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Shape and director-field transformation of tactoids
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Polymer Physics Group, Department of Applied Physics and Dutch Polymer Institute, Eindhoven University of Technology
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Tactoids are droplets of a nematic phase that under suitable conditions form in dispersions of elongated
colloidal particles. We theoretically study the shape and the director-field configuration of such droplets for the
case where a planar anchoring of the director field to the interface is favored. A minimum of four regimes can
be identified in which the droplets have a different structure. Large droplets tend to be nearly spherical with a
director field that is bipolar if the surface tension is strongly anisotropic and homogeneous if this is not so.
Small droplets can become very elongated and spindlelike if the surface tension is sufficiently anisotropic.
Depending on the anchoring strength, the director field is then either homogeneous or bipolar. We find that the
more elongated the tactoid, the more strongly it resists the crossing over from a homogeneous to a bipolar
structure. This should have implications for the nucleation rate of the nematic phase. Our calculations quali-
tatively describe the size dependence of the aspect ratio of tactoids found in recent experiments.
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I. INTRODUCTION

The spindle-shaped droplets that are commonly refe
to as tactoids form when a uniaxial nematic liquid-crystalli
phase is nucleated out of an isotropic fluid dispersion c
taining highly anisometric colloidal particles. They have lo
been observed in dispersions of tobacco mosaic virus,fd vi-
rus, vanadium pentoxide, aluminum oxyhydroxide, iron ox
hydroxide, tungsten oxide, and so forth@1–4#. ~For an his-
torical overview, the reader is referred to a recent revi
paper by Sonin@5#.! Bernal and Fankuchen provided a pla
sible rationalization of the remarkable shape of the tacto
in terms of an anisotropic interfacial tension between
coexisting isotropic and nematic phases@1#. The equilibrium
shape of nematic liquid-crystalline drops with a fixed, hom
geneous director field was considered in more detail by H
ring @6#, Chandrasekhar@7#, and later Virga@8#. These works
show that homogeneous nematic drops should not only
elongated but in addition develop sharp ends if the ani
ropy of the surface tension is sufficiently large. However,
idea that the shape typical of tactoids is due to an anisotr
surface tension has not become generally accepted, not
because it fails to explain the dependence of the aspect
of the nematic droplets upon their size@7#.

The current paradigm for the tactoid structure involv
not a homogeneous but a bipolar director field@5#, a conse-
quence of the circumstance that elongated colloidal parti
for entropic reasons tend to align parallel the isotrop
nematic interface@9–12#. In the bipolar configuration, the
director field smoothly follows the contour of the surface
the droplet, connecting two diametrically opposed point
fects called boojums on the surface of the droplet@13#. In a
way, the director field radiates outward from one boojum
converge again on the other as is depicted in Fig. 1. Po
ization microscopic images taken of tactoids in dispersi
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of tobacco mosaic virus@1#, aluminum oxyhydroxide@2#,
and vanadium pentoxide@14# do indeed very strongly sug
gest these to be bipolar.

The precise shape and structure of bipolar tactoids
studied by Williams@15#, who solved by numerical method
the Euler-Lagrange equations obtained for the~idealized!
case where the three bulk elastic constants of the dire
field are equal, and the anchoring is tangential everywh
on the surface of the droplet. The calculations show t
bipolar tactoids optimize their shape by striking a balan
between a minimal deformation of the director field and
minimal interfacial area. For large bipolar drops, the inter
cial free energy dominates so these tend to be~nearly!
spherical. Small drops reduce their elastic deformation
attaining an elongated shape because these are dominat
the stiffness of the director field. We deduce from the wo
of Williams @15# that the~gradual! crossover from a spherica
to a highly elongated shape occurs when the dimension
ratio k[K/tV1/3 exceeds a value of about unity, becau
then the bulk elasticity takes over from the surface ene
Here,K denotes a Frank elastic constant,t is the interfacial
tension of the coexisting phases, andV is the volume of the
droplet. Typical values for the elastic constants and the in
facial tension areK'10213– 10211 N @16–23# and t
'1027– 1025 N m21 @24–27#, so tactoids of a linear dimen
sion in the micrometer range should be elongated, not sph
cal. This seems to be borne out by observation@5#.

A caveat of the calculations of Williams is the conditio
of tangential alignment of the director field, which cannot
valid if the drops are, in some sense, small@8#. In fact, one
can show by a straightforward scaling argument@28# that for
spherical droplets a bipolar director field, as taken by W
iams @15#, must be less stable than a homogeneous dire
field, assumed in Refs.@6–8#, if k is larger than a dimen-
sionless surface anchoring strengthv. This anchoring
strength is small if the interfacial tension is isotropic
nearly so, and large if it is strongly anisotropic and para
alignment of the director field is favored. For uncharge
slender colloidsv has been predicted to have a value arou
©2003 The American Physical Society01-1



n
e
a

,
th
en
t a
to
uc
n
a
p

a
-
o
m
r

he
f

I
n
te
ic
on
dl
u
n
in
n

de
a

ut
ed
e
lcu
an
u
ib
a

th

w
w
m

o-
in
n

he
th

ce

g

et

set
eld

u-
ous

r,

tion

n
ed

in
rge

o

d in
f a
gy

tor

ely
a-

y
of

P. PRINSEN AND P. van der SCHOOT PHYSICAL REVIEW E68, 021701 ~2003!
unity @9–12#, so in many practical situations the shape a
director-field transformations are not independent. Rec
calculations on almost spherical nematic droplets indic
that this must indeed be so@29,30#.

Despite considerable progress in recent years@13#, the
structure of nematic droplets, in general, and of tactoids
particular, remains incompletely understood. In our view,
problem merits a closer inspection both from an experim
tal and a theoretical point of view. In this work, we presen
theoretical study of the tactoid surface shape and direc
field structure, and focus on the influence of quantities s
as the volume of the droplets, the Frank elastic consta
and the degree of anisotropy of the surface tension. Our
is to connect the early interpretation of the tactoid sha
based on an anisotropic surface tension@6,7#, with the cur-
rent view, which focuses on the response of the droplet sh
to the bipolar director field@15#. As we shall see, the mini
mum anchoring strength required to force a homogene
director field to become bipolar depends both on the volu
and on the shape of the droplet, with elongated droplets
sisting a bipolar director field much more strongly than sp
roidal ones. This could have far-reaching consequences
the nucleation kinetics of lyotropic nematic phases.

The remainder of this paper is structured as follows.
Sec. II, we present a phenomenological free energy fu
tional, in which we combine an elastic energy associa
with the deformation of the director field with an anisotrop
interfacial free energy. The former consists of the usual c
tributions from the splay, the twist, the bend, and the sad
splay distortions, and the latter of a sum of an isotropic s
face free energy and a free energy penalizing a nonpla
anchoring of the director field. Arguments shall be given
favor of ~i! the approximation of equal elastic constants a
~ii ! the neglect of the contribution from the saddle-splay
formation. Next, in Sec. III, a scaling estimate of the optim
droplet configuration is presented. For reasons of comp
tional simplicity, we focus on spherical and highly elongat
droplet shapes for two extreme director fields, one pur
homogeneous and one purely bipolar. In Sec. IV, we ca
late the free energy for three different droplet shapes
director-field configurations exactly. The main result of o
calculations constitutes a ‘‘phase’’ diagram for the equil
rium shape and director-field configuration of the droplets
a function of the elastic stiffness of the director field and
anisotropy of the interfacial tension.

We end this paper with a discussion in Sec. V, where
compare our theory with experimental data and where
propose a continuous crossover mechanism from the ho
geneous to the bipolar director-field configuration.

II. FREE-ENERGY FUNCTIONAL

We consider a nematic droplet of volumeV in an isotro-
pic, fluid medium. If the volume of the droplet is macr
scopic on the scale of the nematogens, we need not take
account finite-size effects on the stability of the nematic a
on the degree of nematic order in the droplet@29,31#. The
free energyF of a nematic tactoid can then be written as t
sum of the free-energy cost of a potential deformation of
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director field FE and that of the presence of the interfa
with the isotropic mediumFS

F5FE1FS . ~1!

For the interfacial free energy, we adopt the followin
plausible expression@32#:

FS5tE
A
d2r @11v~q•n!2#, ~2!

with n5n(r ) the nematic director andq5q(r ) the surface
normal at the positionr on the interface between the dropl
and the medium;t is the interfacial tension andv is the
earlier-introduced dimensionless anchoring strength. We
v.0 to ensure that a parallel anchoring of the director fi
to the interface is favored@8#. The integration in Eq.~2! is
over the entire interfacial areaA of the droplet. Althoughad
hoc, our choice for the interfacial free energy fairly acc
rately mimics the anchoring-angle dependence of vari
theoretical predictions for hard rods and hard worms@9–12#.

The~Frank! elastic free energyFE takes the form@33–35#

FE5E
V
d3r F1

2
K1~“•n!21

1

2
K2~n•“3n!2

1
1

2
K3@n3~“3n!#22K24“•@n“•n1n3~“3n!#G ,

~3!

where n5n(r ) again denotes the locally defined directo
and the integration is over the entire volumeV of the droplet.
The first three terms, with the elastic constantsK1 , K2, and
K3 , represent the usual splay, twist, and bend deforma
modes of a bulk nematic@36#. The last term, with the elastic
constant K24, stems from the saddle-splay deformatio
mode. For this term, the volume integral can be transform
to a surface integral, which is why it is usually ignored
studies of bulk nematics. Since our droplets have a la
surface-to-volume ratio, it is nota priori clear that the ‘‘sur-
face’’ elastic term can indeed be neglected.

Obviously, Eq.~3! needs to be simplified for the theory t
be practical. To make headway, we first note that a~parity-
broken! twisted director-field configuration has@13#, as far as
we are aware, not~yet! been observed in lyotropic~colloidal!
systems. That this is not entirely unexpected is discusse
more detail in Sec. V. Hence, we ignore the possibility o
twisted bipolar configuration and drop from our free ener
the second~twist-deformation! term. Further simplification
follows from the observation that for the bispherical direc
field advanced by Williams in Ref.@37# and described in
more detail in Sec. IV, the saddle-splay deformation mer
renormalizes the contribution of the splay elastic deform
tion to the free energy.~See also Appendix B.! We therefore
absorb the influence ofK24 into K1 and drop the saddle-spla
term also. Note that little is known about the magnitude
the surface elastic constantK24 of lyotropic nematics of elon-
gated colloids.
1-2
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This leaves us with two elastic constants,K1 and K3 ,
relevant to the problem in hand. From theoretical work
infer thatK3@K1 if the colloidal particles behave like rigid
rods and thatK3'K1 if they are better described as sem
flexible, wormlike chains@16,40–43#. Experimental data on
dispersions of, e.g., the rodlike tobacco mosaic virus and
semiflexible polymer poly~butyl glutamate! agree qualita-
tively with these predictions@16,41#. This would suggest tha
the commonly used equal-constant approximationK5K1
5K3 is of limited use for nematics of rodlike colloids, ex
cept if they are not extremely rigid. However, the equ
constant approximation may, in fact, be quite reasonable
stiff colloids too because the splay elastic term overwhe
ingly dominates the overall elastic free energy of a bipo
droplet@37#. ~See also Sec. III.! For this reason, we adopt th
equal-constant approximation too and write

FE5
1

2
KE

V
d3r$~“•n!21@n3~“3n!#2%. ~4!

A discussion of the impact of unequal elastic constants
be found in Sec. V.

III. SCALING THEORY

We first analyze the free-energy functionals Eqs.~2! and
~4! from a scaling theoretical point of view, and obtain
qualitative picture of the equilibrium droplet shapes a
structures based on the four extreme cases of Fig. 1. T
are the cases of~i! elongated bipolar drops,~ii ! spherical
bipolar drops,~iii ! elongated homogeneous drops, and~iv!
spherical homogeneous drops, which we discuss case by
@44#. Finally, at the end of this section, possible transitio
between the various configurations are investigated by c
paring their free energies.

~i! Elongated, bipolar drops. For cylindrically symmetric,
bipolar drops with major axisR and minor axisr !R, the
interfacial free energy Eq.~1! obeys

FS'tRr, ~5!

FIG. 1. Schematic representation of some of the nematic dro
shapes and structures discussed in the main text. Top: sphe
droplets with~a! a homogeneous and~b! a bipolar director field.
Bottom: spindle-shaped tactoids with~c! a homogeneous and~d! a
bipolar director field. Indicated also are the locations on the pole
the droplets of the surface point defects~‘‘boojums’’ !.
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because the total surface areaA is of the order ofRr, and
because (q•n)250. The latter equality follows from our pre
sumption of tangential anchoring, which by construction
sults in a free energy that is independent of the ancho
strengthv. In Eq. ~5!, as in all of the following scaling
estimates, all constants of proportionality are omitted.

To obtain a scaling estimate for the Frank elastic ene
of the bipolar drops, we deduce from Eq.~4! thatFE must be
proportional to an elastic constantK times a droplet volume
V'Rr2 times the square of a reciprocal radius of curvatu
By geometry, the mean radius of curvature of the bend
formation scales asR2/r and that of the splay deformation a
R. This means that the contribution from the bend deform
tion can be neglected if the drops are highly elongated,
is, if R@r . ~It can even be ignored ifR'r because a more
precise calculation shows that for spherical drops the con
bution from the bend deformation is 7.5 times smaller th
that of the splay deformation irrespective of their size@37#.!
In conclusion,

FE'KRr2
1

R2 5KRS r

RD 2

~6!

should be a reasonably accurate estimate for the free en
albeit, of course, within an unknown numerical prefact
Equation~6! shows that the more elongated the droplet,
less nonuniform the director field and therefore, the sma
the free-energy penalty associated with the bipolar direc
field.

Ignoring the free energy of the microscopic core of t
boojums, we obtain the optimal aspect ratioR/r for a highly
elongated droplet by minimizing~at a fixed droplet volume
V) the total free energy given by the sum of Eqs.~5! and~6!,

R

r
'K3/5t23/5V21/55k3/5. ~7!

Equation~7! implies that the aspect ratio of a bipolar drop
larger the smaller its volume. If we insert Eq.~7! into Eqs.
~5! and ~6!, we find for the equilibrium free energy

F'V3/5t4/5K1/55V2/3tk1/5, ~8!

at least ifk@1. Equations~7! and~8! are consistent with the
more elaborate calculations of Williams@15#.

~ii ! Spheroidal, bipolar drops. In the opposite limit ofk
!1, the drops are spheroidal andR'r . In this limit, we have
by similar arguments

F'KR1tR25V2/3t~k11!, ~9!

as can in fact also be deduced directly from Eqs.~5! and~6!
by settingr 5R.

~iii ! Elongated, homogeneous drops. If the director field is
homogeneous, there is no elastic deformation soFE50. The
surface free energy for the caseR@r becomes

FS'tRrF11vS r

RD 2G , ~10!

et
cal

of
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because in that case (q•n)2'(r /R)2 for most of the interfa-
cial area. The optimal aspect ratio of the highly elonga
drops follows again from a free-energy minimization at co
stant volume, giving

R

r
'v1/2, ~11!

which grows with increasing anchoring strength albeit n
very strongly. The equilibrium free energy of the drops in t
strong anchoring limitv@1,

F'V2/3tv1/6, ~12!

follows by insertion.
~iv! Spheroidal, homogeneous drops. Nematic droplets

with a uniform director field are spheroidal if 0,v!1, so
R'r and (q•n)2'1. Hence, our estimate for the free ener
reads

F'V2/3t~11v!, ~13!

for this particular configuration.
The crossover from a homogeneous to a bipolar dire

field occurs if the surface anisotropy wins out from the el
tic stiffness of the director field. According to the free-ener
estimates, Eqs.~8!, ~9!, ~12!, and ~13!, there cannot be a
large jump in the aspect ratio of the drops at the point wh
the director field changes from homogeneous to inhomo
neous or vice versa. Therefore, spheroidal droplets rem
spheroidal and elongated ones remain elongated.

For spheroidal droplets, the director-field transformat
occurs if

0,v'k!1, ~14!

as can be deduced from Eqs.~9! and~13!. By equating Eqs.
~8! and ~12!, we find that in the opposite limit of elongate
tactoids, the crossover from a homogeneous to a bipola
rector field takes place when

1!v'k6/5. ~15!

Equations~14! and~15! demarcate four regimes.~See also
Fig. 6.! For k*1 andv*1, the droplets are elongated, th
is, tactoidal. These tactoids are homogeneous ifv&k6/5 and
bipolar if v*k6/5. For k&1 or v&1, the droplets are sphe
roidal with a homogeneous director field ifv&k and sphe-
roidal with a bipolar director field ifv*k. Apparently, elon-
gated tactoids postpone the crossover to a bipolar structu
higher droplet volumes than one would expect from the s
ing behavior of the spherical ones. The reason is that the
in surface free energy upon the replacement of a homo
neous director field by a bipolar director field is compa
tively small if the nematic droplet is elongated.

IV. VARIATIONAL THEORY

The theory presented in the preceding section has
merit of simplicity and of providing insight, but it lacks th
ability to predict numerical prefactors and crossover deta
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To go beyond simple scaling arguments, one would, idea
minimize the free-energy functionalF5F@n# with respect to
the director fieldn(r ) and the droplet shape~in some suitable
parametrization of the surface!. This would have to be done
at a constant drop volumeV and at a constantunu[1 because
the director is a vector of fixed unit length@36#. The resulting
Euler-Lagrange equations are those of a free-surface p
lem, which are very difficult to solve even numerical
@8,15,30#. We therefore simplify the mathematical proble
~i! by prescribing certain families of~cylindrically symmet-
ric! droplet shapes and director fields and~ii ! by minimizing
the free energy with respect to the pertinent variational
rameters.

Here, we only briefly touch upon how the calculatio
were done and focus on the presentation of the results of
calculations. Readers interested in the details of the calc
tions are referred to Appendixes A and B. We first discu
our findings for the droplets with a homogeneous direc
field, and subsequently, those for the bipolar director fie
We end this section with a comparison of the free energie
the two types of drop, allowing us to locate for what valu
of k andv the transition from one to the other director fie
ought to be expected.

Homogeneous drops. For drops with a homogeneous d
rector field, the minimization of the~surface! free energy can
be done exactly with the help of the well-known Wulff con
struction@6,7,45#. Virga applied this procedure to a surfac
free energy of the form of Eq.~2! some time ago, but only
very briefly discussed his findings.~See Ref.@8#, and refer-
ences cited therein.! We have repeated the calculations a
for completeness present them in considerable detail in
pendix A. In agreement with the earlier work described
Ref. @8#, we find the droplets to be spherical ifv→0, elon-
gated spheroidal if 0,v<1, and elongated with sharp end
~tactoidal! if v.1.

Expressions for the equilibrium free energyF̃[F/tV2/3

obtained with the aid of the Wulff construction are given
Appendix A and plotted as a function ofv in Fig. 2. In the
limit v→0, the free energy obeysF̃;4.8411.61v to linear
order in v, while it approaches the limiting relationF̃
;5.66v1/6 for v@1, confirming our earlier estimates give
by Eqs.~12! and ~13!.

For comparison, we have also calculated the optimal s
face free energies of ellipses of revolution and of circle s
tions of revolution, and plotted the results in Fig. 2.~Details
of the calculations can be found in Appendix A.! The figure
shows that for all except very small values ofv, the ellipses
of revolution are of higher free energy than the circle s
tions of revolution that we for brevity refer to as ‘‘spindles
from now on. In the limitv→0, the differences between th
free energies of the Wulff, spindle, and ellipsoid shapes
only of the order ofv2 and vanish rapidly with decreasin
anchoring strength. Remarkably, the exact Wulff shapes
the spindles differ in free energy less than about one-tent
a percent for all values ofv.

The shape transformation of the nematic droplet with
homogeneous director field is illustrated in Fig. 3, where
have plotted the anchoring-strength dependence of the a
1-4



ge

th
d
e

n
o
p

f

b-
is

of
ion
f

s,

ed
he
ible

ro-

od
in-
tral
the
e
xi-

l
on
is-
r-

B.

he
the

the

a

er

id

a

pe,
the

s
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between the main axis of the drop and the surface tan
taken at either pole~the tip angle!. The Wulff construction
gives a tip angle that is a constantp/2 for v<1, but that
decreases as arctan 1/Av21 if v.1. Also given in the fig-
ure are the tip angles for the prolate spheroids and
spindles, where we note that the former shape has a fixe
angle ofp/2.1.57. The tip angle of the spindle approach
the exact value from below in both limitsv→0 and v
→`.

Considering the relatively small differences in free e
ergy, it is hardly surprising that the optimal aspect ratio
the droplets is quite insensitive to the precise droplet sha
The aspect ratioR/r of the drops we obtained with the Wulf

FIG. 2. Dimensionless free energyF̃ of a nematic drop with a
homogeneous director field as a function of the dimensionless
choring strengthv. Dashed line—ellipsoid of revolution, circles—
Wulff shape, drawn line—spindle. All curves approach the pow

law scalingF̃;v1/6 in the limit v@1. The initial slope forv→0 is
identical for all three shapes.

FIG. 3. The tip angleg of homogeneous drops~in radians! as a
function of the dimensionless anchoring strengthv for the various
shapes indicated. Forv<1, the Wulff shape predicts a sphero
shape with a tip angle ofp/2'1.57. Forv.1, the Wulff shape has
sharp ends with a tip angle smaller thanp/2. Both the spindle and
the Wulff shape predict a scaling lawg;v21/2 for the tip angle at
largev.
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construction exactly obeysR/r 511v if v<1 and R/r
52v1/2 if v.1, quite close to the approximate results o
tained with the prolate spheroids and the spindles. This
shown in Fig. 4, which also confirms that the aspect ratio
a homogeneous nematic drop is only a fairly weak funct
of the anchoring strength. In other words, large values ov
are required to get strongly elongated drops.

Bipolar drops. For tangentially anchored bipolar drop
the surface free energy is independent ofv and proportional
to the total interfacial area as we pointed out earlier. At fix
volume, the total of the interfacial area is a function of t
droplet shape. For the droplet shapes, we use two plaus
ones, namely, ellipsoids of revolution and spindles@38#. The
choice for the latter shape was inspired by optical mic
graphs of bipolar nematic droplets@2,5#.

Williams noted in Ref.@37# that the director field of a
director field of a spherical bipolar droplet is to a very go
approximation bispherical, that is, tangent to circles of
creasing radius of curvature, the closer we get to the cen
axis of the drop. The circles cross at the boojums on
poles of the droplet.~See Fig. 1.! It stands to reason that th
director field of a bipolar spindle should also be appro
mately bispherical, which is what we now presume.~See also
Ref. @39#.! Similarly, the director field inside the ellipsoida
drop which we describe by nested ellipsoids of revoluti
that touch at the poles, following the ansatz of Dubo
Violette and Parodi in their calculation of the elastic defo
mation energy of a spherical bipolar droplet@46#.

Details of our calculations can be found in Appendix
The dimensionless free energiesF̃ obtained for the bipolar
ellipsoids and spindles are functions ofk and of their aspect
ratio R/r . These were minimized with respect toR/r , pro-
ducing implicit expressions for the optimal aspect ratio of t
drops that we could only solve by analytical methods in
limits k→0 andk→`. For arbitrary values ofk, we solved
the equations by standard numerical methods. Inserting
optimal values ofR/r back intoF̃ produced the equilibrium

n-

-

FIG. 4. Aspect ratioR/r of homogeneous nematic drops as
function of the dimensionless anchoring strengthv. Given are the
results for the prolate spheroid, the spindle and the Wulff sha
indicated, respectively, by the dashed line, the drawn line, and
circles. The initial slope forv→0 is identical for all three shape
and so is the scalingR/r;v1/2 for largev.
1-5
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free energy for the two shapes.
In Fig. 5, we present the equilibrium free energyF̃ as a

function of the dimensionless elastic stiffnessk for the ellip-
soids and the spindles. The spindle shape resembling
experimentally found tactoid shape is indeed the lowest-fr
energy shape of the two for all values ofk.0. In the limit
k→0, where the droplets are spherical, we get for the
spherical director fieldF̃;4.8418.83k and for the ellipsoi-
dal director fieldF̃;4.8419.35k ~both to linear order ink!.
Note that we correctly reproduce the results of Refs.@37#,
@46#, valid in that limit.

For largek, the free energy of the bipolar spindle a
proaches the scaling formF̃;7.68k1/5, which confirms our
scaling estimate Eq.~8!. This is only slightly larger than the
more accurate resultF̃;6.66k1/5 found by Williams ~see
Fig. 6 of Ref.@15#!. The limiting form of the aspect ratio we
find for the spindle readsR/r;4.44k3/5, the scaling expo-
nent of which agrees with that of our estimate Eq.~7!. Inter-
estingly, neither the free energy nor the aspect ratio of
ellipsoids of revolution exhibit a pure power-law dependen
in the limit of k@1.

Crossover. To determine which droplet structure is th
most stable, we compare the free energies of the var
droplet shapes and director-field configurations. For
droplet with the homogeneous director field, we use
shape obtained from the Wulff construction because it rep
sents for that director-field configuration the shape of
lowest free energy. For the bipolar droplet, we take
spindle shape, which is more stable than the prolate sphe
irrespective of the magnitude of the elastic coupling para
eterk.

If we compare Fig. 2 with Fig. 5, we see that the hom
geneous director field has a lower free energy than the b
lar director field ifk is sufficiently large~corresponding to a
sufficiently small droplet volume!. For smallk ~large droplet

FIG. 5. Dimensionless free energyF̃ of a bipolar tactoid as a
function of the dimensionless elastic stiffnessk5K/tV1/3. Indi-
cated are results for prolate spheroids and for spindles. The
energy of the spindle shape is below that of the prolate sphe
shape for allk. For largek the free energy of the bipolar spindl

approaches the scaling formF̃;k1/5. No pure scaling form is
reached for the bipolar spheroid.
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volume!, the reverse is true. The crossover value ofk, sepa-
rating homogeneous and bipolar director-field configuratio
depends on the magnitude of the anchoring strengthv. This
is shown in the ‘‘phase’’ diagram of Fig. 6. For clarity, th
various director-field configurations and droplet shapes
schematically indicated in the figure roughly where they o
cur. Also indicated are the slopes to the points separating
regions corresponding to bipolar and homogeneous dire
fields for the nearly spherical and the highly elongated dr
lets. They are in complete agreement with the scaling res
Eqs. ~14! and ~15!, for which we can now also produce th
prefactors:v;5.45k for v!1 andv;6.24k6/5 for v@1.

Finally, in Fig. 7, we give the calculated aspect ratio
the tactoids as a function ofk for a bipolar director field, as
that for a homogeneous director field with a fixed anchor

ee
id

FIG. 6. Diagram of states of nematic tactoids as a function
the dimensionless elastic stiffnessk and the dimensionless ancho
ing strengthv. The filled circles indicate the crossover from a h
mogeneous to a bipolar director field according to our variatio
theory, and the lines emphasize the slopes 1 and 6/5 obtained
the scaling estimate. Tactoid shape and director-field configura
are schematically given where they occur in the diagram of sta

FIG. 7. Aspect ratioR/r of a tactoid as a function of the dimen
sionless elastic stiffnessk. Horizontal curve—homogeneous direc
tor field with v51, monotonically increasing curve—bipolar direc
tor field. Indicated is the transition between the bipolar direc
field, stable at smallk, to the homogeneous director field at largek.
The minuscule jump in the aspect ratio at the transition canno
seen on the scale of the figure.
1-6
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strength ofv51. We have seen that providedk is suffi-
ciently large, a homogeneous director field is always p
ferred, in which case the aspect ratio of the droplets does
depend on their size. Forv51, the theory predicts the mos
probable aspect ratio ofR/r 52 to be a constant ofk if k
.0.1843. Consequently, the aspect ratio does not cha
with increasing drop size~decreasingk!, until the crossover
to the bipolar structure is reached atk50.1843. There, the
aspect ratio jumps from the value of 2 to a value of 1.993
other words, forv51 the droplet shape changes sudde
from an elongated spheroid to an elongated spindle
slightly smaller aspect ratio. Belowk50.1843, the aspec
ratio of the drops decreases with decreasingk. It approaches
the limiting value of unity for very large droplets, ask→0.

The magnitude of the discontinuous change of the el
gation of the droplets turns out to be a~nonmonotonic! func-
tion of v. However, as we already anticipated in Sec. III, t
jump remains modest for all values ofv and is typically well
below the maximum of about 12% that we find for largev
~results not shown!.

Although our theory suggests the director-field and sh
transformation to be discontinuous, this need not be the c
in reality. In the following section, we speculate on a mec
nism how this transformation could take place continuou
but not before first summarizing our findings.

V. DISCUSSION AND CONCLUSIONS

In conclusion, tactoids do not necessarily have a bipo
director field. If of sufficiently small size, their director fiel
should be uniform. Presuming the surface tension is ac
rately represented by the form of Eq.~2!, the precise shape o
such small tactoids then solely depends on a dimension
anchoring strengthv. They are prolate spheroidal if 0,v
<1, and spindlelike with sharp ends ifv.1. Large drops, on
the other hand, prefer a bipolar director field, with a sha
that is not rounded but spindlelike. The aspect ratio of bi
lar tactoids decreases as a function of the volume. Accord
to our calculations, bipolar drops can only become tr
spherical in the limit of infinite volume.

If the anchoring strength is small, the transformation fro
a uniform to a bipolar director field occurs when the line
dimensionV1/3 of the droplet is of the order of the ‘‘extrapo
lation length’’ l[K/tv of the isotropic-nematic interfac
@36# and of the order oflv1/6 if the anchoring strength is
large. Our main conclusion, therefore, is that elongated
toids postpone the crossover to a bipolar structure to a m
higher droplet volume than spherical ones.

For values ofv not very much larger or smaller tha
unity, we estimate that for the usual thermotropic liquid cry
tals the director-field and shape transformation occurs w
the droplets are of the order of one-tenth of a micron@29#,
which is why for this type of system the crossover is diffic
to observe~except perhaps with x-ray microdiffraction tec
niques @47#!. This should not be so for lyotropic nemat
tactoids on account of their much lower interfacial tensio
For this type of system, the crossover size is likely to be
the micrometer range. Lacking any systematic experime
investigations of both the shape and the structure of the
02170
-
ot

ge

n
y
f

-

e
se
-
,

r

u-

ss

e
-
g

y

r

c-
ch

-
n

.
n
al
c-

toids, a comprehensive comparison of our theoretical pre
tions with experimental observations has to be left for futu
work.

As far as we are aware, the only experimental data t
allow for a meaningful comparison with our theory are tho
of Dogic @48#, who measured the dimensions of nematic ta
toids that may~under the right conditions! be found in aque-
ous mixtures of the filamentous fd virus and the polysacc
ride dextran. The presence of the polysaccharide induce
isotropic-smectic transition in the virus solution, the initi
kinetics of which involve the formation of metastable nem
atic tactoids. Details of the experiments can be found in R
@4#. The results of the measurements are given in Fig
together with theoretical predictions we obtained for bipo
tactoids. Theoretical curves are given for various values
the lengthK/t, which in the present description is the sing
adjustable parameter for the bipolar director-field configu
tion. The scatter in the data makes it difficult to fix th
parameter accurately, but a value between 1 and 2mm seems
to produce the best overall agreement. Clearly, theory
experiment agree only qualitatively, but this should not
surprising in view of the approximate nature of the theo
and the scatter in the data.

A logical conclusion that one might draw from Fig. 8
that the range of tactoid sizes sampled is not large enoug
include the very smallest ones that have crossed over fro
bipolar to a homogeneous director-field configuration.
deed, there is no clear indication in the data of a levelling
of the aspect ratio of the drops at the lower end of the dro
sizes, as one would expect from the theory. Tentatively
suming the theory to be accurate all the way down to
smallest of droplets observed@49#, we have to concede tha
the anchoring strengthv must be greater than about 6 for th
theory to be consistent with the observations. This is ob
ously much larger than the theoretical values between
and 1.5@9–12#. Note, however, that if the anchoring streng
were as predicted to have a value around unity, tactoids w

FIG. 8. Aspect ratioR/r versus the length 2R of nematic tac-
toids formed in aqueous dispersions of fd virus and the polym
dextran. The filled circles are the experimental data of Dogic@48#,
the drawn lines represent the theoretical results presuming a bip
director field for three values of the lengthK/t50.5, 1, 2mm ~from
bottom to top!.
1-7
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aspect ratios greater than about 2 would not exist. Hig
elongated tactoids have been observed in a variety of
tems@5#, suggesting that the anchoring strength must ind
be much greater than found theoretically.

In practice, the crossover from a homogeneous to a b
lar director field may be subtle, i.e., it need not be quite
abrupt as we find in this work@29,30,50#. It may well be that
the director field changes continuously with increasing dr
let size in a process where virtual boojum defects gradu
move in toward the surface. Virtual boojums are boojums
a director field extrapolated beyond the boundaries of
nematic droplet@51,52#. See Fig. 9. The larger the distanc
between the virtual boojums, the more homogeneous the
tual director field. Polarization microscopic images of ta
toids with real and quasibipolar director fields are proba
quite similar and difficult to distinguish. Clearly, the issu
calls for a more detailed study.

Although we have given arguments in favor of the equ
constant approximation, it does introduce an error that ia
priori difficult to estimate the impact of. A scaling analys
along the lines of that presented in Sec. III suggests that
conclusions are not radically altered if we allow the sp
and bend elastic constants not to be equal. Indeed, if we
kS[K1 /tV1/3 andkB[K3 /tV1/3, we find that the crossove
from the homogeneous to bipolar director field occurs eit
when v'kS1kB!1 or when v5/6'kS1kBv21@1, de-
pending on the anchoring strength.~Here, we have again
dropped unknown constants of proportionality.! It follows
that only in the regime wherev@1 and 1!kS!kBv21, we
expect a change in scaling behavior of the aspect ratio of
drops because the contribution of the bend elasticity is in
case no longer negligible.

Another moot point is the stability of the twisted bipol
configuration, the possibility of which we have ignored co
pletely. Such configurations have indeed been observe
thermotropic systems@13# and were investigated theoret

FIG. 9. Schematic representation of a nematic droplet wit
quasibipolar director field that is intermediate between a true b
lar and a homogeneous director field. Indicated is one of the
virtual boojums, which are point defects in a director field extrap
lated beyond the boundaries of the droplet. If these virtual booju
move in onto the actual interface of the droplets, they become
boojums. If the virtual boojums move out into infinity, the direct
field becomes homogeneous.
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cally by Williams @37#. According to Williams, tangentially
anchored, bipolar nematic droplets of spherical shape cr
over to a twisted configuration ifK1>K210.431K3 . In the
twisted configuration, the splayed director field is partly r
placed by a combined twisted and bent deformation. A
result, this configuration becomes energetically favorable
the splay elastic constant is sufficiently large in comparis
with the other two~bulk! elastic constants. Because the spl
elastic deformation is much smaller in elongated bipolar t
toids than in spherical ones, we should expect the twis
configuration to become less probable, the more elonga
the tactoids are.

As a final remark, we note that the director-field a
shape transformation of nematic droplets described in
paper should have a bearing on the rate of nucleation of
nematic phase in dispersions of elongated colloidal partic
According to classical nucleation theory, the free-energy b
rier to nucleation is a function of the concentration of t
nucleating nematic, the interfacial tension and the differe
between the chemical potentials of the particles in the pa
isotropic phase and in the nematic phase@53#. This should be
more or less accurate if the quench is sufficiently deep
the critical nuclei to be so small that a homogeneous dire
field is preferred. In addition, the anchoring strengthv
should not be too large for the critical nuclei to be more
less spherical. If the quench is shallow, however, or if t
anchoring strength is large, the situation should be quite
ferent and in fact much more complex. Depending on
quench depth, the nucleation barrier could in that case
depend on the anchoring strength and/or on the Frank e
ticity of the critical nuclei. We intend to investigate the im
plications of these issues in the near future.
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APPENDIX A: HOMOGENEOUS DROPS

If the director field is homogeneous, the free energy o
droplet is given by Eq.~2!. We seek to minimize this free
energy with respect to the shape of the droplet at a fi
volume. In this appendix, we first consider two plausib
families of droplet shape and minimize for these the fr
energy with respect to their aspect ratio. Next, we apply
Wulff construction @45# to Eq. ~2! and obtain the shape
known to represent that of the absolutely lowest free ene
@7#. Virga recently discussed aspects of the results of
same calculation in Ref.@8# ~and in work cited therein!, but
left out many of the details of the calculations. It seem
justified, therefore, to present the full Wulff analysis in th
appendix.

Let the director field of the droplet be along thez axis.
Assuming axial and inversion symmetry, the height of t
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droplet 0<z(r)<R is a function only of the distancer in
the radial direction of a cylindrical coordinate system. T
volume of the entire droplet is then given byV5*Vd3r
54p*0

r drz(r)r and the surface area of the drop byA
5*Ad2r54p*0

r drrA11@z8(r)#2, with r the as yet un-
known maximum radius of the droplet in the radial directi
andz85dz/dr. The effective area involved in the nonplan
surface anchoring reads Aw[*Ad2r (q•n)2

54p*0
r drr/A11@z8(r)#2.

The free energy of the drop is given byF5FS5tA
1tvAw . In order to render the free-energy invariant to t
droplet volume we defineF̃[F/tV2/3, which is a function of
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02170
the aspect ratioR/r of the drops only. That this must be so
easily seen by making dimensionless the integration varia
x[r/r , as well as the height function of the droplet,j(x)
[z(r)/R. Inserting j(x)5A12x2, we get for the prolate
ellipsoid with reciprocal aspect ratio«[r /R,1

F̃S5S 9p«2

2 D 1/3F arccos«

«A12«2
111v

«2

12«2 S arccos«

«A12«2
21D G ,

~A1!

while for the tactoid shape defined by the circle section c
tour j(x)5A12(12«2)x2«2x2, we find
F̃S5S 4p

3 D 1/3F 3~11«2!2~21v!@«2~12«2!arctan«#24v«3

~11«2!„3~11«2!2@«2~12«2!arctan«#24«3
…

2/3G , ~A2!
tion

the

al
lff
again for «,1. To determine the optimal aspect ratio, t
free energies Eqs.~A1! and~A2! have to be minimized with
respect to«. The resulting implicit equations for« are not
reproduced here. We have not been able to find an analy
solution to these equations except in the limits«→1 and«
→0. The limiting solutions we obtained for«→1 and «
→0 confirm the scaling results of Sec. III.

An absolute minimum free-energy shape may be go
by means of the Wulff construction@45#. In the Wulff con-
struction, one draws a polar plot of the interfacial tensi
Each point on this cylindrically symmetrical surface is co
nected to the center of the coordinate system by a ra
vector. At the tip of each radial vector, a plane is defin
perpendicular to it. The convex envelope of these pla
gives the equilibrium droplet shape, i.e., points belong to
droplet if they can be reached from the center of the coo
nate system without crossing any of the perpendicu
planes. See, e.g., Refs.@7#, @8# for a discussion of the Wulff
construction in the context of liquid-crystal droplets.

Our problem is cylindrically symmetric and therefore e
fectively two dimensional. Focusing on the positivez-r
plane in the cylindrical coordinate system, the line perp
dicular to the radial vector of an arbitrary point on the po
plot of the interfacial tension is described by

z~r,u!l2152rl21 tanu1
11v cos2 u

cosu
, ~A3!

with u the angle between the radial vector and thez axis and
l a length fixed by the volume of the droplet.~Note that we
have absorbed the interfacial tensiont into l.! Each point on
the polar plot of the interfacial tension generates such a l
To determine the envelope of these lines, we minim
z(r,u)>0 with respect to the angle 0<u<p/2 for eachr.
Puttingx[sinu, we thus have for the equilibrium drop pro
file
al
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r

e.
e

z~rl21!l215
11v~12x2!2xrl21

A12x2
, ~A4!

with x the solution of

vx31~12v!x2rl2150. ~A5!

This cubic equation has at least one real solution for 0<x
<1, depending on the dimensionless quantitiesv andrl21.
We ascertain ourselves that the physically relevant solu
chosen indeed represents the minimumr for a givenz.

By straightforward algebra, it follows thatz(0)l2151
1v if 0<v<1 and z(0)l2152Av if v>1, while
z(1)l2150 for all v. This fixes the aspect ratioR/r
5z(0)l21 of the drops becauserl2151 for x51. Further-
more, the tip angle as defined in the main text is given by
quantity arctanuz8(0)21u with z8(0)5 limr→0 dz/dr50 if 0
<v<1 andz8(0)52Av21 if v.1, where we note thatx
is a function ofr through Eq.~A5!.

Finally, after insertion of the droplet profile Eq.~A4! into
the expressions for the volumeV, and those for the areasA
andAw , we find for the dimensionless free energy

F̃S53S 4p

105
~35135v27v21v3! D 1/3

, ~A6!

if 0<v<1 and

F̃S53S 32p

15
v1/2S 11

1

7v D D 1/3

, ~A7!

if v.1, where we have eliminated the scale factorl.

APPENDIX B: BIPOLAR DROPS

For droplets with a bipolar director field, the optim
shape cannot be straightforwardly calculated from a Wu
type of construction.~See, however,@52# for a generalized
1-9
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P. PRINSEN AND P. van der SCHOOT PHYSICAL REVIEW E68, 021701 ~2003!
Wulff construction in the context of Langmuir layers.! For
simplicity, we therefore prescribe plausible shapes a
director-field configurations of the drops and optimize th
aspect ratio. For the droplet shapes, we again assume
ellipsoid and spindle shapes introduced in the Appendix
The surface free energiesF̃S for these shapes are given b
Eqs.~A1! and ~A2! in terms of the reciprocal aspect ratio«
5r /R, with v set equal to zero for we now impose a plan
alignment of the director field to the droplet’s interface. A
before,r denotes the half length of the minor axis andR that
of the major axis of the droplets. The total free energyF̃ is
now given by the sum ofF̃S and F̃E[kFE /KV1/3.

To calculateF̃E of the prolate ellipsoid tactoids, we pre
sume the director field to be accurately described by the
malized tangents to nested ellipsoids of revolution that cr
nowhere but touch at the north and south poles along
main body axis~the z axis!. Ignoring possible twisted con
figurations, the director fieldn of a cylindrically symmetric
bipolar director field may be written asn5@er

1z8(r)ez#/N with N5A11z8(r)2 a normalization,er is the
unit vector along the radial direction, andez that along the
main symmetry axis of the droplet;z(r) describes the shap
of the nested ellipsoids withr the radial coordinate. We fo
cus on the positive half plane, 0<z(r)<R and 0<r<r , and
find for the director field n5n(r,z)5@2rzR22er1(1
2z2R22)ez#/N with N5Ar2z2R241(12z2R22)2 again the
normalization. The integrations of Eq.~3! and of the volume
V54p*0

r drz(r)r are now straightforwardly performed, t
give

F̃E5kS p

6« D 2/3S «222 ln
1

2
«1

arcsech«

A12«2
~«4113«222!D ,

~B1!

provided«<1. The equilibrium shape can be found by min
mizing F̃E1F̃S with respect to« and yields an implicit ex-
pression for«~k! not reproduced here.

For the spindle-shaped droplets, we choose a director
that is given by the~normalized! tangents to families of
circle sections of revolution that cross at the polesz56R.
For this director field, the various gradients and integrals
the easiest to be performed in a bispherical coordinate
tem @37#. If we place the center of the bispherical coordina
r.

02170
d
r
the
.

r

r-
s
e

ld

re
s-

system atz50, the transformation from the cylindrical coo
dinates (r,f,z) to the bipolar coordinates~j,h,f! is given by
z/R5Z21 cosj and r/R5Z21 sinj sinh, where Z51
1sinj cosh.

At fixed f, the lines of constanth are circles crossing the
poles atz56R, while the lines of constantj orthogonal to
those are circles too. The director field is in this represen
tion given byn5ej , with ej the unit vector along the lines o
constanth andf. The ranges of the bispherical coordinat
describing the droplet are given by 0<f<2p, 0<j<p,
and 0<h<h0 with the boundh052 arctan« fixing its re-
ciprocal aspect ratio«5r /R.

To transform the various surface and volume integrals,
need the metric elementshj5RZ21, hh5RZ21 sinj, and
hf5RZ21 sinj sinh. The volume of the droplet is given b
V5*0

2pdf*0
pdj*0

h0dhhfhjhh and its surface area byA
5*0

2pdf*0
pdjhfhj , where for the latter, the metric ele

mentshf andhj are evaluated ath5h0 . These integrals are
readily performed.

To calculate the Frank elastic energy Eq.~2!, various gra-
dients of the director field have to be evaluated. For
bispherical director field, they reduce to (“•n)2

54R22 cot2 j, @n•(“3n)#250, @n3(“3n)#2

5R22 sin2 h, and “•(n“•n1n3(“3n)#52R22 cot2 j.
Note that the first~splay! and last~saddle-splay! terms are
identical up to a factor of 2, which is the reason why in S
II, we absorbedK24 into K1 , i.e., putK1[K12K24. Appar-
ently, the saddle-splay term stabilizes the bipolar direc
field by reducing the free-energy cost of the splay deform
tion. ~A similar effect is seen in cylindrical geometries@54#.!
The remaining terms give for the dimensionless free ene
in the equal-constant approximation

F̃E56kS 4p

3 D 2/3 7
4 @«2~12«2!arctan«#2« arctan2 «

„3~11«!2@«2~12«2!arctan«#24«3
…

1/3,

~B2!

which, after adding the surface free energyF̃S , we minimize
to obtain the optimal«. Again, this does not produce a
explicit expression giving« as a function ofk, only an im-
plicit one that we again do not reproduce here. This equa
we solved analytically in the limits«→1 and«→0, and by
standard numerical methods to get the fullk dependence
of «.
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