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Shape and director-field transformation of tactoids
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Tactoids are droplets of a nematic phase that under suitable conditions form in dispersions of elongated
colloidal particles. We theoretically study the shape and the director-field configuration of such droplets for the
case where a planar anchoring of the director field to the interface is favored. A minimum of four regimes can
be identified in which the droplets have a different structure. Large droplets tend to be nearly spherical with a
director field that is bipolar if the surface tension is strongly anisotropic and homogeneous if this is not so.
Small droplets can become very elongated and spindlelike if the surface tension is sufficiently anisotropic.
Depending on the anchoring strength, the director field is then either homogeneous or bipolar. We find that the
more elongated the tactoid, the more strongly it resists the crossing over from a homogeneous to a bipolar
structure. This should have implications for the nucleation rate of the nematic phase. Our calculations quali-
tatively describe the size dependence of the aspect ratio of tactoids found in recent experiments.
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I. INTRODUCTION of tobacco mosaic virugl], aluminum oxyhydroxidg2],
and vanadium pentoxidgl4] do indeed very strongly sug-
The spindle-shaped droplets that are commonly referredest these to be bipolar.
to as tactoids form when a uniaxial nematic liquid-crystalline The precise shape and structure of bipolar tactoids was
phase is nucleated out of an isotropic fluid dispersion constudied by Williamg15], who solved by numerical methods
taining highly anisometric colloidal particles. They have longthe Euler-Lagrange equations obtained for {figealized
been observed in dispersions of tobacco mosaic viclei- case where the three bulk elastic constants of the director
rus, vanadium pentoxide, aluminum oxyhydroxide, iron oxy-field are equal, and the anchoring is tangential everywhere
hydroxide, tungsten oxide, and so foffth—4]. (For an his- on the surface of the droplet. The calculations show that
torical overview, the reader is referred to a recent reviewbipolar tactoids optimize their shape by striking a balance
paper by Sonin5].) Bernal and Fankuchen provided a plau- between a minimal deformation of the director field and a
sible rationalization of the remarkable shape of the tactoidsninimal interfacial area. For large bipolar drops, the interfa-
in terms of an anisotropic interfacial tension between thecial free energy dominates so these tend to (bearly
coexisting isotropic and nematic phagé$ The equilibrium  spherical. Small drops reduce their elastic deformation by
shape of nematic liquid-crystalline drops with a fixed, homo-attaining an elongated shape because these are dominated by
geneous director field was considered in more detail by Herthe stiffness of the director field. We deduce from the work
ring [6], Chandrasekhdi7], and later Virgd 8]. These works of Williams [15] that the(gradua) crossover from a spherical
show that homogeneous nematic drops should not only b® a highly elongated shape occurs when the dimensionless
elongated but in addition develop sharp ends if the anisotratio k=K/7V3 exceeds a value of about unity, because
ropy of the surface tension is sufficiently large. However, thethen the bulk elasticity takes over from the surface energy.
idea that the shape typical of tactoids is due to an anisotropitlere, K denotes a Frank elastic constanis the interfacial
surface tension has not become generally accepted, not ledstsion of the coexisting phases, avids the volume of the
because it fails to explain the dependence of the aspect ratitroplet. Typical values for the elastic constants and the inter-
of the nematic droplets upon their sigg. facial tension areK~10"1%-10 N [16-23 and r
The current paradigm for the tactoid structure involves~10"’—10 ° Nm~![24-27, so tactoids of a linear dimen-
not a homogeneous but a bipolar director figdd, a conse-  sion in the micrometer range should be elongated, not spheri-
guence of the circumstance that elongated colloidal particlesal. This seems to be borne out by observafioh
for entropic reasons tend to align parallel the isotropic- A caveat of the calculations of Williams is the condition
nematic interfacd9-12. In the bipolar configuration, the of tangential alignment of the director field, which cannot be
director field smoothly follows the contour of the surface ofvalid if the drops are, in some sense, snéll In fact, one
the droplet, connecting two diametrically opposed point de-can show by a straightforward scaling argum&8] that for
fects called boojums on the surface of the dropl&]. In a  spherical droplets a bipolar director field, as taken by Will-
way, the director field radiates outward from one boojum toiams[15], must be less stable than a homogeneous director
converge again on the other as is depicted in Fig. 1. Polaffield, assumed in Ref§6—8|, if « is larger than a dimen-
ization microscopic images taken of tactoids in dispersionsionless surface anchoring strength This anchoring
strength is small if the interfacial tension is isotropic or
nearly so, and large if it is strongly anisotropic and parallel
*Corresponding author. alignment of the director field is favored. For uncharged,
Email address: p.vanderschoot@phys.tue.nl slender colloidsy has been predicted to have a value around
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unity [9—12], so in many practical situations the shape anddirector field Fg and that of the presence of the interface

director-field transformations are not independent. Recenwith the isotropic mediuntg

calculations on almost spherical nematic droplets indicate

that this must indeed be $@9,30. F=Fg+Fg. (N
Despite considerable progress in recent ydad, the

structure of nematic droplets, in general, and of tactoids, in For the interfacial free energy, we adopt the following

particular, remains incompletely understood. In our view, theplausible expressiof32]:

problem merits a closer inspection both from an experimen-

tal and a theoretical point of view. In this work, we present a ) )

theoretical study of the tactoid surface shape and director- Fs= TfAd rf1+o(q-n)<], )

field structure, and focus on the influence of quantities such

as the volume of the droplets, the Frank elastic constantg, ... n=n(r) the nematic director and=gq(r) the surface

. : . ; Rormal at the positiom on the interface between the droplet
is to connect the early interpretation of the tactoid shap nd the medium: is the interfacial tension ane is the

trJ;nSte\?iec\;\? V%Ei(‘;"r?'%%tggg:Osnutr;icree;%gﬂggz(l;fﬁ?(;Poepl(;:ghap%arlier-introduced dimensionless anchoring strength. We set
o the bipolar director field15]. As we shall see, the mini- ®>0 to ensure that a parallel anchoring of the director field

mum anchoring strength required to force a homo eneout0 the interface is favore{B]. The integration in Eq(2) is
. X 9 gih req 9 Sver the entire interfacial aref of the droplet. Althoughad

director field to become bipolar dep'ends both on the volum%oc our choice for the interfacial free energy fairly accu-

and on the shape of the droplet, with elongated droplets rer'ately mimics the anchoring-angle dependence of various

sisting a bipolar director field much more strongly than Sphe'theoretical predictions for hard rods and hard wof@is12].

roidal ones. This could have far-reaching consequences for . B
the nucleation kinetics of lyotropic nematic phases. The (Frank elastic free energi takes the form33—35

The remainder of this paper is structured as follows. In
Sec. Il, we present a phenomenological free energy funcFE:f d3r
tional, in which we combine an elastic energy associated \%
with the deformation of the director field with an anisotropic 1
interfacial free energy. The former consists of the usual con- + 2 Ka[nX(VXN)2=KpV - [nV-n+nx(Vxn)]|,
tributions from the splay, the twist, the bend, and the saddle- 2
splay distortions, and the latter of a sum of an isotropic sur- 3)
face free energy and a free energy penalizing a nonplanar

anchoring of the director field. Arguments shall be given inyhere n=n(r) again denotes the locally defined director,
favor of (i) the approximation of equal elastic constants andyn the integration is over the entire volumef the droplet.
(i) the neglect of the contribution from the saddle-splay de-The first three terms, with the elastic constaiiis K,, and
formation. Next, in Sec. lll, a scaling estimate of the optimaIK3’ represent the usual splay, twist, and bend deformation
droplet configuration is presented. For reasons of computanodes of a bulk nemati@6]. The last term, with the elastic
tional simplicity, we focus on spherical and highly elongated,,nstant Ko, stems from the saddle-splay deformation
droplet shapes for two extreme director fields, one purelynqge For this term, the volume integral can be transformed
homogeneous and one purely bipolar. In Sec. IV, we calcugy 4 surface integral, which is why it is usually ignored in
late the free energy for three different droplet shapes andygies of bulk nematics. Since our droplets have a large
director-field configurations exactly. The main result of ourg,iface-to-volume ratio, it is nat priori clear that the “sur-
calculations constitutes a “phase” diagram for the equilib-{5.e” elastic term can indeed be neglected.
rium shape and director-field configuration of the droplets as Obviously, Eq.(3) needs to be simplified for the theory to
a function of the glastic sfciffness.of the director field and theyg practical. To make headway, we first note thaparity-
anisotropy of the interfacial tension. broken twisted director-field configuration h&$3], as far as
We end this paper with a discussion in Sec. V, where Weyq are aware, ndyet) been observed in lyotropicolloidal)
compare our theory with experimental data and where W&y siems. That this is not entirely unexpected is discussed in
propose a continuous crossover mechanism from the homeagre detail in Sec. V. Hence, we ignore the possibility of a
geneous to the bipolar director-field configuration. twisted bipolar configuration and drop from our free energy
the secondtwist-deformation term. Further simplification
follows from the observation that for the bispherical director
field advanced by Williams in Ref.37] and described in
We consider a nematic droplet of voluriein an isotro- more detail in Sec. IV, the saddle-splay deformation merely
pic, fluid medium. If the volume of the droplet is macro- renormalizes the contribution of the splay elastic deforma-
scopic on the scale of the nematogens, we need not take intmn to the free energySee also Appendix BWe therefore
account finite-size effects on the stability of the nematic andabsorb the influence €., into K, and drop the saddle-splay
on the degree of nematic order in the drodi2®,31. The term also. Note that little is known about the magnitude of
free energyF of a nematic tactoid can then be written as thethe surface elastic constafs, of lyotropic nematics of elon-
sum of the free-energy cost of a potential deformation of thegated colloids.

1 1
EKl(V~n)2+ sz(n-Vxn)2

Il. FREE-ENERGY FUNCTIONAL
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a) b) because the total surface ar@as of the order ofRr, and
@ becaused-n)2=0. The latter equality follows from our pre-
sumption of tangential anchoring, which by construction re-
@ sults in a free energy that is independent of the anchoring
AN
C) @

. strengthw. In Eg. (5), as in all of the following scaling
o0jum

/ estimates, all constants of proportionality are omitted.

d) To obtain a scaling estimate for the Frank elastic energy
of the bipolar drops, we deduce from Edg) thatFz must be
proportional to an elastic constaldttimes a droplet volume
V~Rr? times the square of a reciprocal radius of curvature.
By geometry, the rr12ean radius of curvature of the bend de-

FIG. 1. Schematic representation of some of the nematic dropl for?gtslo;:;glsetshf tgeac:](;jng]iatj(t)ig:\h?rc?r?:a}[%ed(:)fgrqg]%té?gr%sa
shapes and structures discussed in the main text. Top: spherical : .
droplets with(a) a homogeneous an@) a bipolar director field. tion can be neglected if the drops are highly elongated, that

Bottom: spindle-shaped tactoids witt) a homogeneous and) a is, if_R>r. (It C"’_m even be ignored R%r. because a more .

bipolar director field. Indicated also are the locations on the poles oP'€CiSe calculation shows that for spherical drops the contri-

the droplets of the surface point defe¢tsoojums”). bution from the bend deformation is 7.5 times smaller than
that of the splay deformation irrespective of their Ji2&].)

This leaves us with two elastic constants, and K5, !N conclusion,

relevant to the problem in hand. From theoretical work we 1

infer thatK3>K if the colloidal particles behave like rigid Fe~KRr’— =KR
rods and thaK;~K, if they are better described as semi- R
flexible, wormlike chaing16,40—43. Experimental data on )
dispersions of, e.g., the rodlike tobacco mosaic virus and th&hould be a reasonably accurate estimate for the free energy
semiflexible polymer poliputyl glutamate agree qualita- albeit, of course, within an unknown numerical prefactor.

tively with these predictionkL6,41). This would suggest that Eduation(6) shows that the more elongated the droplet, the
the commonly used equal-constant approximatior K, less nonuniform the director field and therefore, the smaller

— K, is of limited use for nematics of rodlike colloids, ex- the free-energy penalty associated with the bipolar director
cept if they are not extremely rigid. However, the equal-f'eld' i ) )

constant approximation may, in fact, be quite reasonable for '9noring the free energy of the microscopic core of the
stiff colloids too because the splay elastic term overwhelmP00jums, we obtain the optimal aspect reitr for a highly
ingly dominates the overall elastic free energy of a bipola€longated droplet by minimizingat a fixed droplet volume
droplet[37]. (See also Sec. I)l For this reason, we adopt the ) the total free energy given by the sum of E(9.and(6),
equal-constant approximation too and write R

? ~ K3/57_7 3/5\/7 1/5_ K3/5. (7)

(2
ﬁ) (6)

FE=;KJ d3r{(V-n)2+[nx(Vxn)]?. (4)
v Equation(7) implies that the aspect ratio of a bipolar drop is
larger the smaller its volume. If we insert Eq) into Egs.
A discussion of the impact of unequal elastic constants cags) and(6), we find for the equilibrium free energy
be found in Sec. V.
F~ V3/57'4/5K 1/5_ V2/37'K1/5, (8)
Nl SCALING THEORY at least ifk>1. Equationg7) and(8) are consistent with the
We first analyze the free-energy functionals E@.and  more elaborate calculations of Williani5].
(4) from a scaling theoretical point of view, and obtain a (ii) Spheroidal, bipolar dropsin the opposite limit ofx
qualitative picture of the equilibrium droplet shapes and<1, the drops are spheroidal aRe-r. In this limit, we have
structures based on the four extreme cases of Fig. 1. Thesy similar arguments
are the cases ofi) elongated bipolar dropgji) spherical
bipolar drops,(iii) elongated homogeneous drops, &g F~KR+ rR?=V?*r(k+1), 9
spherical homogeneous drops, which we discuss case by case
[44]. Finally, at the end of this section, possible transitionsas can in fact also be deduced directly from E&$.and(6)
between the various configurations are investigated by conby settingr=R.
paring their free energies. (iii ) Elongated, homogeneous dropfsthe director field is
(i) Elongated, bipolar dropsFor cylindrically symmetric, homogeneous, there is no elastic deformatiofrse-0. The
bipolar drops with major axi®R and minor axisr <R, the surface free energy for the caBe>r becomes
interfacial free energy Eq1) obeys )
r
a

Fe~Rr 1+ w , (10

FS%TRI’, (5)
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because in that casg{n)2~(r/R)? for most of the interfa- To go beyond simple scaling arguments, one would, ideally,
cial area. The optimal aspect ratio of the highly elongatedninimize the free-energy functionkl=F[n] with respect to
drops follows again from a free-energy minimization at con-the director fieldh(r) and the droplet shagén some suitable

stant volume, giving parametrization of the surfaceThis would have to be done
at a constant drop volumé and at a constamh|=1 because
B% w2 (11  thedirector is a vector of fixed unit lengt86]. The resulting
r Euler-Lagrange equations are those of a free-surface prob-

lem, which are very difficult to solve even numerically
8,15,30. We therefore simplify the mathematical problem
(i) by prescribing certain families dtylindrically symmet-
ric) droplet shapes and director fields &iigl by minimizing
F~V237416 (12)  the free energy with respect to the pertinent variational pa-
rameters.
follows by insertion. Here, we only briefly touch upon how the calculations
(iv) Spheroidal, homogeneous dropematic droplets were done and focus on the presentation of the results of the
with a uniform director field are spheroidal iF<Ow<1, so  calculations. Readers interested in the details of the calcula-
R~r and (g-n)?~ 1. Hence, our estimate for the free energytions are referred to Appendixes A and B. We first discuss
reads our findings for the droplets with a homogeneous director
o3 field, and subsequently, those for the bipolar director field.
F~V™r(1+ w), (13 We end this section with a comparison of the free energies of
the two types of drop, allowing us to locate for what values

for this particular configuration. . . of k and w the transition from one to the other director field
The crossover from a homogeneous to a bipolar d|rect06ught to be expected

field occurs if the surface anisotropy wins out from the elas- Homogeneous dropor drops with a homogeneous di-
ctor field, the minimization of thésurface free energy can

which grows with increasing anchoring strength albeit no
very strongly. The equilibrium free energy of the drops in the
strong anchoring limitw>1,

neous or vice versa. Therefore, spheroidal droplets remai . : P §
spheroidal and elongated ones remain elongated. Uery briefly discussed his findingéSee Ref[8], and refer

; : . ._ences cited thereihWe have repeated the calculations and
For spheroidal droplets, the director-field transformatlonfor completeness present them in considerable detail in Ap-
occurs if

pendix A. In agreement with the earlier work described in
0<w~x<1, (14) Ref.[8], we find the droplets to be sphericaldf— 0, elon-

gated spheroidal if & w=<1, and elongated with sharp ends
as can be deduced from Ed8) and(13). By equating Egs. (tactoida) if w>1.
(8) and(12), we find that in the opposite limit of elongated  Expressions for the equilibrium free ener§y=F/7vZ3
tactoids, the crossover from a homogeneous to a bipolar debtained with the aid of the Wulff construction are given in
rector field takes place when Appendix A and plotted as a function af in Fig. 2. In the
limit w— 0, the free energy obeys~4.84+1.61w to linear
order in w, while it approaches the limiting relatiof

Equationg14) and(15) demarcate four regimeéSee also ~5.66wY8 for o> 1, confirming our earlier estimates given

Fig. 6) For k=1 andw=1, the droplets are elongated, that by Egs.(12) and(13).
is, tactoidal. These tactoids are homogeneous=if«®"® and For comparison, we have also calculated the optimal sur-
bipolar if o= x®°. For k<1 or w=1, the droplets are sphe- face free energies of ellipses of revolution and of circle sec-
roidal with a homogeneous director fielddf< x and sphe-  tions of revolution, and plotted the results in Fig.(Retails
roidal with a bipolar director field ifs= «. Apparently, elon-  Of the calculations can be found in Appendix Ahe figure
gated tactoids postpone the crossover to a bipolar structure &0ws that for all except very small valuesafthe ellipses
higher droplet volumes than one would expect from the scalof revolution are of higher free energy than the circle sec-
ing behavior of the spherical ones. The reason is that the gafiPns of revolution that we for brevity refer to as “spindles”
in surface free energy upon the replacement of a homogdtom now on. In the limitw— 0, the differences between the
neous director field by a bipolar director field is compara-free energies of the Wulff, spindle, and ellipsoid shapes are

tive|y small if the nematic drop]et is e|onga’[ed_ Only of the order Ofa)2 and vanish rapldly with deCfeaSing
anchoring strength. Remarkably, the exact Wulff shapes and

the spindles differ in free energy less than about one-tenth of
a percent for all values ab.

The theory presented in the preceding section has the The shape transformation of the nematic droplet with a
merit of simplicity and of providing insight, but it lacks the homogeneous director field is illustrated in Fig. 3, where we
ability to predict numerical prefactors and crossover detailshave plotted the anchoring-strength dependence of the angle

1< w~ k55, (15

IV. VARIATIONAL THEORY
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FIG. 4. Aspect ratioR/r of homogeneous nematic drops as a
(function of the dimensionless anchoring strengthGiven are the
results for the prolate spheroid, the spindle and the Wulff shape,
indicated, respectively, by the dashed line, the drawn line, and the
circles. The initial slope fow—0 is identical for all three shapes
and so is the scaling/r ~ »? for large w.

FIG. 2. Dimensionless free enerdyof a nematic drop with a
homogeneous director field as a function of the dimensionless a
choring strengthw. Dashed line—ellipsoid of revolution, circles—
Wulff shape, drawn line—spindle. All curves approach the power-
law scalingF ~ w® in the limit w> 1. The initial slope forw—0 is
identical for all three shapes.

] ) construction exactly obeyR/r=1+w if o<1 and R/r
between the main axis of the drop and the surface tangent 12 jf ,>1, quite close to the approximate results ob-

taken at either polethe tip anglg. The Wulff construction  tained with the prolate spheroids and the spindles. This is
gives a tip angle that is a constanf2 for w<1, but that  shown in Fig. 4, which also confirms that the aspect ratio of
decreases as arctan/l/—1 if w>1. Also given in the fig- a homogeneous nematic drop is only a fairly weak function
ure are the tip angles for the prolate spheroids and thef the anchoring strength. In other words, large values of
spindles, where we note that the former shape has a fixed tifre required to get strongly elongated drops.

angle of7/2=1.57. The tip angle of the spindle approaches Bipolar drops For tangentially anchored bipolar drops,
the exact value from below in both limite—0 and @  the surface free energy is independentcdnd proportional

— . to the total interfacial area as we pointed out earlier. At fixed

Considering the relatively small differences in free en-volume, the total of the interfacial area is a function of the
ergy, it is hardly surprising that the optimal aspect ratio ofdroplet shape. For the droplet shapes, we use two plausible
the droplets is quite insensitive to the precise droplet shap@nes, namely, ellipsoids of revolution and spind88]. The
The aspect rati@®/r of the drops we obtained with the Wulff choice for the latter shape was inspired by optical micro-
graphs of bipolar nematic dropl€fg,5].

Williams noted in Ref[37] that the director field of a
director field of a spherical bipolar droplet is to a very good
spheroid approximation bispherical, that is, tangent to circles of in-

: creasing radius of curvature, the closer we get to the central
axis of the drop. The circles cross at the boojums on the
poles of the dropletiSee Fig. 1. It stands to reason that the
director field of a bipolar spindle should also be approxi-
mately bispherical, which is what we now presuri&ee also
Ref.[39].) Similarly, the director field inside the ellipsoidal
drop which we describe by nested ellipsoids of revolution
that touch at the poles, following the ansatz of Dubois-
~@? Violette and Parodi in their calculation of the elastic defor-
mation energy of a spherical bipolar drop[éb].

0 ' ' ‘ ' Details of our calculations can be found in Appendix B.

0 2 4 6 8§ O 10 The dimensionless free energiBsobtained for the bipolar
ellipsoids and spindles are functionsfnd of their aspect
ratio R/r. These were minimized with respect Rir, pro-
ducing implicit expressions for the optimal aspect ratio of the
shape with a tip angle of/2~1.57. Foro>1, the Wulff shape has c_iro_ps that we could only SON? by analytical methods in the
sharp ends with a tip angle smaller thaf2. Both the spindle and limits KH_O andx— . For afb'”af}’ values ok, we solv_ed
the Wulff shape predict a scaling lay~ Y2 for the tip angle at  the equations by standard numerical methods. Inserting the

large w. optimal values oR/r back intoF produced the equilibrium

Waulff

spindle

o
(o]
1

FIG. 3. The tip angley of homogeneous drof# radiang as a
function of the dimensionless anchoring strengtfor the various
shapes indicated. Fap<1, the Wulff shape predicts a spheroid
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FIG. 6. Diagram of states of nematic tactoids as a function of

FIG. 5. Dimensionless free enerdy of a bipolar tactoid as a the dimensionless elastic stiffnegsand the dimensionless anchor-
function of the dimensionless elastic stifinegs K/7VY3 Indi-  iNg strengthw. The filled circles indicate the crossover from a ho-

cated are results for prolate spheroids and for spindles. The freé@0geneous to a bipolar director field according to our variational
energy of the spindle shape is below that of the prolate spheroiéheory’ and the lines emphasize the slopes 1 and 6/5 obtained from

shape for allx. For largex the free energy of the bipolar spindle the scaling estimate. Tactoid shape and director-field configuration

approaches the scaling forfi~ x5 No pure scaling form is are schematically given where they occur in the diagram of states.

reached for the bipolar spheroid.
volume), the reverse is true. The crossover valuecp$epa-

free energy for the two shapes. rating homogeneous and bipolar director-field configurations,

In Fig. 5, we present the equilibrium free enefigyas a  depends on the magnitude of the anchoring streagthhis
function of the dimensionless elastic stiffnestor the ellip- IS Shown in the “phase” diagram of Fig. 6. For clarity, the
soids and the spindles. The spindle shape resembling thgrious director-field configurations and droplet shapes are
experimentally found tactoid shape is indeed the lowest-freeSchematically indicated in the figure roughly where they oc-
energy shape of the two for all values ©f0. In the limit €U Also indicated are the ;Iopes to the points separating the
x—0, where the droplets are spherical, we get for the piZedions corresponding to bipolar and homogeneous director

. . = . ields for the nearly spherical and the highly elongated drop-

spher|cal dlrgctclr field~4.84+8.83¢ a”‘?' for the elllpsm— lets. They are in complete agreement with the scaling results
dal director fieldF ~4.84+9.35¢ (both to linear order inc). Egs. (14) and (15), for which we can now also produce the
Note that we corr_ec_tly reproduce the results of RE®F), prefactorsiw~5.45 for o<1 andw~ 6.24<55 for w>1.

[46], valid in that limit. _ _ Finally, in Fig. 7, we give the calculated aspect ratio of
For large x, the free energy of the bipolar spindle ap- the tactoids as a function of for a bipolar director field, as
proaches the scaling fori~7.68®, which confirms our that for a homogeneous director field with a fixed anchoring

scaling estimate Ed8). This is only slightly larger than the

more accurate resuE~6.66«> found by Williams (see 7

Fig. 6 of Ref.[15]). The limiting form of the aspect ratio we R/r /
find for the spindle read®/r ~4.44«%", the scaling expo- 6 1

nent of which agrees with that of our estimate Ef). Inter- 5

estingly, neither the free energy nor the aspect ratio of the
ellipsoids of revolution exhibit a pure power-law dependence

in the limit of x> 1. 34
Crossover To determine which droplet structure is the (m])

most stable, we compare the free energies of the various 2 / «
droplet shapes and director-field configurations. For the 14 —

droplet with the homogeneous director field, we use the

shape obtained from the Wulff construction because it repre- 0 ' '
sents for that director-field configuration the shape of the 2 -1

lowest free energy. For the bipolar droplet, we take the logso

spindle shape, which is more stable than the prolate spheroid £ 7 aspect raticR/r of a tactoid as a function of the dimen-
irespective of the magnitude of the elastic coupling paramsionjess elastic stiffness Horizontal curve—homogeneous direc-
eter k. tor field with w= 1, monotonically increasing curve—bipolar direc-

If we compare Fig. 2 with Fig. 5, we see that the homo-tor field. Indicated is the transition between the bipolar director
geneous director field has a lower free energy than the bipgreld, stable at smalk, to the homogeneous director field at large
lar director field if « is sufficiently large(corresponding to @ The minuscule jump in the aspect ratio at the transition cannot be
sufficiently small droplet volume For smallx (large droplet  seen on the scale of the figure.
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strength ofw=1. We have seen that provided is suffi- 6
ciently large, a homogeneous director field is always pre- R/r
ferred, in which case the aspect ratio of the droplets does not 5 -
depend on their size. Fas=1, the theory predicts the most
probable aspect ratio d®/r=2 to be a constant ok if «
>0.1843. Consequently, the aspect ratio does not change
with increasing drop sizé&decreasingq), until the crossover
to the bipolar structure is reached rat0.1843. There, the
aspect ratio jumps from the value of 2 to a value of 1.993, in
other words, foro=1 the droplet shape changes suddenly 2
from an elongated spheroid to an elongated spindle of
slightly smaller aspect ratio. Below=0.1843, the aspect 1 T T r .
ratio of the drops decreases with decreasinyf approaches 0 5 10 15 20 25
the limiting ve_llue of unity f(_)r very large droplets, a&s—0. 2R [um]
The magnitude of the discontinuous change of the elon-
gation of the droplets turns out to b&r@mnmonotonit func- FIG. 8. Aspect ratidR/r versus the length R of nematic tac-
tion of w. However, as we already anticipated in Sec. Ill, thetoids formed in aqueous dispersions of fd virus and the polymer
jump remains modest for all values @fand is typically well  dextran. The filled circles are the experimental data of D4,
below the maximum of about 12% that we find for large the drawn lines represent the theoretical results presuming a bipolar
(results not shown director field for three values of the lengtti 7=0.5, 1, 2um (from
Although our theory suggests the director-field and shap&ottom to top.
transformation to be discontinuous, this need not be the case

in reality. In the following section, we speculate on a mechaxtoids, a comprehensive comparison of our theoretical predic-
nism how this transformation could take place continuouslytions with experimental observations has to be left for future

Kiz=0.5,1,2um

but not before first summarizing our findings. work.
As far as we are aware, the only experimental data that
V. DISCUSSION AND CONCLUSIONS allow for a meaningful comparison with our theory are those

of Dogic[48], who measured the dimensions of nematic tac-

In conclusion, tactoids do not necessarily have a bipolatoids that mayunder the right conditionsbe found in aque-
director field. If of sufficiently small size, their director field ous mixtures of the filamentous fd virus and the polysaccha-
should be uniform. Presuming the surface tension is accuide dextran. The presence of the polysaccharide induces an
rately represented by the form of E®), the precise shape of isotropic-smectic transition in the virus solution, the initial
such small tactoids then solely depends on a dimensionlesdnetics of which involve the formation of metastable nem-
anchoring strengthw. They are prolate spheroidal if<Ow  atic tactoids. Details of the experiments can be found in Ref.
<1, and spindlelike with sharp endsaf>1. Large drops, on [4]. The results of the measurements are given in Fig. 8,
the other hand, prefer a bipolar director field, with a shapeogether with theoretical predictions we obtained for bipolar
that is not rounded but spindlelike. The aspect ratio of bipotactoids. Theoretical curves are given for various values of
lar tactoids decreases as a function of the volume. Accordinthe lengthK/, which in the present description is the single
to our calculations, bipolar drops can only become trulyadjustable parameter for the bipolar director-field configura-
spherical in the limit of infinite volume. tion. The scatter in the data makes it difficult to fix this

If the anchoring strength is small, the transformation fromparameter accurately, but a value between 1 apthzeems
a uniform to a bipolar director field occurs when the linearto produce the best overall agreement. Clearly, theory and
dimensionv'? of the droplet is of the order of the “extrapo- experiment agree only qualitatively, but this should not be
lation length” I=K/7w of the isotropic-nematic interface surprising in view of the approximate nature of the theory
[36] and of the order of w!® if the anchoring strength is and the scatter in the data.
large. Our main conclusion, therefore, is that elongated tac- A logical conclusion that one might draw from Fig. 8 is
toids postpone the crossover to a bipolar structure to a mucthat the range of tactoid sizes sampled is not large enough to
higher droplet volume than spherical ones. include the very smallest ones that have crossed over from a

For values ofw not very much larger or smaller than bipolar to a homogeneous director-field configuration. In-
unity, we estimate that for the usual thermotropic liquid crys-deed, there is no clear indication in the data of a levelling off
tals the director-field and shape transformation occurs wheaof the aspect ratio of the drops at the lower end of the droplet
the droplets are of the order of one-tenth of a micfa8], sizes, as one would expect from the theory. Tentatively as-
which is why for this type of system the crossover is difficult suming the theory to be accurate all the way down to the
to observelexcept perhaps with x-ray microdiffraction tech- smallest of droplets observ¢d9], we have to concede that
niques[47]). This should not be so for lyotropic nematic the anchoring strengtla must be greater than about 6 for the
tactoids on account of their much lower interfacial tension.theory to be consistent with the observations. This is obvi-
For this type of system, the crossover size is likely to be inously much larger than the theoretical values between 0.5
the micrometer range. Lacking any systematic experimentand 1.59-12]. Note, however, that if the anchoring strength
investigations of both the shape and the structure of the taavere as predicted to have a value around unity, tactoids with
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Interface
of droplet

extrapolated cally by Williams [37]. According to Williams, tangentially
director field anchored, bipolar nematic droplets of spherical shape cross-
over to a twisted configuration K;=K,+0.43XK;. In the
twisted configuration, the splayed director field is partly re-
placed by a combined twisted and bent deformation. As a
result, this configuration becomes energetically favorable if
the splay elastic constant is sufficiently large in comparison
with the other twa(bulk) elastic constants. Because the splay
elastic deformation is much smaller in elongated bipolar tac-
toids than in spherical ones, we should expect the twisted
configuration to become less probable, the more elongated
virtual the tactoids are.
boojum As a final remark, we note that the director-field and
shape transformation of nematic droplets described in this
FIG. 9. Schematic representation of a nematic droplet with apaper should have a bearing on the rate of nucleation of the
quasibipolar director field that is intermediate between a true biponematic phase in dispersions of elongated colloidal particles.
lar and a homogeneous director field. Indicated is one of the twAccording to classical nucleation theory, the free-energy bar-
virtual boojums, which are point defects in a director field extrapo-rier to nucleation is a function of the concentration of the
lated beyond the boundaries of the droplet. If these virtual boojumsiucleating nematic, the interfacial tension and the difference
move in onto the actual interface of the droplets, they become trugetween the chemical potentials of the particles in the parent
boojums. If the virtual boojums move out into infinity, the director isotropic phase and in the nematic phgs@|. This should be
field becomes homogeneous. more or less accurate if the quench is sufficiently deep for
the critical nuclei to be so small that a homogeneous director
aspect ratios greater than about 2 would not exist. Highlyield is preferred. In addition, the anchoring strength
elongated tactoids have been observed in a variety of syghould not be too large for the critical nuclei to be more or
tems[5], suggesting that the anchoring strength must indee#esS spherical. If the quench is shallow, however, or if the
be much greater than found theoretically. anchoring s.trength is large, the situation should bg quite dif-
In practice, the crossover from a homogeneous to a bipoerent and in fact much more complex. Depending on the
lar director field may be subtle, i.e., it need not be quite agluench depth, the nuc_leatlon barrier could in that case also
abrupt as we find in this worf9,30,5Q. It may well be that (je_pend on th_e_anchorlng strength and/(_)r on _the Frank_ elas-
the director field changes continuously with increasing dropficity of the critical nuclei. We intend to investigate the im-
let size in a process where virtual boojum defects graduallplications of these issues in the near future.
move in toward the surface. Virtual boojums are boojums in
a director field extrapolated beyond the boundaries of the ACKNOWLEDGMENTS
nematic droplef51,52. See Fig. 9. The larger the distance
between the virtual boojums, the more homogeneous the ac- We thank Jan Groenewol@U Delft, The Netherlands
tual director field. Polarization microscopic images of tac-for valuable discussions and Thijs MichdlBU Eindhoven,
toids with real and quasibipolar director fields are probablyThe Netherlandsfor a critical reading of the manuscript. We
quite similar and difficult to distinguish. Clearly, the issue are especially indebted to Zvonimir DogitFF Juich, Ger-
calls for a more detailed study. many) for discussions and for providing us with tlenpub-
Although we have given arguments in favor of the equal-lished experimental data.
constant approximation, it does introduce an error that is
priori difficult to estimate the impact of. A scaling analysis
along the lines of that presented in Sec. Ill suggests that our
conclusions are not radically altered if we allow the splay If the director field is homogeneous, the free energy of a
and bend elastic constants not to be equal. Indeed, if we setoplet is given by Eq(2). We seek to minimize this free
k=K, /7V¥ andkg=K3/ 7V, we find that the crossover energy with respect to the shape of the droplet at a fixed
from the homogeneous to bipolar director field occurs eitherolume. In this appendix, we first consider two plausible
when w~kg+ kg<1 or when 0®®~kg+kgo '>1, de- families of droplet shape and minimize for these the free
pending on the anchoring strengttHere, we have again energy with respect to their aspect ratio. Next, we apply the
dropped unknown constants of proportionalitit follows  Wulff construction[45] to Eq. (2) and obtain the shape
that only in the regime where>1 and I<xks<kgw !, we  known to represent that of the absolutely lowest free energy
expect a change in scaling behavior of the aspect ratio of thg7]. Virga recently discussed aspects of the results of the
drops because the contribution of the bend elasticity is in thasame calculation in Ref8] (and in work cited therein but
case no longer negligible. left out many of the details of the calculations. It seems
Another moot point is the stability of the twisted bipolar justified, therefore, to present the full Wulff analysis in this
configuration, the possibility of which we have ignored com-appendix.
pletely. Such configurations have indeed been observed in Let the director field of the droplet be along theaxis.
thermotropic system$l13] and were investigated theoreti- Assuming axial and inversion symmetry, the height of the

APPENDIX A: HOMOGENEOUS DROPS
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droplet 0<z(p)<R is a function only of the distancg in  the aspect rati®/r of the drops only. That this must be so is
the radial direction of a cylindrical coordinate system. Theeasily seen by making dimensionless the integration variable,
volume of the entire droplet is then given by= [, d>r x=plr, as well as the height function of the droplé{x)
=47 [idpz(p)p and the surface area of the drop By =z(p)/R. Inserting £(x)=1—x?, we get for the prolate
=[ad?r=47[{dpp1+[Z'(p)]?, with r the as yet un- ellipsoid with reciprocal aspect ratio=r/R<1

known maximum radius of the droplet in the radial direction

andz’' =dz/dp. The effective area involved in the nonplanar .  {9me?\ Y3 arccos 1 g? | arccos

surface anchoring reads A,=S,d%r(q-n)? S 2 w12 7 4] |
Ji- e\ ey1-

= 4x[hdppl V1+[Z (p) % eNeTe R A

The free energy of the drop is given y=Fg=7A
+7wA, . In order to render the free-energy invariant to thewhile for the tactoid shape defined by the circle section con-
droplet volume we definE=F/7V?3 which is a function of  tour £(x)=1— (1—&?)x—&°x?, we find

B 477) VS 3(1+&2)2(2+w)[e—(1—e?)arctare ] — 4we® A2
S13) [A+e)B(A+eH)Te—(1-e)arctane]— 46377’ A2)
|
again fore<1. To determine the optimal aspect ratio, the 1+ w(1—x2) —xp\ L
free energies Eq€A1) and(A2) have to be minimized with zZ(pA " HN 1= > , (A4)
respect tos. The resulting implicit equations fas are not Vi-x

reproduced here. We have not been able to find an analytical. _
solution to these equations except in the limits:1 ande with x the solution of
—0. The limiting solutions we obtained far—1 and e X3+ (1— w)x—p\~=0. (A5)
—0 confirm the scaling results of Sec. IlI.

An absolute minimum free-energy shape may be gotterrhis cubic equation has at least one real solution ferx0
by means of the Wulff constructio5]. In the Wulff con- <1, depending on the dimensionless quantitesndp\ 1.
struction, one draws a polar plot of the interfacial tensione ascertain ourselves that the physically relevant solution
Each point on this cylindrically symmetrical surface is con-chosen indeed represents the minimprfor a givenz.
nected to the center of the coordinate system by a radial By straightforward algebra, it follows that(0)x ~1=1
vector. At the tip of each radial vector, a plane is defined; ,, jf o<w=<1 and z(0)A '=2Vw if ©=1, while
perpendicular to it. The convex envelope of these pIane§(1))\—1:0 for all . This fixes the aspect rati®/r
gives the equilibrium droplet shape, i.e., points belong to the_ 2(0)\ 1 of the drops becauge\ ~*=1 for x= 1. Further-
droplet if they can be reached from the center of the coordi-more, the tip angle as defined in the main text is given by the
nate system without crossing any of the perpendicul:’abuamity arctafz' (0)"Y with z'(0)=lim, ,,dz/dp=0 if O
planes. See, e.g., Refd], [8] for a discussion of the Wulff <w=1 andz'(0)= —Jo—1 if 0>1 vxfhere we note that
construction in the context of liquid-crystal droplets. is a function ofp through Eq.(A5). '

Our problem is cylindrically symmetric and therefore ef- Finally, after insertion of the droplet profile EGA4) into

fectively two dimensional. Focusing on the positizep o eynressions for the volumé and those for the areas
plane in the cylindrical coordinate system, the line perpen 4 A - we find for the dimensionless free energy
dicular to the radial vector of an arbitrary point on the polar w

plot of the interfacial tension is described by - A 13
FS=3(1—05(35+ 35w—Tw’+ 0% | (AB)
1+wcos ¢ :
“1_ _ y-1 - T f0<w=<1 and
z(p, )\ p\ " " tanf+ cosd (A3)
- 2 . 1)\
FS:3 Ew 1+ % , (A?)

with 6 the angle between the radial vector and zfaxis and
A a length fixed by the volume of the dropléiote that we  if (,>1 where we have eliminated the scale faotor
have absorbed the interfacial tensinpimto \.) Each point on

the polar plot of the interfacial tension generates such a line.

. . L APPENDIX B: BIPOLAR DROPS
To determine the envelope of these lines, we minimize

z(p,0)=0 with respect to the angles00=< /2 for eachp. For droplets with a bipolar director field, the optimal
Puttingx=sin 6, we thus have for the equilibrium drop pro- shape cannot be straightforwardly calculated from a Wulff
file type of construction(See, however52] for a generalized
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Waulff construction in the context of Langmuir layerdzor  system az=0, the transformation from the cylindrical coor-
simplicity, we therefore prescribe plausible shapes andlinates p,,z) to the bipolar coordinateg,7,¢) is given by
director-field configurations of the drops and optimize theirzZR=Z"1cos¢é¢ and p/R=Z 'sinésiny, where Z=1
aspect ratio. For the droplet shapes, we again assume thesin¢cos,.

ellipsoid and spindle shapes introduced in the Appendix A. At fixed ¢, the lines of constany are circles crossing the

The surface free energidss for these shapes are given by Poles atz=*R, while the lines of constarg orthogonal to
Egs.(Al) and(A2) in terms of the reciprocal aspect ratio ~ those are circles too. The director field is in this representa-
=r/R, with w set equal to zero for we now impose a p|anarti0n given byn=e§, with € the unit vector along the lines of
alignment of the director field to the droplet’s interface. Asconstanty and ¢. The ranges of the bispherical coordinates
before,r denotes the half length of the minor axis aRt¢hat ~ describing the droplet are given by<Gp<27, O<{<,

of the major axis of the droplets. The total free eneFgis and 0< 7<= 7 with the boundz,=2 arctare fixing its re-

. ~ = _ 13 ciprocal aspect ratie=r/R.
now given by the sum oF s andFe=xFg/KV™™. To transform the various surface and volume integrals, we

To calculateF ¢ of the prolate ellipsoid tactoids, we pre- pneed the metric elements,=RZ%, h,=RZ 'sin¢, and
sume the director field to be accurately described by the nofy  — Rz 1 sin¢sin . The volume of the droplet is given by
malized tangents to nested ellipsoids of revolution that cross,_ (2« T £ (70 ;
nowhere but touch at the north and south poles along the _2{9 d¢1{°d§f° dzhgheh, and its surface area bj
main body axis(the z axis). Ignoring possible twisted con- =Jo"d[gdehsh,, where for the latter, thg metric ele-
figurations, the director field of a cylindrically symmetric mentsh, andh, are evaluated ap=7,. These integrals are
bipolar  director ﬁel;jﬂz be written ~asn=[e, rea%%sﬂi[f&??ﬁe. Frank elastic energy E2), various gra
+Zz'(p)e,]/N with N=\1+Zz'(p)© a normalizationg, is the . ) ) ? i
unit vector along the radial direction, amg that algng the g:gnﬁlser?gatlhe d?rléf:f:r)r f]!ieell?j ha;/hee to ?: dsgzluitc?% (E)Ozr the
main symmetry axis of the droplet(p) describes the shape :4%_%0?% [n. (Vx,n)]2=)(/) [N (V xn)]2
of the nested ellipsoids with the radial coordinate. We fo- ’ :

" =R ?sirf7n, and V-(nV-n+nx(Vxn)]=2R 2cof &
cus on the positive half planesz(p)<R and O<p=<r, and Lo
find for the director field n=n(p,z)=[—sz*2ep+(1 Note that the first(splay and last(saddle-splayterms are

— 2R 2),]/N with N= ypZZR~+ (1- 2R )2 again the identical up to a factor of 2, which is the reason why in Sec.

normalization. The integrations of E(B) and of the volume Il, we absorbeky, into Ky, i.€., putk =K, —=Kyy. Appar-

. ; . ently, the saddle-splay term stabilizes the bipolar director
V=4m[odpz(p)p are now straightforwardly performed, t0 g by reducing the free-energy cost of the splay deforma-

give tion. (A similar effect is seen in cylindrical geometrigs4].)
23 1 h The remaining terms give for the dimensionless free energy
Foml 2| |e2-2inze+ 2008 4l 932 )| inthe equal-constant approximation
6e 2 J1—¢£2
(B1) 5 (477)2’3 He—(1—¢&?arctare]—¢ arctart ¢
E=OK| >~ o (1_22 RSYEE

providede <1. The equilibrium shape can be found by mini- 3 (8(1+e)Te—(1-e%)arctare]~4s )(BZ)
mizing Fg+ Fs with respect toe and yields an implicit ex- ~

pression fore(x) not reproduced here. which, after adding the surface free enefyy, we minimize

For the spindle-shaped droplets, we choose a director fieltb obtain the optimale. Again, this does not produce an
that is given by the(normalized tangents to families of explicit expression giving: as a function ofx, only an im-
circle sections of revolution that cross at the pates* R. plicit one that we again do not reproduce here. This equation
For this director field, the various gradients and integrals areve solved analytically in the limits —1 ande—0, and by
the easiest to be performed in a bispherical coordinate systandard numerical methods to get the fulldependence
tem[37]. If we place the center of the bispherical coordinateof «.
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