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Dynamical scaling of surface growth in simple lattice models
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We present extensive simulations of the atomistic Edwards-Wilking#) and Restricted Edwards-
Wilkinson (REW) models in 2+1 dimensions. Dynamic finite-size scaling analyses of the interfacial width
and structure factor provide the estimates for the dynamic expaebt65+0.05 for the EW model and
=2.0=0.1 for the REW model. The stochastic contribution to the interface velatitiye to the deposition
and diffusion of particles is characterized for both the models using a blocking procedure. For the EW model
the time-displaced temporal correlations ihshow nonexponential decay, while the temporal correlations
decay exponentially for the REW model. Dynamical scaling of the temporal correlation function for the EW
model yields a value of, which is consistent with the estimate obtained from finite-size scaling of the
interfacial width and structure factor.
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[. INTRODUCTION available at that time, this earlier study arrived at the wrong
conclusions.

The diverse morphologies of thin films growing on solid  Remarkably, long-range temporal correlations are ob-
surfaces by vapor deposition are controlled by nonequilibserved in a diverse array of driven systems far from equilib-
rium kinetics instead of equilibrium thermodynamics. Com-rium, from semiconductor resistof§,6] and superconductor
petition between deposition and diffusion of atoms on surJosephson junctiori§] to the information superhighwd].
faces produces nonequilibrium surface fluctuations, whichNumerical simulations of a nonlinear growth equation devel-
in turn, determine the film structure. At long times and largeoPed by Kardar, Parisi, and ZhariPZ) [9] have shown
length scales, the structures produced by the deposition dfat long-range temporal correlations in the velocity of the
atoms ondifferent substrates often appear similgl], and fluctuating interface are prese[riltO]._These manifest them-
therefore it is believed that a unique dynamics can charactef€!Ves as power-law divergences in the low-frequency fluc-
ize the growth behavior in these dissimilar systems. Durin uation spectrum. Also, anot_her form of temporal correlations
the past decade significant effort has been expended on t fésurface growth has been investigated using the KPZ equa-

improvement of understanding of these “generic” morpho-t'on [9] and has been discussed in Reif1]. Medinaet al.

logical features of surface growth, as well as the character[—ll] derived growth exponents as a function of a parameter
9 9 ’ that characterized the decay of temporally correlated noise.

istic nonequilibrium surface fluctuations that produce these, In a growing surface, two correlation lengthis and ¢,

uS|ng.S|mpIe atom|st|chgrowth rl‘nodels and ;:or?tlnuum rQ}’rov\’tl']develop as the surface structure evolves in time. The parallel
equationg2]. Due to the complex nature of the growth pro- o relation lengttg| is typically the size of long-wavelength

cess, obtaining an understanding of the dynamics that prasyyctures on the surface and increases with time. In addition,
duce these generic surface fluctuations has been challenginge perpendicular correlation lenggh which is proportional
Although continuum growth equations have provided insightg the interfacial width, grows with time. Wheg), and ¢,
into the possible nature of the fluctuations, much still re-ngye grown to scales that are larger than atomistic lengths,
mains to be understoodhcluding the effect of long-range put much smaller than the size of the system, some universal
temporal correlations on growth behavioln this paper we growth laws and dynamical scaling behavior, characteristic
explore this special aspect of surface growth through comfor a few universality classes, are expecf2dl2]. One pur-
puter simulations of two quite simple atomistitattice)  pose of this study is to probe such concepts. If growth is
growth models: the (2 1)-dim Edwards-Wilkinson(EW)  continued for long enough time, thef~L, whereL is the
model, which is a simple lattice realization of the physicallateral extent of the system, agd also reaches a saturated
description underlying the Edwards-Wilkinson equation, andvalue. Because spatial correlations reach static values, inter-
the “restricted” Edwards-Wilkinson (REW) model [3], face shape fluctuations should become time invariant and
which differs from the EW model by a simple, but important, any long-range temporal correlations, if present, will vanish.
modification of the diffusion rule. The EW model has beenThese observations serve as the basic premise of this study.
studied previously by computer simulatipf]; but we shall In the following section we will describe the atomistic
show that, presumably due to the limited computer resourceEW and REW growth models and also provide a general
scaling theory of the interfacial width and the structure fac-
tor. In addition, we will introduce a dynamical quantity
*Present address: SciMax Research, P.O. Box 0015, Mountaid(t), which will be used to characterize tljpossibly tran-
View, California 94042-0015, USA. sien) stochastic contribution to the interface velocity during
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growth. Measurement of the surface properties such as thmodel is equivalent to the linear EW equation, since effec-
interfacial width, structure factor, aiidlare discussed in Sec. tive nonlinearities could be generated in the coarse-graining
[ll. The results for the interfacial width and structure factor procedure. In addition, as we shall show below, some of the
for the EW and REW models are presented in Sec. 1V, as arelaims made for the values of the dynamic expordhtare
data for the surface stiffneasand stochastic contribution to invalid, presumably because the early work was restricted to
the interface velocityJ, and all properties are then analyzed too small a range of lattice sizes.

using dynamic finite size scaling. Section V includes discus- In the present paper we focus on two atomistic models,

sion and the conclusion appears in Sec. VI. which we call the “atomistic EW model” and the “restricted
EW (REW) model.” To simulate the atomistic EW model we
Il. THEORETICAL BACKGROUND AND MODELS begin with a flatL X L substrate with periodic boundary con-
o ditions. Particles are randomly deposited on the surface and
A. Atomistic EW and REW models timet in the simulation is measured in units of the number of

The EW model describes the growth of a random inter-nonolayers deposited. Only a freshly deposited particle can
face above a substrate onto which particles are randomlgnove just after it is deposited, but onfjnce to a nearest-
deposited by a stochastic flux. The mathematical descriptioReighbor column with a minimum height if such a site is
of this process is given in terms of a linear Langevin equaavailable. In case two or more available sites have the same
tion [13—-15 minimum height, the final site is chosen randomly.

In the REW mode[3] a freshly deposited particle moves
to a nearest-neighbor column with the minimum height if
such a site is uniquely defined. If several such sites are avail-
able, the deposited particle does not move to any of them,
whereh(r,t) is the deviation of the height of the interface but stays instead where it was initially deposited! At this
above the substrate at tiniend at position from its aver-  point it appears as though the distinction between our REW
age value. The coefficient is the surface tension, andis = model and the original “atomistic EW model” is an irrel-
the noise term of the random deposition process. In the origievant detail; but as we shall show later, only the REW model
nal EW formulation[15] the noise is taken to b& correlated can serve as an atomistic version of the EW equation. The
in space and time, but due to the linearity of Efj), the “atomistic EW model” seems to belong, instead, to a differ-
treatment could easily be generalized to take into accourgnt universality class of growth models. Thus, in contrast to
correlations of the noise. It is these possible correlations thahe EW model no move is allowed if two or more equally
are of interest in the context of our study, as we shall try todeep sites are present.
identify the individual terms of Eq(1) directly from the
simulations. Indeed, we shall find that the term {gnis
strongly correlated. Taking the spatial and temporal fourier
transformh(k,w) of h(r,t) we find that the height-height To characterize the surface fluctuations in a given growth
correlations can be formally expressed in terms of the noisenodel, traditionally interfacial widths have been measured.
correlations as follows: This is a simple and elegant approach to describe the surface

dynamics when growth proceeds to long times, but recent

(¢(k,w) (K", @")) studies suggested that for intermediate times lattice step den-
(k2= iw)(k'2—iw') 2 sity gave better agreement with a continuum theory of sur-

face fluctuation$26]. The interface fluctuations in the atom-

For the EW equation, it is easy to derive the growth exponenistic EW and REW models have been characterized by

z=2 (see also Secs. 11 B and 11 C belpvbut it turns out that Measuring the interface widW(L,t), where

this description is too simplified and does not capture the > 2 2

actual behavior of many atomistic growth models. On a con- WAL D =[(h"(r, D) ={h(r.0)7], ©)

tinuum level, an important feature that is not contained in

Eqg. (1) is nonlinearity. For example, the growth equation(h(r,t)>:L‘dErh(r,t), L is the lateral extent of the system,

suggested by KPZ9] ammends Eq(1) by adding a term  d s the interface dimensionality ad- - ) denotes ensemble

proportional to ¥h)2. Such a correction term describes the average. In general, the widW(L,t) of a kinetically rough-

fact that the macroscopic growth rate depends on the surfaged surface evolves according to the dynamic scaling law

tilt [12]. Such nonlinearities lead to long-range height-heigh{13]

correlations both in space and time beyond those that can be

described by Egsil) and (2), and they lead to a nontrivial

value of the dynamic exponeuat(which then also depends 2 | o

upon the dimensionality of the systém WAL D=L E ' )
Various atomistic deposition models.g., Refs[16-25)

have been studied, and some of thesuch as Refl4]) have

been interpreted as being an atomistic version of the EVWWhere the exponent characterizes the surface fluctuations

model. As we shall demonstrate in this paper, it is a subtlén a given growth model andis the dynamic exponent. The

matter to ascertain whether or not a particular atomisticscaling function has the properfyx)~x®'?, for x<1 and

h_ V2h+ 1
E_V gi ( )

B. Scaling theory of interfacial width

(h(k,w)h(k",0"))=
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f(x)—const, forx>1. Solution of Eq.(1) givesa = 0 for D. The stochastic contribution to the interface velocityU
tWO-dime.nSional int(?rfaces, armk= 2 independent of the in- To understand the |0ng_time and |arge |ength_sca|e prop-
terface dimensionality. erties of a dynamical system, a standard approach in critical

The linear Langevin equatiofEq. (1)]) has been solved phenomena is to define a semiphenomenological equation of
exactly by Nattermann and Tarig7] who derived expres- motion. A small set of semimacroscopic variables, i
sions for the interfacial width and structure factor. We have=1 2 .. N is used whose dynamical evolution is slow
used these theoretical solutions to define the dynamical Sca(ljompared to the remaining microscopic degrees of freedom.
ing relations in the atomistic models. For long timand |y these equationg29] the remaining “fast” variables enter
large substrate sizes, the interfacial widthW(L,t) is ex-  only in the form of random forcetusually called the noise

pected to satisfy the dynamic scaling relat[@8] £). The equation can be written as
t I i SF
2 - A RIS
W2(L,t)=Aln Lf(LZH, (5) pr > My 6¢,-+§" (13)

nent, andA is a constant. The scaling function has the prop-functional andM is the matrix of generalized Onsager coef-
erty f(x)~x?, for x<1 and f(x)—const, forx>1. The ficients. Depending on the models studiéd], the noise can

exponents and 8 satisfy the relation haye ;patial correlat_ion_s, and for equilibriL_lm systems the
noise isé correlated in time. The EW equation is a simple
zB=1. (6)  extension of the above approach where the noisedsrre-

lated in time, and the semimacroscopic variable is the height
Thus for smallt and largeL, the interfacial width behaves as h(r,t) of the surface.
W2~ AgBInt, while for very long times it saturates at a value  Since in the presence of an external field, such as a ran-

(W,.) andW? —A In L~const. dom flux, the system is driven away from equilibrium, it may
be necessary to include additional terms in EL.to cor-
C. Scaling theory of structure factor rectly account for any effects due to deposition. The inter-

lay of the flux and surface diffusion can cause complex

The surface dynamics can also be characterized by meggpayior at long times and large length scales, and so these

suring the structure factor, which provides information aboutemg are often difficult to construct accurately. For simplic-

the surface at different length scales. The structure factoiliy we assume that any additional terms to the growth equa-
S(qIT,L,t) can t_Je obtain_ed from the Fourier transform of thetion, if present, can be included in a new, general function

spatial correlation function, which we term the stochastic contribution to the interface

velocity. Apart from any relevant surface shape gradients,

S(qL,L,t)y=L"9>, H(r,t)H(r",tyexdiq-(r—r’)], such a term includes the random contribution due to the flux,

rr’ and spatiotemporal couplings that may be important to the

() growth behavior at long times and large length scales. Thus,

whereH(r,t)=h(r,t) — (h(r,t)), gL=2n, andn is an in- the simplest form of the growth equation may be written as

teger. The structure factor should satisfy the dynamic scaling ah(r,t)

law [29], =\V2h(r,t)+U(r,1), (12)

ot
—1 (2-79 z
S(aL.L.y=LE""g(t/L%qL), ® where\ is a measure of the surface stiffness, which changes
with time as the surface grows. The physical meaning of the
tochastic contribution to the interface veloclty may be
nderstood by comparing E¢L2) with Eq. (1). In Eq. (1)

where 7 is an exponent andis the dynamic exponent. The
long-wavelength behavior of the surface can be probed b

using a small value o§. In this limit and for large lattice _ _ .
sizes,g(x,qL) ~x?, for x<1, andg(x,qL)— const, forx the interface velocityh/dt does not fully include the effects

>1. Herezy=2— 7. From the solution of the EW equation, that diffusion may cause to t.he interface degrees of freedom.
we obtain[27] Thus, the translation of the interface due to growth does not
accurately produce appropriate surface fluctuations. These

n2S(qL,L,t)=L2(D/v)[1—exp(—8n2m2wL~2)], (9)  effects are fully included in Eq(12). o _

In general,U should capture representative information
whereD and v are constants. This gives(qL,L,t)~t for ~ about system dynamics in an atomistic growth model if one
L—o and smallt, while at long timesS(qL,L,t— o) of the surface gradients contributing to the asymptotic be-
—L2. This implies that for the EW equation=0, and the havior is the curvature. The dynamics of the atomistic model

exponent identity and the continuum equatiaid2) may then be compared to
obtain a measure of). If the behaviors of the atomistic
zy=2 (100  model and the EW equatiofl) are the same, the stochastic
contribution to the interface velocit§y) should be random
needs to be satisfied for self-consistency. in both space and time. An elegant way to determine, if this
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is the case, is to calculate its space and time-displaced cospace and time are no longer evident. If it turns out that the
relation functions. This, in turn, will elucidate if any non- mean value ol is zero under these conditions, thdns just
trivial correlations relevant to the long-time and large length-the stochastic noise of the EW equationUlfs nonzero, the

scale dynamics are present in the system. atomistic model should not be expected to have the same
behavior as the continuum equation.
IIl. MEASUREMENT OF SURFACE PROPERTIES Lattice sizes ranging frorh =20 to L=1800 were used

] ) for these simulations, and data points were averaged over
The surface fluctuations in the EW and REW models argnytiple runs starting with different random number seeds.
characterized by measuring the interfacial wifth Eq. (3)]  For the majority of the calculations we used the random
and the structure factddefined by Eq.7)]. The structure umber generatorAN2 [30] which has a large period of
factor is measured along th@,0) and (0,1) directions and 2% 10'8 and passes standard statistical tests within the
averaged over these directions. _ limitations of a machine’s floating-point representation.
To measure the stochastic contribution to the interfac&ome calculations of the interfacial width were performed
veloc!ty durln.g growth, we write E12) in a discrete form.  ysing rano [30] where anew seed was used in every few
The time derivative oh(r,t) becomes thousand random numbers to minimize any serial correla-
tions. RANO is about twice as fast asan2 but has a small
h(r.t) _h(r,t+At)—h(r,t—At) (13  period of ~10° and fails thex” test when the number of
ot 2At ' random numbers exceed “10A total of about 37 000 CPU

h . I | h ber of | q hours, using IBM RS/6000 and Pentium processors, were
wheret Is normally equal to the number of monolayers de-g pended on these calculations. Since we required large lat-

posited unless another unit has been gpecified. Notg that eaghs sizes to clearly establish the scaling properties and a
monolayer corresponds to the depositionLof L particles. large number of runs to generate data with high accuracy,

T_h.e cu_rvature of the surface at positioican be written as a significant computational resources were a necessity.
finite difference formula

V2h=h(x,y+1)+h(x+1y)+h(x—1y)+h(x,y—1)
—4h(x,y), (14

IV. RESULTS

A. EW model

wherer =ix+]jy, i,j are unit vectors on the two-dimensional  Figure Xa) shows the square of the interfacial width
surface. During growth, we calculate two quantiti€3;  W?(L,t) versus the number of deposited layers in a semi-
=(dh/at), andQ,=(V?h),, where(- - -), denotes an aver- logarithmic scale. After an initial transient, up to about 10
age over space within a given block sizeat a given time.  layers, the data points crossover to a region WheféL ,t)
An estimate of the stiffness of the surfangb,t) is then  evolves logarithmically witht before eventually saturating
obtained by taking the ratiQ,/Q,. To obtainU(r,t) we put  due to finite system size. The number of runs varied from 50
the value of the surface stiffnessback into Eq(12). Equat-  for L=1280 to 2000 foilL =40, and the error bars (i) are
ing the left- and right-hand sides of the equation we carabout the size of the symbols. Data obtained with a higher
calculate the dynamical contribution to the interface velocitytemporal resolution show small amplitude oscillations in the
interfacial width, but these quickly decay with increasing
ah(r,t) time and substrate sizes. Hor 640 and averages over 200
at independent runs, the oscillations in the surface width be-
came indistinguishable within statistical fluctuations for
at a given timet for eachsite. Heregh(r,t)/dt andV2h are growth exceeding-60 monolayers.
given by Egs(13) and(14), respectively. To reduce the ef-  Examining the long-time data, we find that the region of
fect of local spatial correlationsl is averaged over blocks of |ogarithmic time evolution grows with increasing lattice size.
size b to obtainU(b,t), which then allows us to study its This is because the parallel correlation length takes a longer
properties over different block sizes for a givenTo study  time to reach the order of for larger lattice sizes. The
the temporal correlations ibJ(b,t), we calculate the time- asymptotic behavior is shown as a dotted line that is verti-
displaced correlation functio@(b, 7). The correlation func- cally shifted and shows that the trend extends over three

u(r.t)= —(Q1/Q2)V?h, (15

tion is written as decades for the largest lattice size studied. When we plot the
data in a log-log scale, we find systematic curvature, suggest-
(U(b,7+1g)U(b,tg)) —{U(b,tg) }{U(b,7+1g)) ing that the time evolution oW(L,t) is not described by a
C(b,7)= (U2(b,t5))—(U(b, o)) ' power-law. The time evolution is logarithmic and can be

(16) written asW?~ Ag In(t). The slope of the straight line in the
semilogarithmic fit is estimated to &B=0.040+0.001.
where the scaling properties must be independerit,.ofn The square of the saturated interfacial widt?(L,t
order to compare with the continuum Edwards-Wilkinson—%)=W?2] also has a logarithmic behavior with, as
equation we must examine the behavior of the atomistishown as an inset in Fig(d). The slope of the best linear fit
model for length scales that are much greater than a latticgields A=0.0662+0.0004. Using Eq(6) we estimate the
constant and for long time scales so that the discreteness dynamic exponent=1.65+0.05. The exact scaling expres-
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cellent collapse of data is achieved with a value Zdhat is
consistent with our previous estimate. Witk-2.0 scaling
failed, as can be seen in Fig(cl, systematic deviations ap-
pear as larger lattice sizes are used, suggesting that scaling is
not obeyed.

When a surface grows it develops structures at different
length scales, and at long times only the large-scale surface
distortions contribute to the characteristic system dynamics.
The structure factor has been measured to characterize these
long-wavelength surface distortions. The number of indepen-
dent runs varied from 4000 to 250 for lattice sizes ranging
from L=40 toL =640, and the error bars are about the size
of the symbols. The structure factor data is plotted in Fig.
2(a) on a log-log scale usingL=27. The figure shows that
S(qL,L,t) has a power law behavior from the first layer
deposited and saturates at late times due to finite system size.
The asymptotic behavior is shown by the straight dotted line
that has a slopey=1.23+0.01. The inset shows that the
saturated structure fact&(qL,L,t— ) behaves as a power
of L. A slope of 2.02-0.03 obtained from the log-log plot is
consistent withS(qL,L,t—)~L? according to the scaling
relation in Eq.(9). Thus»~0 and, by using Eq.10), we get
z=1.64+0.04. We have verified this estimate of the expo-
nent to be self-consistent in Fig(8. Collapse of scaled data
is achieved with this value df, validating the dynamic ex-
ponentz=1.65+0.05 obtained from the analysis of the in-
terfacial width. Figure &) shows that an attempt at scaling
with z=2.0 clearly fails.

At this point, we comment briefly on the conclusion ar-
rived at by Liu and Plischké4] that z=2 for the present
model. Their study used much smaller linear dimensions,
ranging fromL=30 to L=100; and for such a restricted
range ofL, we would also not have been able to clearly rule
out z=2. In order to unambiguously distinguish between
different values of the exponent a quite large range df
and very good statistical precision are needed.

B. REW model

The square of the interfacial widtv?(L,t) is plotted
against timd on a semilogarithmic scale for the REW model
in Fig. 3@). For both the interfacial width and the structure
factor, 4000 to 500 independent runs were performed for

FIG. 1. (a) The square of the interfacial width for the EW model |attice sizes ranging fromh =40 to L =320. The error bars

vs the number of deposited layers. The inset shows the variation
the square of the saturated interfacial width%() with lattice sizel.
on a semilogarithmic scaléb) Dynamical scaling of the interfacial
width usingA=0.066 andz=1.63 for the EW model(c) Dynami-
cal scaling of the interfacial width usirg=0.066 andz=2.0.

%re about the size of the symbols. The interfacial width
W(L,t) shows some curvature up to about 60 layers and then
approaches a linear behavior withNote that measurements
with a higher temporal resolution did not produce any oscil-
lations in the interfacial width as observed for the EW
model. At long times the width saturates due to finite system
sion for the linear EW equation, derived in RE27], can be  size. The interfacial width behaves A&€(L,t)~Ag In(t) in
used to obtain an estimate of the intrinsic widttyy. By  the linear region, and the slope is given By3=0.086
referring to Fig. 1a), we estimateW§~0.298. With just one  +0.004. The saturated interfacial widii#?(L,t— o) is also
monolayer of deposition, the interfacial width is already be-plotted with the substrate sizé&sin a semilogarithmic scale,
yond the crossover regime and the estimate of the dynamishown as an inset in Fig(&. A straight-line fit through the

exponentz given above is the asymptotic value.

We have verified this estimate farself-consistently by

performing finite-size scaling of the data. Figuré)lshows
dynamical scaling of the interfacial width with=1.63; ex-

data points shows that the saturated width varies logarithmi-
cally with L, a behavior also observed in the EW model. The
slope obtained from the fit i&%=0.173+0.002. Since the

REW model has been obtained from the EW model after
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_ FIG. 3. (@) The square of the interfacial width vs time in a
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S(gL.Lb) F Z= semilogarithmic scale(b) Dynamical scaling of the interfacial
2 . width usingz=2.0 andA=0.173.
L 10+ 3
F We have tested dynamical scaling for the REW model
oL . usingz=2.0, as shown in Fig.(®). The data for small lattice
07 E +# sizes and short times do not collapse. However, a definite
F Af* o . . . . .
oaef+ trend can be seen in the data with larger lattice sizes, which
P Y R T R T T collapse on to a single curve when growth proceeds to long
10 10 107 102 10- times. This behavior indicates that dynamical scaling is sat-
7 isfied by the interfacial width in the limit of long times and
L large lattice sizes.

The structure factor data are shown in Figa)4vith time

FIG. 2. (& The structure facto§(qL,L,t) vs the number of tin alog-log scale usingL= 2. Unlike the behavior of the

deposited layers for the EW model usigg=2. _The Inset S_hows_ interfacial width, asymptotic behavior is observed from
the saturated values of the structure factor with lattice sizes in a

log-log scale.(b) Dynamical scaling of the structure factor in a 9%‘?“ tf:je Jlrsthla)éer ﬁegosne_d.hT?e ashym[;]totlc belhaV|0rf IS
log-log scale using=1.63. (c) Dynamical scaling of the structure indicated by the dashed straight line that has a slopg o

factor for the EW model using=2.0.

=1.01+0.02, implying a linear evolution of the structure
factor. This is similar to the behavior one would expect if
growth occurred according to the linear Langevin equation.

minor modifications to the hopping rule, we expect the func-From the log-log plot of the saturated structure factor with
tional dependence of the interfacial width and the structurgijnset of Fig. 4a)], we getS(qL,L,t— o)~ L (2035004 jn
factor with time and substrate sizes to be similar. The meaggreement with the scaling relation in E§). Therefore,y
surements of the interfacial width have so far demonstrated- g9 andz=2.01+0.08. In Fig. 4b) we have tested the dy-
this agreement. Thus, we assume the scaling theories for thfamical scaling of the structure factor witk=2.0. Note that
interfacial width and the structure factor developed for thethe scaled data for the smaller lattice sized ef40 andL

EW model are applicable to the REW model as well. Using=80 deviate and do not collapse on to a single curve; how-

Eq. (6) we therefore obtain the exponent 2.0+ 0.1 for the

REW model.

ever, the data fok = 160 collapse nicely on thie= 320 data.
This suggests that dynamic scaling should be satisfied, as
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M dence on the blocksizb. Note that because of very slow

F— SaLe) decay ofA(b,t) and U(b,t) at long times, data with very
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-
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.

f high accuracy are needed for dynamical scaling studies.
W Therefore, we will not attempt dynamic scaling ®{b,t)

-4 oo andU (b,t) with our current data.

The slow relaxation can be seen in Figc)swhere we
have plottedJ(b,t) vst for b=100 up tot=10000 layers.
The data points represent averages over 20 independent runs.
After an initial rapid decay, the data appear to saturate when
viewed over~3000 layers; however, observations over a
much longer time interval reveal a systematic and slow de-
cay in the data. We have modeled the decay (b,t), using
number of layers(t) the general combination of exponential decay and power law

-
=
~
*
9,
-+

8
8
-
B
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101
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whereag, a,, a,, anda; are constants. At short times the
power law dominates and the behavior is governed by the
exponenta,. For long times the exponential term becomes
o important.
*,,9*0 ol 160 To compare the response to the interface velocity due to
. ¥ (b) ol s deposition, we have plotted (b,t) for the EW and REW
. .| a0 models witht for b=30 in a log-linear scale in Fig.(8). The
BT T V1Y B R W U TY I W T TR W solid circles are data for the atomistic EW model, and the
104 10+ 103 10 2 10 dashed line idJ(b,t) for the REW model. The solid line
tz through the data points in solid circles is a fit to E4r). The
L Levenberg-Marquardt metho[B0] is used to fit the data
FIG. 4. () The structure factor for the REW model using. poir]ts. and ex_cellent fit to 'ghe data is obtained with high
=2 in a log-log scale. The inset shows the saturated values of thét""t'stICaI confidence. Equati¢7) can therefore be used to

structure factor withL in a log-log scale(b) Dynamical scaling of ~Model the temporal decay f(b,t) in the EW model with
the structure factor for the REW model using 2.0. good accuracy. The fact that does not decay to zero with

time t is surprising: If the stochastic contribution were a ran-
larger lattice sizes are used with-2.0. dom noise, it would vanish on average.

From the measurements of both the interfacial width and,. Using Eq.(16) we have gomputeq the normalized time-
. . . displaced temporal correlation functi@(b,r) for the EW

the structure factor, we find that the scaling behavior of theand REW models. Figure(® showsC(b,7) vs 7 in a log-

REW model is identical to the linear Langevin equation with -9 ) VST 9

. . log scale using several block sizes dné 1200. The data
S correlated nois@Eg. (1)]. The above results also convinc for b=100, 60, 30, and 15 were averaged over 200, 230,

ingly demonstrate that the surface fluctuations generated b ;
the deposition of particles in the atomistic EW model are ”O%Seo’sgr;d;(iﬂerusr;srﬁgiffeftﬁ\é%’ iasnSstehde firrr?rr]ebsaersczlrfugbout
0= -

the same as produced by Ed), and this difference is mani- . ) .

fested by different dynamical scaling exponents in these tw(glc?ns. The_ figure Sh.OWS that the temporal correlations decay

models. with thg displaced time, and the decay gets slower as larger

block sizes are used. The curvature in the data points sug-

gests that the decay does not obey a power law. Plotting the

data in a log-linear scale does not produce a linear decay
In Sec. lll we have elucidated the measurement of theeither, implyingC(b,7) does not decay exponentially. Note

stochastic dynamical contribution to the interface velocitythat beyondt=2000, U(b,t) decays very slowlycf. Fig.

U(b,t) and the surface stiffness(b,t). Figures %) and  5(c)]. It is this region ofU, which has been used to calculate

5(b) show the time dependence of the surface stiffnesshe temporal correlations. A slow decay lh suggests that

A (b,t) and the dynamical contribution to the interface veloc-long-wavelength surface fluctuations are being generated,

ity U(b,t) in log-log and linear scales, respectively, for sev-and therefore the temporal behavior@gb, 7) in this region

eral block sizes. The data fdr= 100, 60, 30, and 15 were should be important to the growth dynamics.

averaged over 40, 35, 30, and 30 independent runs, respec- For this dynamical information to be usef@(b, ) must

tively, and the error bars are within the symbol sizes. Bothbe independent of, the lateral extent of the system, while

A(b,t) andU(b,t) decay with timet and should saturate due the extensive properties &@(b,7) should depend only on

to finite-size effects when large number of layers are deposhe blocksizeb. It is important to determine whethé&l(b,t)

ited. As the surface grows,(b,t) andU(b,t) initially decay  contains information that is intrinsic to the dynamics of the

rapidly, with slow decay setting in when large number of system. In Fig. ) we have showi€ (b, 7) vs 7 for the EW

layers are deposited. The rate of decay also shows a depemodel usingL=1200 andL =600 for several block sizes.

10

10

C. Calculation of U and its properties
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FIG. 5. (a) The surface stiffnesa(b,t) for the EW model vs the number of deposited laydl®. The nonequilibrium dynamical
contribution to the interface velocity (b,t) vs the number of layers deposited uslng 1200.(c) U(b,t) vst for the EW model(d) U(b,t)
vst for the EW and REW models.

The data points fol.=600 andb=60, 30, and 15 were may be used to study the dynamical scaling properties of
averaged over 120, 80, and 50 runs, respectively. The figur€(b,7) in the EW model.
shows that the data for differeht but same block size, fall In Fig. 6(d) we have plottedC(b, ) with 7 in a log-linear
on the same curve. This implies th@gb, ) is independent scale for the REW model usirtg=4000. The data points for
of L and only depends ob. Additional measurements using both b=100 and 30 were averaged over 72 runs. After an
L=1800 andb=100 are in agreement with the above obser-initial transient, the decay in the data becomes linear, sug-
vations. gesting an exponential decay of temporal correlations at long
An important point to note is tha®(b,7) has to be inde- times. This behavior is better observed for=30 where
pendent oft, [cf. Eq. (16)] for the measurements and dy- C(b,7) is seen to decay exponentially for-200. An expo-
namical scaling of the temporal correlations to be robust. lihential decay of the temporal correlations is consistent with
the time-dependent correlatioi(b,7) depends upon two the solutions of the linear Langevin equation, which has the
times, it means that the system is still in a transient statedynamic exponent of=2.0.
Figure Gc) showsC(b,7) with 7 for the EW model in a The calculation of spatial correlations is important in de-
log-linear scale for different values df. For t,=3000, termining whether the dynamical scaling theory we pre-
2000, 500, and 200, the data points were averaged over 168ented in Sec. Il is robust. Usirtg=2000, we have calcu-
230, 90, and 60 runs, respectively. The figure shows that folated the space-displaced correlation functifdU),
small values oft, the temporal correlations decay quickly. where U, is the Fourier transform obi(r,t). The spatial
When larger values df, are usedC(b,7) decays slowly and correlation function is plotted in Fig. (& for different g
finally approaches a behavior where it is independenof values where the data points represent averages over 100
This is seen in Fig. @) for the two largest values df,, independent runs. Fdr=300 andb=1, spatial correlations
where the data points are seen to collapse on the same cungan be seen in the data for smgllwhich decay as larger
Another interesting point to note here is tlia¢b, ) decays values ofg are used. The solid line through the data points is
nonexponentially withr. A Levenberg-Marquardt fit30] for ~ a Gaussian fit using the Levenberg-Marquardt metf3.
the two largest values df, using Eq.(17) yielded excellent When the spatial correlation function is calculated over a
fits with high statistical confidence, suggesting that @)  coarse-grained lattice usig=600 andb=2 (i.e., keeping
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FIG. 6. (a) The time-displaced correlation functi&@(b,r) vs 7 for the EW model.(b) C(b,7) vs 7 for the EW model using several
lattice sized. and block size®. (c) C(b,7) vs 7 for the EW model using. = 1200, b= 60, and different values df. (d) C(b, ) vs 7 for
the REW model using. =1200. The dotted lines are a guide to the eye.

the overall length samethe correlations do not show any surface intol x| blocks of blocksizeo=L/l and measuring
systematic behavior over a wide range of length scales, sudJ over the blocksizéb. If U is an extensive quantity, then
gesting that the spatial correlations are random. This demomneaningful dynamical information through the measurement
strates that nontrivial spatial correlations are not being genef C(b,7) can be obtained by studying it over different
erated by the model, while also assuring that the randorblocksizes. Note that an analogous process has been used to

number generator is producing good quality numbers. determine the noise properties of magnetic flux in supercon-
We have used larger values at in Eq. (13) to investi-  ducting Josephson junction arragslA) [31].
gate their effects on the time-displaced correlati@tb, 7). The blocked, time-displaced correlation functiorglect-

In Fig. 7(b), C(b,7) with 7 for At=1, 2, and 4 has been ing higher-order correctionsan be written generally as
plotted usingb=60. For these runk=1200 is used. Also, (b)-1

t,=2000 andt,=4000 were used foAt=1 and At=2, C(b,7)~ " "exd — Q(b) 7], (18)
respectively. ForAt=4 we have used.=1800 andt,

=8000. The data points fokt=2, andAt=4 were aver- whereQ(b) is the blocksize dependent frequency that deter-
aged over 18 and 10 runs, respectively. The figure shows thatines the decay i€ (b, 7) at long times. In Eq(18) we have
the behavior ofC(b,7) with 7 is independent of the values assumed a functional form similar to that in Ef7), allow-

of At andt,. We have also performed some additional cal-ing for a dependence of the exponer(tb) on the block size
culations where deposition of eight monolayers evolved timey as well. Empirically, we find that a variation linear in the
by one unit. In these studies=1800, b=300, andt, inverse blocksizdb~! accounts for the data,

=500 are chosen. Due to a higher rate of deposition per unit
time, C(b,7) for a single run is much noisier as expected.
Also, the data deviate from an exponential decay in agree-
ment with the behavior observed in Figch

u(b)=u—slb, (19

wheresis a constant. The blocksizeestablishes a cutoff for
low-frequency fluctuations, and this, in turn, controls the
amount of information irC(b, 7) relevant to the growth be-

For a finite system with lateral length the properties of havior at long times. Hence the decay of temporal correla-
U can be studied by coarse graining the two-dimensionalions is determined by the blocksibe

D. Dynamical scaling of C(b,7)
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10—~ block sizes with high statistical confidence. The values of
each of the coefficients, for different block sizes obtained
0.8 300, 1 from the fits are less than 0.037 and show no systematic
< Uq L!'.> . dependence oh. Also, the coefficients,(b) are roughly 1
06 TN 600, 2 and exhibit no systematic dependency withFigures 8a)

and &b) show the plots of,= u(b) andaz;=Q(b) vs 1b.
The straight-line fit through the data points in Figa8gives
p=0.998+0.001 ands=2.97+0.02 [cf. Eq. (19)]. In Fig.
8(b), the power-law fit through the data points for= 100,
60, and 30 yieldedz=1.65+0.04, andQ.,=4.0+1.0, re-
spectively. Note thaf) . can be estimated from this figure if

Gaussian

0 1 q 2 3 the equalityQ)(b) =b~%Q). is assumed to be valid.
Using z=1.65 we tested dynamical scaling of the tempo-
10 @ ral correlations in the EW model, with the results shown in
Fig. 8(c). Excellent collapse of the data is obtained for the
08 three largest block sizes over a wide ranger ehlues. After
C(b,T) an initial transient, the data appear to decay exponentially

with a slope of~3.0. Whenz=2.0 is used, the data for
different block sizes show systematic deviations and fail to
collapse onto a single cury€ig. 8(d)]. The failure of scaling

in the EW model withz=2.0 agrees with our earlier obser-
vations on the scaling of the interfacial width and the struc-
ture factor.

0.6

0.4

0.2

0.0 ) | ) | I | I | I

V. DISCUSSION
0 100 200 T 300 400 500

The extensive simulations described above produced pre-
FIG. 7. () The space-displaced correlation functionldvs g  cise data for the interfacial widtv(L,t) and the structure
for the EW model. The solid curve is a Gaussian fit through the datagctor S(qL,L,t) as a function of substrate siteso that a
points. (b) C(b,7) vs 7 for the EW model using different values of careful finite-size scaling analysis could be carried out. One
At. very important component of this study was the additional
determination of the stochastic contribution to the interface
velocity U(b,t), a quantity whose temporal correlations can
offer insights about the dynamical evolution that are not

A general form for a dynamic scaling relation for the
function of the time-displaced correlation function is

clarified by the interfacial width or the structure factor.
C(b,7)~bArd)-1IE b,l ’ (20) For the linear Langevin equatidieq. (1)], U(b,t) is &
z correlated in both space and time, implying a random contri-
_ _ . bution to the growth velocity due to deposition. In the origi-
wherez is the dynamic exponent. The function nal formulation of Edwards and Wilkinsdr.5], the growth
velocity was written as
F(b,x)=x*®~lexg —Q.x], (21) y
for x>0, and the frequenc{). is a constant that character- oh(r.Y =Fv+Fa*v?h+¢, (23

izes the nonequilibrium fluctuations in a given growth at

model. The ratid®(b, 7)= C(b, 7)/ 7" ~1 simplifies the de- _ » _ _

pendency onr and b in a manner such that at long times whereF is the deposition rate per unit areajs the volume
P(b,7) decays exponentially and deperafsly on x= 7/b. increase of the system in unit time,is the lattice constant,
Note that for dynamical scaling to hold, the finite-size depen2nd ¢ iS the random noise. The effect of deposition is given

dent frequency (b) should satisfy a constraint such that °Y Fv +¢, where the terfru causes a steady increase in the
interface height due to deposition of a certain volume of

Q(b)~b~2Q,. (22) material. Note that this equation can be transformed into Eq.
(1) by using the transformation+ Fvt—h. In contrast, for
In order to test for scaling of the temporal correlations inthe KPZ equation X/2)(Vh)2+ ¢ accounts for the effect of
the EW model [Fig. 6@], we have to determine the deposition, where\; is proportional to the deposition rate.
asymptotic value of(b) and the value of the constasifcf.  The important distinction between these two equations is that
Eq.(19)]. The data in Fig. @) are therefore fittedexcluding  in the EW equation the interfacial growth velocity due to
the values forr=0) to Eq. (17) using the Levenberg- deposition does not accurately couple to the internal degrees
Marquardt method30]. Comparing Eqs(17) and (18), we  of freedom of the interface. It is, therefore, questionable
find that w(b) and Q(b) are given bya,=u(b) anda;  whether the EW equation can be used to study far-from-
= (b), respectively. Excellent fits are obtained for different equilibrium growth processes. MeasurementUifb,t) for
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FIG. 8. (&) u(b) vs 1b for the EW model in a linear scalé) )(b) vs 1b in a log-log scale(c) Dynamic scaling of the time-displaced
temporal correlation function for the EW model using 1.65, «=0.998, ands=2.97. (d) Dynamic scaling of the time-displaced temporal
correlation function for the EW model usimg=2.0, ©=0.998, ands=2.97.

the atomistic EW model demonstrates the shortcomings gbarticle move then contributes only deterministically to the
the EW equation. Also, it should generally provide a bettersurface shape. The state of the surface shape at tinag be
estimate of the stochastic contribution to growth than thecharacterized by a function&h,,h,, .. .h;,t), whereh;’s
phenomenological term used in the KPZ equation. are the heights at different sites. For the REW motglis

The extensive computer simulations described above reaondegenerate, implying that there is only one way the sur-
vealed nonequivalent dynamical behaviors for the EW andace can evolve from state to state so that the surface shape
REW models, and this difference has two important implica-evolves deterministically from one discrete time to another.
tions. First, it suggests that minor but “essential” differencesThus, if information on the sites where particles are ran-
in the local dynamics can influence time-dependent behaviadomly deposited are availablgequentially within a time
in nonequilibrium systems. This is contrary to the behaviorinterval At), it will enable to reverse the surface shape by
one normally expects in systems under equilibrium conditeversing time. Since deposition causes random fluctuations
tions and near the critical point, i.e§~L. Second, by ob- in the surface shape, the net effect of deposition and surface
serving the differences in the local dynamics in these twdiffusion in the REW model results in surface shapes that
models, we may be able to define a mechanism by whicltorrelate in a simple manner during growth.
surface shape fluctuations become correlated as the surfaceln contrast, for the EW modei; is degenerate, allowing
grows. This, in turn, may explain wigfor the atomistic EW  for many possibilities from which the surface shapes can
model is different from 2.0. evolve from state to state. This property of the local diffusion

A possible explanation for the uncorrelated evolution ofdynamics in the EW model makes it impossible to reverse
surface fluctuations in the REW model is that the growththe surface shape by simply reversing time, even if informa-
dynamics in the REW model may be viewed as a two-stepion is kept on the sites where particles are randomly depos-
process{(1) a particle is deposited randomly on the surface;ited (sequentially within a time intervalt.) The overall ef-
(2) the particle is then movednly if a suitable site is found, fect is to generate nontrivial correlations with surface shapes
which is at the lowest depth and not in competition with anyat previous times. Although “layer-by-layer-like oscilla-
neighboring sites. The net effect of stép is to produce tions were seen in the early time simulation data for the
uncorrelated surface fluctuations. If st€) is possible, the interfacial width for the EW model, these die away rather
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quickly. This behavior suggests that lattice effd@&2] could VI. CONCLUSIONS

differentiate the EW model from a continuum model. How-

ever, the rms interfacial width is of order unity for both the  \We have presented extensive simulations of thel2di-

EW and REW models, and we believe that the relativelymensional atomistic EW and REW models using lattice sizes
small difference is unlikely to account for the difference in a5 |arge ag = 1800, although only data for sizes as large as
measured values a From the existing data for the EW we | = 1280 were presented in the manuscript. For each model
estimate that approximately ¥0layers would have to be  sei.consistent dynamic finite size scaling was obtained for
grown for the interfacial width to reach the values we foundy o, the structure factor and interfacial width with a dynamic
for the REW model. This is clearly beyond our ability to exponent ofz=1.65+0.05 for the EW model buz=2.0
simulate with current resources. Although we could simplyio 1 for the REW model. No hint of crossover to different
remove the lattice restriction to test for lattice effects, such Et‘)eﬁavior was seen for the. largest lattices, even aftbr 10/
modification would also eliminate the degeneracy in energ)f ers were deposited. The local diffusic;n dvnamics in the
amongst nearest-neighbor sites and change the diffusion in f model shovs nontri.vial temporal correlatioyns and this is

fundamental way. We also note that similar behavior to whar; X s .
we found for the EW model has been seen in moleculafk€!y t0 explain why the atomistic EW model dynamic ex-

beam epitaxy(MBE) growth simulations using lattice mod- ponent differs from that for the continuum EW equation or

els for which the interfacial width becomes large comparedn® REW model. This also implies that the kinetic Monte
to the lattice constant, yet dynamic scaling is still found with Car10 studies of MBE models should be expected to find that

z=1.65. We thus conclude that it is unlikely that lattice ef- 2 differs from that for the continuum EW equation, since

fects are responsible for the difference in dynamic exponerfi@ndomness in the diffusion is an essential feature of the
between the EW and REW models. Of course, we canndi'©dels.

exclude the possibility that our data are not yet in the

asymptotic regions of size and time; however, our rather

massive simulation gave no hint of any crossover to another

regime. This suggests that if crossover does occur, several ACKNOWLEDGMENTS
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