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Pseudo-Casimir force in chiral smectic liquid crystals
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We present a theoretical study of the pseudo-Casimir force in two chiral smectic systems: a homeotropic cell
and a free-standing film. We consider the interaction induced by the fluctuations of orientational order. We
demonstrate how the character of the force depends on the type of fluctuation modes and on boundary
conditions. We focus on the temperature dependence of the force, which is marked by the vicinity of the
smectic-A* →smectic-C* phase transition. We find that at this transition the force diverges if the system is
frustrated; otherwise it remains finite. We expose the analogy between the force in these smectic systems and
in previously studied nematic systems, thus demonstrating the universality of the pseudo-Casimir interaction.
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I. INTRODUCTION

The interest in fluctuation-induced interactions star
with Casimir’s pioneering work on the attraction betwe
isolated conducting walls induced by the vacuum fluct
tions of the electromagnetic field@1#. This work was fol-
lowed by studies of the Casimir effect in a large variety
physical systems@2# such as liquid crystals, which are cha
acterized by ‘‘softness’’ and richness of phases. Ajdariet al.
considered the pseudo-Casimir force for the simple geom
of two flat parallel plates immersed in nematic, smectic, a
columnar liquid crystal phases@3,4#. The smectic case wa
actually studied even earlier by Mikheev@5#. These results
were generalized to rough substrates@6,7# and finite strength
of surface interaction@8#. Prenematic and presmectic wettin
systems with inhomogeneous equilibrium ordering~i.e., non-
trivial ground state! were studied in Refs.@9,10#. Recently,
most of attention was paid to the so-called ‘‘frustrated s
tems’’ such as the nematic hybrid and the Freedericksz
@11#. Studies were also extended to the chiral nematics@12#.
The extensive theoretical efforts have unfortunately not
been followed by experimental confirmations. The possib
ties of the experimental detection of the pseudo-Casi
force in liquid crystals were thoroughly discussed in R
@13#. Some recently performed experiments on the spino
dewetting of thin nematic films@14,15# seem to offer a prom-
ising method for the indirect identification of the pseud
Casimir and van der Waals forces@16,17#.

In this paper we present a theoretical study of the pseu
Casimir effect in chiral smectics. We consider the interact
induced by the thermal fluctuations of the orientational ord
The effect of the fluctuations of spontaneous polarization
simplified by the use of the adiabatic approximation@18#.
The fluctuations of the positional order, discussed
Refs.@3–5#, are not treated here. Our analysis is based on
phenomenological Landau-type description of t
Sm-A*→Sm-C* phase transition, while fluctuations a
treated within the Gaussian approximation. The surface
teraction is described by the Rapini-Papoular model. The
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tails of the theoretical model are explained in Sec. II.
We calculate and analyze the pseudo-Casimir force in

confined smectic systems with planar geometry. In Sec.
we consider the pseudo-Casimir interaction in the homeo
pic cell. We distinguish two cases with the temperature of
systemT being either above or below the Sm-A* →Sm-C*
bulk phase transition temperatureTc . In the first case (T
.Tc) the emphasis is given to the effect of anchori
strengths on the force, and we extend the conclusions of
previous studies@8,11,13# to the smectic case. In the case
T,Tc we restrict our analysis to cells thin enough such t
the equilibrium structure is still homogeneous Sm-A* , due
to the homeotropic anchoring. This is an example of a ‘‘fru
trated’’ system as the tendency of the smectic director to
is suppressed by the surface interaction. In Sec. IV we
dress the pseudo-Casimir interaction in free-standing sme
films. We consider two cases: the free-standing Sm-A* film
and the free-standing Sm-C* film. We introduce a simple
model of internal anchoring at the free surfaces. We rest
our attention to the films with the homogeneous equilibriu
profile, and do not consider the possibility that in fre
standing smectic films the ordering of molecules in surfa
layers can be different from the ordering in interior laye
@19#. Throughout this paper we compare our results with
previous studies in nematic systems and demonstrate the
versality of the pseudo-Casimir interaction. Its behavior d
pends on the type of fluctuating modes~i.e., ‘‘massive’’ or
‘‘massless’’! and on the boundary conditions, while oth
details of the system do not play an important role. We su
marize and comment our results in Sec. V.

II. THEORETICAL MODEL

The theoretical model is based on the Landau free ene
expansion in the vicinity of the Sm-A*→Sm-C* phase
transition @18,20,21#. The primary order parameter of thi
transition—a two-dimensional vectorj5(jx ,jy)—repre-
sents the average tilt of molecules~i.e., director! with respect
to the normal to smectic layers.jx ,jy are the projections of
the tilt onto the smectic plane (x-y). The secondary orde
parameter is the spontaneous polarizationP5(Px ,Py),
which is oriented parallel to smectic planes—perpendicu
©2003 The American Physical Society04-1
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to the director and to the layer normal. The polarization flu
tuations are much faster than the director fluctuatio
@18,21#. We shall therefore make the usual assumption t
the polarization is always in equilibrium with the directo
and perform our calculations retaining only the orientatio
order parameterj. This is the so-called ‘‘adiabatic’’ approxi
mation@18#. We will also not consider the fluctuations of th
positional order, which are not directly related to t
Sm-A* →Sm-C* phase transition. In this approximation th
Landau free energy density reads

f 5 f A1
1

2
a~T!~jx

21jy
2!1

1

4
b~jx

21jy
2!2

2LS jx

djy

dz
2jy

djx

dz D1
1

2
K1S djx

dx
1

djy

dy D 2

1
1

2
K2S djx

dy
2

djy

dx D 2

1
1

2
K3F S djx

dz D 2

1S djy

dz D 2G , ~1!

where a(T) is a temperature dependent coefficient th
drives the phase transition andb is a constant positive coef
ficient. The so-called Lifshitz term L@jx(djy /dz)
2jy(djx /dz)# is responsible for the helical structure of th
Sm-C* phase, whileKi are the elastic constants. It is mo
convenient to represent the order parameterj in the rotating
reference frame, which follows the helical structure of t
Sm-C* phase. The transformation readsjx5j i cos(qcz)
2j' sin(qcz),jy5ji sin(qcz)1j' cos(qcz), where qc is the
wave vector of the helix. The free energy density is n
expressed with new parametersj i andj' :

f 5 f A1
1

2
@a~T!2K3qc

2#~j i
21j'

2 !1
1

4
b~j i

21j'
2 !2

1
1

2
KF S dj i

dx
1

dj'

dy D 2

1S dj i

dy
2

dj'

dx D 2G
1

1

2
K3F S dj i

dz D 2

1S dj'

dz D 2G , ~2!

where we have setK15K25K for simplicity. The coefficient
a(T)2K3qc

2 has the forma(T2Tc), whereTc is the tem-
perature of the Sm-A* →Sm-C* phase transition in bulk
material anda is a positive material constant.

The surface interaction free energy is in both studied s
tems described by the phenomenological Rapini-Papo
form FRP5 1

2 Wi*sin2(ji2jis)dS, where j is is the preferred
value of the order parameter at the surface, andi stands
either fori or'. The anchoring strength is characterized
the coefficientWi .

The Hamiltonian of fluctuations is obtained by expandi
the free energy of a system around the equilibrium confi
ration. The order parameter is written as the sum of
mean-field value plus the fluctuating part,j5j01dj5(j i0
1dj i ,j'01dj'), and inserted into the free energy expre
sion @Eq. ~2!#. We neglect higher order fluctuation term
keeping only the harmonic part of the Hamiltonian. Fro
here on Sm-A* and Sm-C* phases have to be treated sep
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rately. In the Sm-A* phase the mean-field value of the ord
parameterj is equal to0. In the Sm-C* phase the mean-field
value ofj i is equal toj i05A(a/b)(Tc2T), while j'050.
The Hamiltonian densities of fluctuations then read

hf luc5
1

2
K3H h22~dj i

21dj'
2 !

r22dj i
2 J 1

1

2
K3F S d~dj i!

dz D 2

1S d~dj'!

dz D 2G1
1

2
KF S d~dj i!

dx
1

d~dj'!

dy D 2

1S d~dj i!

dy
2

d~dj'!

dx D 2G , ~3!

where in the first term the upper line corresponds to
Sm-A* phase and the lower to the Sm-C* phase. We have
introduced the correlation lengths of fluctuations:h
5(a/K32qc

2)21/2 and r5@2(2a/K31qc
2)#21/2. From Eq.

~3! it is seen that in the Sm-A* phase bothdj i and dj'

modes are ‘‘massive’’ with the correlation lengthh, whereas
in the Sm-C* phase thedj i mode is ‘‘massive’’ with the
correlation lengthr and thedj' mode is ‘‘massless’’ with
infinite correlation length.

III. HOMEOTROPIC CELL

The homeotropic cell consists of a Sm-A* material
trapped between two parallel flat plates separated by the
tanceh ~Fig. 1!. Smectic layers are parallel to the plates. T
preferential orientation of the director at the boundaries
perpendicular to the plates. In this case the surface contr
tion to the free energy density reads

f S5
1

2
W1j2d~z!1

1

2
W2j2d~z2h!, ~4!

where we allow for different anchoring strengthsW1 ,W2 at
the plates, and retain only the harmonic term of the Rap
Papoular form. It is more common to represent anchor
strengths in terms of extrapolation lengths defined byl j
5K3 /Wj .

As a consequence of these boundary conditions,
Sm-A* structure in the homeotropic cell is stable even bel
the bulk Sm-A* →Sm-C* phase transition temperatureTc .
In this case the system is in a ‘‘frustrated’’ state. Until th
temperature is low enough, the anchoring on the plates
vails over the tendency of smectic to tilt. The temperature
the transition from the Sm-A* structure to the deformed

FIG. 1. Homeotropic cell. The arrows indicate the preferen
orientation of the director at the plates.
4-2
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Sm-C* structure depends on the thickness of the cell. T
critical thicknesshc ~at some fixed temperatureT,Tc) is
evaluated by minimizing the free energy of the system wh
retaining only quadratic terms in the order parameterj:

hc5A2r arccotS l1l22~A2r!2

A2r~l11l2!
D . ~5!

For the limiting case of the infinitely strong anchoring (l1

50, l250) the critical thickness is equal tohc5A2pr.
The transition from the Sm-A* to the Sm-C* structure in the
homeotropic cell is analogous to the Fre´edericksz transition
in the nematic homeotropic cell@22#. While the Fre´edericksz
transition is driven by the quadratic coupling between
external magnetic field and the director, in our case the tr
sition is induced by an ‘‘internal,’’ temperature depende
smectic field. In this paper we will consider only the case
h,hc , where the equilibrium structure between the plate
homogeneous Sm-A* .

A. Fluctuations free energy

In order to obtain the free energy of fluctuations,F f luc ,
we have to evaluate the partition functionZ:

Z5exp~2bF f luc!5E exp„2bH@dj i~r !,dj'~r !#…

3D„dj i~r !…D„dj'~r !…, ~6!

whereb51/kBT. Due to the translational invariance of th
studied system in thex-y plane, it is convenient to introduc
the Fourier transformations of fluctuating fieldsdj i ,'(r )
5(qexp@i(qxx1qyy)#j̃i,'(q,z), where q5(qx ,qy). The
Hamiltonian is now reduced to an ensemble of independ
harmonic oscillators, H5(q(Hq@ j̃ i#1Hq@ j̃'#). In the
Sm-A* phase, fluctuation modesj̃ i and j̃' are degenerate
The HamiltonianHq@ j̃ i#5Hq@ j̃'# reads

Hq@ j̃ i ,'#5
1

2
K3SH E

0

hF S h221
K

K3
q2D j̃ i ,'

2 1S dj̃ i ,'

dz
D 2Gdz

1l1
21j̃ i , '

2 2 1l2
21j̃ i , '

1 2 J , ~7!

where S is the area of the plates,j̃ i ,'
2 5 j̃ i ,'(z50), and

j̃ i ,'
1 5 j̃ i ,'(z5h). The partition function can now be facto

ized asZ5)qZq@ j̃ i#Zq@ j̃'#5)qZq
2 and the free energy o

fluctuations can be written asF f luc522kBT(qln Zq . The
partial partition functionZq is analogous to the propagator
a quantum-mechanical harmonic oscillator@23#, with the ex-
ception that in the case of finite anchoring strengths, fluct
tions at the boundaries should also be allowed. Such a p
lem was treated in Ref.@11#.

The partial partition functionZq depends on the value o
parameterp25h221(K/K3)q2. If p2.0, thenZq is pro-
portional to
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Zq}S l1
21l2

211p2

p~l1
211l2

21!
sinh~ph!1cosh~ph!D 21/2

, ~8!

and in the case ofp2,0, Zq reads

Zq}S l1
21l2

212p2

p~l1
211l2

21!
sin~ph!1cos~ph!D 21/2

, ~9!

where with p we now denote the absolute value. The fi
case corresponds to a harmonic oscillator in repulsive po
tial and the second case to a harmonic oscillator in attrac
potential, as can be seen from Eq.~7!. The total free energy
of fluctuations can now be written as

F f luc~T.Tc!5
kBTS

2p

K3

K E
1/h

`

lnS l1
21l2

211p2

p~l1
211l2

21!
sinh~ph!

1cosh~ph!D pdp ~10!

for T.Tc and

F f luc~T,Tc!5
kBTS

2p

K3

K E
0

`

lnS l1
21l2

211p2

p~l1
211l2

21!
sinh~ph!

1cosh~ph!D pdp1
kBTS

2p

K3

K E
0

(A2r)21

3 lnS l1
21l2

212p2

p~l1
211l2

21!
sin~ph!

1cos~ph!D pdp, ~11!

for T,Tc , meanwhile replacing the sum overq by an inte-
gral.

B. Pseudo-Casimir force

The structural force is defined as

F52
]Fint

]h
. ~12!

Here the interaction free energyFint is measured from a
reference bulk free energy@11#. We follow the procedure
where the interaction part of the free energies is identified
factorizingF f luc @Eqs.~10! and~11!# into a bulk contribution
proportional toSh, a surface contribution independent ofh,
and an interaction contribution, as described in Ref.@11#.

For T.Tc , the force reads
4-3
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B. MARKUN AND S. ŽUMER PHYSICAL REVIEW E68, 021704 ~2003!
FCas52
kBTS

p

K3

K E
1/h

` p2dp

~p1l1
21!~p1l2

21!

~p2l1
21!~p2l2

21!
exp~2ph!21

.

~13!

This integral can be evaluated numerically. An analytical
pression can be obtained for the limiting case of infinite
strong anchoring at the plates (l150,l250),

FCas~l150,l250!52
kBTS

2p

K3

K

1

h3 (
k51

` expS 22
h

h
kD

k3

3S 1

2
1

h

h
k1

h2

h2
k2D . ~14!

This result is analogous to the pseudo-Casimir force indu
by massive fluctuation modes in the homeotropic nem
cell @8#. The character of the pseudo-Casimir force is de
mined by the character of fluctuation modes, and correspo
ing boundary conditions. In this case the fluctuation mo
are massive, and therefore the force is short range. S
profiles of the pseudo-Casimir force for different sets of a
choring strengths are shown in Fig. 2. Presented is the
duced amplitude of the pseudo-Casimir force as compare
the force in the case of symmetric infinitely strong anchor
conditions:

R5
FCas~l1 ,l2 ,h,h!

FCas~l150,l250,h,h!
. ~15!

This is a generalization of the former work in nematics@8#,
where the contribution of massive fluctuation modes w
considered only for the case of symmetric anchoring con
tions (l15l2). The profiles in Fig. 2 can be explained b
the interplay of four characteristic lengths: distance betw
plates (h), correlation length of fluctuations (h), and two
extrapolation lengths (l1, l2). It is known from the previous
studies of the pseudo-Casimir effect@11# that in the case of

FIG. 2. Pseudo-Casimir force in the homeotropic cell forT
.Tc . The dependence of the reduced amplitudeR on the parameter
h/h is presented for different sets of anchoring strengths:~a!
l1 /h50.5, l2 /h50.5; ~b! l1 /h51, l2 /h50.05; ~c! l1 /h
50.1, l2 /h50.01; and~d! l1 /h510, l2 /h50.05.
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symmetric boundary conditions~strong-strong or weak-wea
anchoring at the plates! the force is attractive, whereas in th
case of antisymmetric boundary conditions~strong-weak an-
choring at the plates! the force is repulsive. In our system
is not very obvious which parameters determine the effec
anchoring strengths. It seems~Fig. 2! that there are actually
two different regimes. Whenh/h,1, the effective anchor-
ing strengths are determined byl1 /h andl2 /h. In the case
of l i /h,1 the anchoring is effectively strong; and corr
spondingly, ifl i /h.1, the anchoring is effectively weak. I
the second regime, whereh/h.1, the effective anchoring
strengths are determined by parametersl1 /h andl2 /h, us-
ing the same criteria as in the first regime. This can be
plained if we recall that the anchoring is effectively stro
when the interaction between the substrate and liquid cry
is stronger than the internal interaction in the liquid crys
@24#. The strength of the surface interaction is measured
the extrapolation lengthsl i . The internal interaction in-
cludes two contributions, as can be seen from Eq.~3!: the
‘‘massive’’ contribution whose strength is characterized
h21, and the elastic contribution which scales ash21. At
small h/h the elastic contribution dominates, and the effe
tive strength of the anchoring is obtained by comparing
rametersl i andh. At large h/h the ‘‘massive’’ contribution
is dominant, and consequently, the effective strength of
anchoring depends on parametersl i andh.

All the lengths in Fig. 2 are scaled by the correlatio
lengthh. The values of parametersl i /h change by varying
the parameterh/h. Therefore the pseudo-Casimir force
the first regime (h/h,1) exhibits crossovers from attractiv
to repulsive and vice versa@Figs. 2~b!–~d!#. The parameters
l i /h are fixed, therefore the character of the force in t
second regime (h/h.1) does not change. It should be ke
in mind thath is temperature dependent, and that the ch
acter of the force is, consequently, also temperature de
dent. At large separations (h/h@1), the reduced amplitude
R saturates at a constant value. This shows that in this reg
the force has the same functional form as the leading term
the case of infinitely strong anchoring@Eq. ~14!#, which de-
cays as exp(22h/h)/h. The saturation value is the large
when the anchoring at the plates is either very strong or v
weak. It can be shown that in the case of very strong anc
ing at both plates (l1 /h,l2 /h!1) the reduced amplitude
saturates atR5122(l1 /h1l2 /h) @Fig. 2~c!#, whereas in
the case of very weak anchoring at both pla
(l1 /h,l2 /h@1) the saturation value isR5122(h/l1
1h/l2). In the antisymmetric case where the anchoring
one plate is very weak (l1 /h@1) and at the other plate ver
strong (l2 /h!1), the reduced amplitude saturates atR5
2112(h/l11l2 /h) @Fig. 2~d!#. The behavior of the force
at large separations is substantially modified in the case
l i /h51, where the anchoring at one or both plates is n
ther strong nor weak. It can be shown that in the first case
force decays as exp(22h/h)/h2, and consequently, the re
duced amplitude goes to zero ath/h@1 @Fig. 2~b!#. In the
case ofl1 /h5l2 /h51, the force decays even faster—
exp(22h/h)/h3.
4-4
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The evaluation of the pseudo-Casimir force in the case
‘‘frustrated’’ homeotropic system (T,Tc) is performed fol-
lowing the same procedure as described above. Howeve
should be noted that now the bulk reference structure
Sm-C* , while the structure between the plates is s
Sm-A* . The pseudo-Casimir force in the case ofT,Tc
reads

FCas52
kBTS

p

K3

K F E0

` p2dp

~p1l1
21!~p1l2

21!

~p2l1
21!~p2l2

21!
exp~2ph!21

1
1

2E0

(A2r)21~l1
21l2

212p2!cot~ph!2p~l1
211l2

21!

~l1
21l2

212p2!1p~l1
211l2

21!cot~ph!

3p2dp1
1

12r3G . ~16!

It is again instructive to consider the pseudo-Casimir force
the limiting case of infinitely strong anchoring (l150, l2
50),

FCas~l150,l250!52
kBTS

4p

K3

K F z~3!

h3
12E

0

(A2r)21

3cot~ph!p2dp1
1

3r3G . ~17!

The first term inFCas @Eqs. ~16! and ~17!# has the typical
form of the pseudo-Casimir interaction induced by mass
fluctuation modes with infinite correlation lengths and
dominant at smallh/r. This term is actually the same as th
interaction induced by director fluctuations in the homeot
pic nematic cell and was analyzed in detail in Ref.@13#. The
second term becomes prominent in the vicinity of the str
tural transition from Sm-A* to Sm-C* , where it diverges.
This repulsive divergence of the fluctuation-induced force
characteristic for the second-order transitions and is loga
mic, as noted in Ref.@11#. The last term results from th
difference of the bulk free energy of fluctuations in Sm-A*
and reference Sm-C* configuration. The behavior of thi
system is analogous to the nematic Fre´edericksz cell@11#, as
we have already mentioned.

The temperature profile of the pseudo-Casimir force
the homeotropic cell, at some fixed thicknessh, is shown in
Fig. 3. We measure the temperature in dimensionless u
t5(ah2/K3)T. The behavior of the force in the regimet
.tc was commented along with Fig. 2. On supercooling
system (t,tc) the force approaches some local minimu
and eventually it diverges at the structural transition to
Sm-C* structure. The stronger the anchoring at the pla
the deeper the supercooling limit, and the more pronoun
the minimum. Except at smalltc2t, the behavior of the
force in this regime is dominated by the frustration driv
part of the interaction—the last two terms in Eqs.~16! and
02170
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~17!. The last term is attractive and increases as (tc2t)3/2.
Near the structural transition, the repulsive divergence of
second term prevails.

It is also important to note that because in the case oT
,Tc and h,hc the system is in a ‘‘frustrated’’ state, th
mean-field force is present as well. The mean-field force
consequence of a difference between mean-field free en
densities of the bulk reference~i.e., Sm-C* ) and the struc-
ture between plates~i.e., Sm-A* ). The mean-field force is
equal to

FMF5~ f C2 f A!S52
1

4

a2

b
~Tc2T!2S, ~18!

where f C and f A are the free energy densities of the Sm-C*
and Sm-A* phases.

To get an impression of the magnitudes of the pseu
Casimir and mean-field force, we use a reasonable se
material constants:a543104 N/m2 K, b583105 N/m2,
K353310212 N, Tc5368 K, and K3 /K50.1 @18,25,26#.
We take the thickness of the cell to beh520 nm and con-
sider the limiting case of infinitely strong anchoring. In th
case the system can be supercooled down toT'Tc
21.8 K. The pseudo-Casimir force obviously dominat
over the mean-field force at very smallTc2T, however, its
amplitude in this region is also rather small@FCas/S(T
5Tc)'25 pN/mm2#. It is more instructive to estimate th
magnitudes near the minimum of the pseudo-Casimir fo
~Fig. 3!. Its amplitude is here about 50 pN/mm2, which
amounts to approximately 10% of the mean-field force. T
pseudo-Casimir force could become more important near
structural transition where it diverges. But this divergence
weak. We estimate that when approaching the transition
approximately 0.01 K, the amplitude of the pseudo-Casi
interaction can reach about 200 pN/mm2, which is still less
than 20% of the mean-field interaction. In a more realis
case of finite anchoring strengths, the amplitude of
pseudo-Casimir interaction is reduced, as can be seen in

FIG. 3. Temperature profile of the pseudo-Casimir force in
homeotropic cell. We introduced a unitless temperaturet
5ah2T/K3. The amplitude of the force is given in the natural un
F05kBTSK3 /Kh3 ~we neglect a weak temperature dependence
F0). The force is plotted for different sets of anchoring strengt
~a! l1 /h50, l2 /h50; ~b! l1 /h50.1, l2 /h50.01; ~c! l1 /h
51, l2 /h50.05; and~d! l1 /h510, l2 /h50.05.
4-5
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3. However, this does not necessarily mean that its ratio
the mean-field force is also smaller. In any case, one co
extract the fluctuation-induced interaction from the expe
mental data, provided that the interaction be measure
several temperatures, and taking into account that the m
field interaction is thickness independent.

IV. FREE-STANDING SMECTIC FILMS

A free-standing film is formed by drawing a small amou
of smectic material over a hole in a metal or glass plate~Fig.
4!. The geometry of this system is identical as in the case
the homeotropic cell. The smectic layers are oriented para
to the free surface. The system again possesses the tra
tional invariance inx-y plane, which enables us to Fourie
transform fluctuating fields as shown in the case of the
meotropic cell, thus diagonalizing the Hamiltonian. Ho
ever, there are now no plates imposing boundary conditio
In our model we will assume that there exists some inter
anchoring, which favors the surface ordering of the sme
to be the same as in the bulk system. This means that
preferred value of the order parameter at the free surface
a smectic film is equivalent to the equilibrium value insi
the film. The mean-field structure of the film is therefo
homogeneous. The anchoring is the same at both free
faces. We will consider two cases: a free-standing SmA*
film (T.Tc) and a free-standing Sm-C* film (T,Tc).

A. Free-standing Sm-A* film

The evaluation of the pseudo-Casimir force in the Sm-A*
film is identical as in the above discussed case of the hom
tropic cell. The preferential orientation of molecules at t
surface is perpendicular to the smectic layers. The sur
free energy density is equal to

f S5
1

2
Wj2@d~z!1d~z2h!#. ~19!

The anchoring at both surfaces is characterized by the
trapolation lengthl5K3 /W. The pseudo-Casimir force i

FIG. 4. Schematic presentation of a free-standing smectic fi
~a! Sm-A* , ~b! Sm-C* . ~The period of the indicated helical modu
lation in the Sm-C* film is not plotted to scale.!
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then equal to Eq.~13! insertingl15l25l. As mentioned,
this result is analogous to the pseudo-Casimir interaction
duced by massive fluctuation modes in nematics. Its dep
dence on the anchoring strengthl was analyzed in Ref.@8#.

B. Free-standing Sm-C* film

In this case the free energy of fluctuations is calcula
using the Hamiltonian of the Sm-C* phase@Eq. ~3!#. The
boundary conditions are assumed to coincide with the b
structure. The surface free energy density reads

f S5F1

2
Wi~j i2j i0!21

1

2
W'j'

2 G@d~z!1d~z2h!#.

~20!

Here we allow for different anchoring strengths for ea
type of fluctuations. Performing the Fourier transfo
mation dj i(r )5(qexp@i(qxx1qyy)#j̃i(q,z), we obtain H

5(q(Hq@ j̃ i#1Hq@ j̃'#), where

Hq@ j̃ i #5
1

2
K3SS E

0

hF H r221
K

K3
q2

K

K3
q2

J j̃ i
21S dj̃ i

dz
D 2G dz

1H l i
21

l'
21J ~ j̃ i

2 21 j̃ i
1 2!D . ~21!

The upper line corresponds toj̃ i and the lower toj̃' . We
again introduced extrapolation lengthsl i5K3 /Wi and l'

5K3 /W' . The pseudo-Casimir force is calculated followin
the procedure described in the case of the homeotropic
It consists of two terms:

FCas52
kBTS

2p

K3

K F E1/r

` r 2dr

~r 1l i
21!2

~r 2l i
21!2

exp~2rh !21

1E
0

` r 2dr

~r 1l'
21!2

~r 2l'
21!2

exp~2rh !21G . ~22!

The first one is typical for the pseudo-Casimir interacti
induced by massive fluctuations characterized by finite c
relation length (r), and the second one for the pseud
Casimir interaction induced by massless fluctuations with
finite correlation length. Their dependence on the thickn
of the film h has been already commented in Sec. III.

:
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The temperature dependence of the pseudo-Casimir f
in the free-standing smectic film is shown in Fig. 5. W
present the force only for the limiting case of infinite
strong anchoring; that is,l50 in the Sm-A* film and l i
50, l'50 in the Sm-C* film. Due to the symmetric bound
ary conditions, the pseudo-Casimir force in the free-stand
smectic film is always attractive. It reaches the maximum
the structural transition from the Sm-A* to the Sm-C* film
(T5Tc). Lowering or rising the temperature reduces the a
plitude of the force. In the Sm-A* film there are two degen
erate massive fluctuation modes whose contributions to
pseudo-Casimir force decay rapidly while rising the tempe
ture. In the Sm-C* film the contribution of the massles
mode is almost temperature independent, while the contr
tion of the massive mode again decays rapidly away fr
T5Tc . The profile of the force is therefore asymmetr
There is no divergence of the force at the structural transi
from the Sm-A* to the Sm-C* film like in the homeotropic
cell. In our model of the smectic film, no frustration is in
duced by the boundary conditions; and consequently, the
vergence does not occur. The increase of the amplitude
consequence of the fact that when approachingT→Tc , all
fluctuation modes become massless. We have already
mated in Sec. III that the amplitude of the force atT5Tc ,
for the film thicknessh520 nm, is about 5 pN/mm2. The
implementation of finite anchoring strengths does not sign
cantly alter the temperature profile of the force but mer
reduces its amplitude.

V. CONCLUSION

In this study we analyzed the fluctuation-induced force
two smectic systems with simple planar geometry: hom
tropic cell and free-standing smectic film. We considered
fluctuations of the orientational order. We demonstrated
universal behavior of the pseudo-Casimir force—short-ra
interaction induced by massive fluctuation modes and lo
range interaction induced by massless fluctuation mode
already discovered in previously studied nematic syste
We discussed the effect of different finite anchoring streng

FIG. 5. Temperature dependence of the pseudo-Casimir forc
a free-standing smectic film. Again the unitless temperaturt
5ah2T/K3 is introduced. The amplitude of the force is given in t
natural unitF05kBTSK3 /Kh3 ~a weak temperature dependence
F0 is neglected!. Presented is the limiting case of infinitely stron
anchoring; l50 in the Sm-A* film and l i50, l'50 in the
Sm-C* film.
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at the boundaries of the homeotropic cell on the characte
the pseudo-Casimir force. We showed that in this case
pseudo-Casimir force can exhibit crossovers from the att
tive to the repulsive regime~and vice versa! at small dis-
tances~compared to the correlation length of fluctuation!
between plates. At large distances the character does
change, and the amplitude of the force is the largest when
anchoring at the plates is either very strong or very weak
both studied systems we focused on the temperature de
dence of the force, which is especially interesting due to
vicinity of the phase transition. In the case of the ‘‘supe
cooled’’ homeotropic cell, which is yet another represen
tive of ‘‘frustrated’’ liquid crystal systems, we rediscover th
logarithmic divergence of the force at the structural tran
tion, already found in the nematic counterparts. At the tr
sition from the Sm-A* to the Sm-C* free-standing film, the
amplitude of the force is increased, but it does not diverge
there is no frustration in the system. Here we should ag
stress that our simple model does not include possible in
mogeneous equilibrium structure of a free-standing sme
film, with different surface and bulk ordering. In this case t
critical behavior of the force could be substantially altere

The pseudo-Casimir force induced by the orientatio
fluctuations which we studied in our paper, and the lon
range interaction induced by the fluctuations of positio
order, studied by Mikheev@5# and Ajdariet al. @3,4#, do not
close the discussion on the fluctuation-induced forces
smectics. A complete description should incorporate both
fects, considering also the coupling between the orientatio
and positional order. Due to this coupling the deformation
the positional order~i.e., smectic layers! results in the modi-
fication of the equilibrium director profile@27# which com-
plicates the situation considerably. However, in thin smec
films the fluctuations of the positional order are suppres
by the confinement@28#. Therefore we can expect that ou
model gives physically reasonable results. We also did
take into account that in chiral smectics, as a consequenc
orientational fluctuations, the polarization in the system
not homogeneous. This results in the appearance of s
charge and leads to the Coulomb interaction in the sys
@29–34#. We are not able to establish the importance of t
effect in our systems at present. However, as this interac
is especially prominent in systems with a large value
spontaneous polarization, it is reasonable to assume tha
model works well at least for materials with a small value
spontaneous polarization. Furthermore, as the interest in
pseudo-Casimir interaction is mostly related to very thin l
uid crystalline films, the use of a discrete description
smectics instead of our continuous model should be con
ered@19#.

The experimental detection of the pseudo-Casimir int
action induced by the orientational fluctuations could be
cilitated by its specific temperature dependence, related
the presence of the phase transition. This could enabl
distinguish it from other interactions present in smectic s
tems. Especially interesting is the ‘‘frustrated’’ system whe
the divergence of the force could be approached by vary
the temperature while keeping constant thickness of
sample. In free-standing smectic films, the force between

in
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surfaces cannot be measured by the standard fo
measurement devices such as the atomic force microsco
the surface force apparatus. Some information about the
teraction can however be obtained by experiments that m
sure the intensity of light scattered by capillary waves on
surface of a free-standing film@35#.
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