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Glass transition of hard sphere systems: Molecular dynamics and density functional theory

Kang Kim* and Toyonori Munakata†

Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japa
~Received 5 November 2002; published 12 August 2003!

The glass transition of a hard sphere system is investigated within the framework of the density functional
theory ~DFT!. Molecular dynamics~MD! simulations are performed to study the dynamical behavior of the
system on the one hand and to provide the data to produce the density field for the DFT on the other hand.
Energy landscape analysis based on the DFT shows that there appears a metastable~local! free energy mini-
mum representing an amorphous state as the density is increased. This state turns out to become stable,
compared with the uniform liquid, at some density around which we also observe a sharp slowing down of the
a relaxation in the MD simulations.
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Understanding the universal mechanism of the glass t
sition is one of the major challenges in current conden
matter physics. From a dynamical point of view, we wou
like to know how a drastic slowing down near the transiti
point ~temperature or density! and an eventual exceeding o
the relaxation time over the experimental time scale are
alized @1,2#. Energetically or statically, it is asked whether
thermodynamic glassy state with an amorphous arrangem
of particles has lower free energy than a liquid state of u
form density. In order to answer these questions, many
forts have been devoted to real experiments, computer s
lations, and theories in the last few decades.

As one of the theories to study supercooled liquids a
glasses, the density functional theory~DFT! is recently gath-
ering much attention@3#. The DFT is now a conventiona
method to study the freezing@4,5# and other transitions. The
glass transition has been investigated also based on the
by some workers@6–10#. In the earlier works@6–10#, the
random close packing~RCP! of hard spheres has been pr
duced by Bennett’s algorithm@11# and the free energy from
the DFT with the input density field supplied by the RC
data has been calculated. Singhet al. @6# showed that the
hard sphere glassy state becomes more stable than a un
liquid at the critical densityngs351.14, suggesting tha
there exists a kind of thermodynamic~later called a random
first-order @12#! glass transition. Here,s is the hard sphere
diameter andn is the number density of the system. It
remarked here that since the RCP configurations were
duced by a kind of aggregation method, we cannot study
dynamic aspects of the glass transition found by the ener
ics based on DFT.

The purpose of this paper is first to produce a supercoo
and a glassy state for a one-component hard sphere sys
relying on the uniform compression molecular dynam
~MD! method recently developed by Lubachevsky and S
inger @13#, and then to study both dynamic and static pro
erties of the state. Especially from the particle configurat
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data, we can discuss free energy within the DFT framewo
This MD approach, in conjunction with the DFT, enables
to study both dynamic and static aspects of the transition
contrast with Bennett’s approach.

Our system consists ofN51372 identical hard sphere
with massm and diameters in a cubic box of volumeV with
periodic boundary conditions. Throughout this paper,
units of length and time ares andAms2/kBT, respectively,
wherekB is Boltzmann’s constant andT is the temperature
@14#. It should be noted that the temperature is fixed
kBT51 in the course of the MD simulations.

To begin with, we briefly explain our MD method to ob
tain glassy states of a one-component hard sphere sys
Employing the standard Alder and Wainwright algorith
@15,16#, we first generate the equilibrium liquid state at de
sity ñ50.86. It is well known that the fluid system freezes
ñf.0.94. To avoid crystallization and to obtain amorpho
glassy states, Lubachevsky and Stillinger introduced a c
pressing~or quenching! procedure@13#, in which they actu-
ally increased the diameters with a constant rate of expan
sion during MD simulations. The dimensionless expand
rateG is defined as

G5
ds~ t !

dt
A m

kBT
, ~1!

and G50.01 is chosen in our simulations. From the initi
stateñ50.86, we expanded each sphere with the rateG and
could obtain various high-density statesñ50.86, 0.94, 1.02,
1.06, 1.10, 1.14, 1.18, and 1.21, without crystallization.

Let us first study the static structure of the system. F
this purpose, the radial distribution functiong(r ), which is
defined by

g~r !5
1

nN K (
iÞ j

N

d~r1ri2rj!L , ~2!

is calculated, whereri represents the positions of thei th par-
ticle and^•••& denotes the ensemble average over differ
configurations. In Fig. 1, we plottedg(r ) for densitiesñ
50.94, 1.06, 1.14, and 1.21. It is noted that there is no s
of crystallization, which would be reflected in the sha

y,
o-
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peaks ofg(r ) at some characteristic lattice spacings. Inste
g(r ) for higher density (ñ>1.14) shows splitting of the sec
ond peak, which is a familiar characteristic of a glassy st
of a simple liquid. Furthermore, we notice that the cont
value g( r̃ 51) shows an anomalous increase as the den
increases~see the inset!, which corresponds to the fact tha
the pressure increases drastically with increasingñ. Inciden-
tally, it should be remarked that the forms ofg(r ) agree
qualitatively with those illustrated in Ref.@11#.

We next consider the dynamic aspects of the hard sp
glasses by calculating the incoherent intermediate scatte
function Fs(q,t), which is defined by

Fs~q,t !5K 1

N (
j 51

N

exp@ iq•Dr j~ t;t0!#L
t0

, ~3!

whereDr j (t;t0)5r j (t1t0)2r j (t0) is the displacement vec
tor of the j th particle in timet and ^•••& t0

represents an

average over initial timest0. It is noted thatFs(q,t) is one of
the standard quantities in the studies of dynamic proper
of supercooled liquids and glasses@17,18#. In Fig. 2, we
plotted the decay profiles ofFs(q,t) at a dimensionless wav
numberq̃52p for ñ50.94, 1.06, 1.14, and 1.21. We see
Fig. 2 that the relaxation ofFs(q,t) at ñ50.94 can be ex-
pressed by a simple exponential function. Beyond the den
ñ51.06, however,Fs(q,t) exhibits a two step, that is, fastb
and slowa, relaxation, which is often mentioned as a ch
acteristic sign of the slow relaxation in glass forming liquid
At the highest densityñ51.21, theFs(q,t) does not show
any decaying behavior@19#. One can define the structura
relaxation timet̃ by Fs(q̃52p,t̃)5e21, and thist̃ is plot-
ted as a function ofñ in Fig. 3. We notice in Fig. 3 that the
relaxation timet̃ shows a strong dependence on dens
which can be expressed by the power law (ñg,MD2ñ)2g

with ñg,MD.1.15 andg.1.31 ~solid line in Fig. 3!.

FIG. 1. The radial distribution functiong( r̃ ) obtained for ñ
50.94 ~solid line!, 1.06~dashed line!, 1.14~short dashed line!, and
1.21 ~dot-dashed line!. Inset: contact value of radial distributio

function g( r̃ 51) as a function ofñ. The units ofr̃ and ñ are s

( r̃ 5r /s) ands23 (ñ5ns3), respectively.
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We now consider energetics of the system based on
DFT and the configuration generated by the MD simulatio
For a practical calculation of the DFT, we employ the R
makrishnan and Yussouff~RY! free energy functional@4# be-
cause of its simplicity and physical clarity. The RY fun
tional is given by

F@n#5Fid1Fint
(2)1Funi , ~4!

where

Fid5kBTE n~r!lnFn~r!

n Gdr, ~5!

Fint
(2)52

1

2
kBTE E @n~r!2n#C~ ur2r8u!@n~r8!2n#drdr8.

~6!

Here,Fid and Funi represent the ideal gas contribution a
the excess free energy of the uniform liquid staten(r)5n,
respectively.Fint

(2) represents the second-order term in the
pansion around the uniform liquid state, thus all terms hig

FIG. 2. Intermediate scattering functionFs(q̃, t̃ ) at a wave num-

ber q̃52p for ñ50.94 ~solid line!, 1.06 ~dashed line!, 1.14 ~short
dashed line!, and 1.21~dot-dashed line!. The units ofq and t are

s21 (q̃5qs) andAms2/kBT ( t̃ 5tAkBT/ms2), respectively.

FIG. 3. Structural relaxation timet̃ as a function of densityñ

~closed circles!. Solid line represents power-law fit (ñg,MD2ñ)2g

with ñg,MD51.15 andg51.31.
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than second order are neglected. We note thatC(r) is the
direct correlation function of the uniform liquid with densit
n @20#.

In order to evaluate the free energy of the system,
need the trial density fieldn(r), for which we employ a
conventional Gaussian superposition@6–10#; that is, the den-
sity field n(r) is expressed by a sum of Gaussians with
centers located atN sites$r i%, which are given by our MD
simulation,

n~r!5(
i 51

N S a

p D 3/2

exp@2a~r2ri
2!#[(

i 51

N

z~r;ri!, ~7!

wherea21, a variational parameter for the calculation of t
free energy, is proportional to the mean square displacem
of each particle. Small~large! a represents the uniform liq
uid ~localized amorphous! state.

When a is very large,Fid is asymptotically represente
by @6#

Fid~a!;NkBTF H 3

2
lnS a

p D2
3

2J 2 ln nG . ~8!

For a smalla region, we calculated the integral Eq.~5! nu-
merically. We confirmed thatFid approaches zero whenã
→0 and noticed thatFid coincides with the value of Eq.~8!

for ã*20.
It is easy to see that the interaction termFint can be di-

vided into three parts as@6#

Fint
(2)~a!52

1

2
NkBTHFint,1~a!1Fint,2~a!2nE C~r !drJ ,

~9!

where Fint,1(a) represents the self-interaction of a sing
Gaussian,

Fint,1~a!5E E z~r;0!C~ ur2r8u!z~r8;0!drdr8, ~10!

andFint,2(a) represents the interaction between the two d
tinct Gaussians,

Fint,2~a!5nE g~r 1!dr1E E z~r;0!C~ ur2r8u!

3z~r8;r1!drdr8. ~11!

The pair distribution functiong(r ) in this equation is deter
mined from the MD simulation. With respect to the dire
correlation functionC(r ), we use Henderson-Grundke e
pression forC(r ), which is known to be reliable, thoug
empirical, even for high-density hard sphere liquids@21#.

The total free energy per particle relative to uniform sta

D f ~a!5
Fid~a!1Fint

(2)~a!

NkBT
, ~12!

is calculated as a function of the localization parameteã
~see Fig. 4!. It is seen in Fig. 4 that the free energy loc
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minimum at finitea, which represents an amorphous sta
appears as the density is increased. As mentioned in Ref.@6#,
the local minimum appears as the result of the competit
between the ideal gas~simple increasing function ofa) and
the interaction terms. Figures 4 show that two local minim
are located atã.13 and 1600 forñ51.14. Das and Kaur
also observed two local minima ofD f (a), which are called
the weakly localized state for smalla and the highly local-
ized state for largea @9#. In addition, similar values fora
have been reported in Refs.@6,9#, which also use the RY
functional, in relation to the local minimum ofD f (a). As
stated in Ref.@9#, the qualitative adequacy is ambiguous f
the highly localized state with very high value ofa since the
RY form includes a perturbative expansion around the u
form state. In fact, based on the MD data, we estimateda for
high-density states by relating it to the plateau value of
time-dependent mean square displacement of each par
yielding ã.50 for ñ51.14, for instance. From this, it is
seen that the RY form does not give the proper estimation
the degree of localization compared with the results obtai
in earlier works@8,10#.

In Fig. 5, we plotted the free energy differencesD f of the
weakly and highly localized states as a function of densityñ.
From Fig. 5, we notice that the weakly localized state a
pears forñ>1.06 and the highly localized state appears
ñ>1.14. For higher densitiesñ*1.15, it is seen that the

FIG. 4. Total free energy per particle relative to uniform liqu

D f (ã) as a function of localization parameterã for ã<100 ~a! and

ã>100 ~b!. The unit ofã is s22 (ã5as2).
2-3
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highly localized state is more stable than the weakly loc
ized state. Moreover, it is found in Fig. 5 that both weak
and highly localized states become more stable than the
form state at aroundñg,DFT.1.15, which is the liquid-glass
transition density from the energetics based on the DFT
passing, we note that our~random first order! glass transition
densityñg,DFT51.15 is rather close to thatñg51.14, found
in Ref. @6#.

Finally, we compare our results from the energetics ab
with dynamic information supplied by our MD simulation
We find in Fig. 2 that the intermediate scattering functi
Fs(q,t) begins to exhibit the two-step relaxation at dens
ñ.1.06, which corresponds precisely to the density wh
the free energy local minimum begins to appear in our D
~see Figs. 4!. Turning to the relaxation timet̃, we recall that
the density dependence oft̃ could be described by the powe
law (ñg,MD2ñ)2g with ñg,MD.1.15. This density happene
to coincide with the densityng,DFT , beyond which the local-
ized state is more stable than the uniform liquid in t
present DFT. From these results, we consider that the D
based energetics and dynamic behaviors related to slow
namics are well correlated with each other.

FIG. 5. Free energy differencesD f of the weakly localized state
~solid line! and the highly localized state~dashed line! as a function

of densityñ.
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In this paper, we reconsidered the DFT approach to
glass transition in the hard sphere system, which was
undertaken by Singhet al. We obtained hard sphere glass
by MD simulations without recourse to the Bennett alg
rithm, and the information on particle configurations pr
duced by the MD simulations is used as input data when
free energy is calculated based on the DFT. While only
uniform liquid state is stable at low density, the free ene
local minimum begins to appear at high densityñ.1.06,
where our MD shows that two-step relaxation begins to
pear. This metastable glassy state becomes stable relati
the uniform liquid atñg,MD51.15. Slow relaxation, as rep
resented byFs(q,t), turned out to be consistent with th
energetics based on the DFT.

Before concluding this paper, we comment on recent
velopments in the studies of the DFT. In recent years,
so-called weighted density approximation~WDA! for the
free energy functional has been developed@22,23# and the
modified version has also been introduced@24#. Moreover,
the fundamental measure theory~FMT! has been propose
@25# and is gathering considerable interest. It is well know
that, for highly localized states, such methods are more
curate than the RY functional. This is because the form
employs a nonperturbation approximation, whereas the la
relies on a perturbation expansion around the uniform st
Several workers have already investigated the glass tra
tion by using the modified WDA method and found that t
metastable localized state is located atã.100 @8,10#, in ac-
cordance also with our MD results. Although the DFT bas
on the RY functional is still useful because of its physic
clarity, generality, and simplicity, we think that in view of th
recent achievements, it is meaningful to employ the WDA
FMT method in order to obtain improved results.

Furthermore, we expect that the present DFT appro
will be applied to more complex systems. As a model o
glass forming liquid, the binary Lennard-Jones@17# or soft-
core system@18# has been investigated by large scale M
simulations. Our approach can be readily applied to suc
system and would give new insights into the glass transit
from both thermodynamic and dynamic points of view.
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