SK@* film (T<T,). Feas™ T 20 K| Jup (renhy
~ 2L exp2rh)—1
; * £ (I’ =\ 1)2
A. Free-standing SmA* film [
The evaluation of the pseudo-Casimir force in the 8&Mm- " r2dr

film is identical as in the above discussed case of the homeo- + f . (22)
tropic cell. The preferential orientation of molecules at the o (r+x;h?
surface is perpendicular to the smectic layers. The surface (r_M_l)zexp(Zrh)—

free energy density is equal to

The first one is typical for the pseudo-Casimir interaction

induced by massive fluctuations characterized by finite cor-
relation length p), and the second one for the pseudo-

Casimir interaction induced by massless fluctuations with in-
The anchoring at both surfaces is characterized by the exinite correlation length. Their dependence on the thickness
trapolation lengthh =K3/W. The pseudo-Casimir force is of the film h has been already commented in Sec. Ill.

fS=%W§2[5(2)+ 8(z—h)]. (19

021704-6



PSEUDO-CASIMIR FORCE IN CHIRAL SMECT.. .. PHYSICAL REVIEW E 68, 021704 (2003

0 at the boundaries of the homeotropic cell on the character of
the pseudo-Casimir force. We showed that in this case the
-0.02 pseudo-Casimir force can exhibit crossovers from the attrac-
~0.04 tive to the repulsive regiméand vice verspat small dis-
Feas tances(compared to the correlation length of fluctuatipns
Fo _o.06 between plates. At large distances the character does not
change, and the amplitude of the force is the largest when the
-0.08 anchoring at the plates is either very strong or very weak. In
both studied systems we focused on the temperature depen-
-5 0 5 dence of the force, which is especially interesting due to the

it vicinity of the phase transition. In the case of the “super-

FIG. 5. Temperature dependence of the pseudo-Casimir force iﬁOO|6d:: homeotr(?,p'ic (_:ell, which is yet another representa-
a free-standing smectic film. Again the unitless temperature UVe Of “frustrated” liquid crystal systems, we rediscover the
= ah?T/K is introduced. The amplitude of the force is given in the logarithmic divergence of the force at the structural transi-

natural unito=ksTSKs/Kh® (a weak temperature dependence of tion, already found in the nematic counterparts. At the tran-
F, is neglectell Presented is the limiting case of infinitely strong Sition from the SmA* to the SmE* free-standing film, the

anchoring;A=0 in the SmA* film and A\j=0, A\, =0 in the amplitude of the force is increased, but it does not diverge as
Sm-C* film. there is no frustration in the system. Here we should again
stress that our simple model does not include possible inho-
The temperature dependence of the pseudo-Casimir forseogeneous equilibrium structure of a free-standing smectic
in the free-standing smectic film is shown in Fig. 5. We film, with different surface and bulk ordering. In this case the
present the force only for the limiting case of infinitely critical behavior of the force could be substantially altered.
strong anchoring; that isy=0 in the SmA* film and \| The pseudo-Casimir force induced by the orientational
=0, A\, =0 in the SmE* film. Due to the symmetric bound- fluctuations which we studied in our paper, and the long-
ary conditions, the pseudo-Casimir force in the free-standingange interaction induced by the fluctuations of positional
smectic film is always attractive. It reaches the maximum aprder, studied by Mikhee{5] and Ajdariet al.[3,4], do not
the structural transition from the SAi to the SmE* film close the discussion on the fluctuation-induced forces in
(T=T,). Lowering or rising the temperature reduces the am-smectics. A complete description should incorporate both ef-
plitude of the force. In the SM* film there are two degen- fects, considering also the coupling between the orientational
erate massive fluctuation modes whose contributions to thand positional order. Due to this coupling the deformation of
pseudo-Casimir force decay rapidly while rising the temperathe positional ordefi.e., smectic layejsresults in the modi-
ture. In the SmE* film the contribution of the massless fication of the equilibrium director profil€27] which com-
mode is almost temperature independent, while the contribuglicates the situation considerably. However, in thin smectic
tion of the massive mode again decays rapidly away fronfilms the fluctuations of the positional order are suppressed
T=T.. The profile of the force is therefore asymmetric. by the confinemenf28]. Therefore we can expect that our
There is no divergence of the force at the structural transitiomnodel gives physically reasonable results. We also did not
from the SmA* to the SmE* film like in the homeotropic take into account that in chiral smectics, as a consequence of
cell. In our model of the smectic film, no frustration is in- orientational fluctuations, the polarization in the system is
duced by the boundary conditions; and consequently, the dRot homogeneous. This results in the appearance of space
vergence does not occur. The increase of the amplitude is ¢harge and leads to the Coulomb interaction in the system
consequence of the fact that when approachingT,, all  [29-34. We are not able to establish the importance of this
fluctuation modes become massless. We have already eséiffect in our systems at present. However, as this interaction
mated in Sec. lll that the amplitude of the forceTat T,  is especially prominent in systems with a large value of
for the film thicknessh=20 nm, is about 5 pNAm?. The  Spontaneous polarization, it is reasonable to assume that our
implementation of finite anchoring strengths does not signifimodel works well at least for materials with a small value of
cantly alter the temperature profile of the force but merelyspontaneous polarization. Furthermore, as the interest in the

reduces its amplitude. pseudo-Casimir interaction is mostly related to very thin lig-
uid crystalline films, the use of a discrete description of
V. CONCLUSION er]:jc[tllgj% instead of our continuous model should be consid-

In this study we analyzed the fluctuation-induced force in  The experimental detection of the pseudo-Casimir inter-
two smectic systems with simple planar geometry: homeoaction induced by the orientational fluctuations could be fa-
tropic cell and free-standing smectic film. We considered theilitated by its specific temperature dependence, related to
fluctuations of the orientational order. We demonstrated théhe presence of the phase transition. This could enable to
universal behavior of the pseudo-Casimir force—short-rangeéistinguish it from other interactions present in smectic sys-
interaction induced by massive fluctuation modes and longtems. Especially interesting is the “frustrated” system where
range interaction induced by massless fluctuation modes-the divergence of the force could be approached by varying
already discovered in previously studied nematic systemghe temperature while keeping constant thickness of the
We discussed the effect of different finite anchoring strengthsample. In free-standing smectic films, the force between the
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