PHYSICAL REVIEW E 68, 021404 (2003
Testing the Derjaguin approximation for colloidal mixtures of spheres and disks
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The depletion potential between two large hard spheres due to the presence of hard disks has been derived
up to first order in the number density of disks by Piech and \WalLolloid Interface Sci232 86 (2000 ]
using the Derjaguin approximation. Using the generalized Gibbs equation, we compare this depletion potential
to the exact solution up to first order in density. The Derjaguin approximation turns out to be surprisingly
accurate; for aspect ratios smaller than 0.25 the error is less than 1%.
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I. INTRODUCTION rods. For a size ratio of the length of the rods over the
diameter of the sphere @f/0=0.1, the Derjaguin approxi-
Mixtures of colloidal particles with different sizes and mation overestimateshe potential at contact by 7%. The
shapes are ubiquitous in industfy.g., paints, pharmaceuti- potential turns out to be quite accurate indeed from experi-
cals, and drilling fluidg food science, and the biological ments[29—-31.
realm[1,2]. Moreover, there is much interest in understand- In contrast to bimodal mixtures of colloidal spheres and
ing the properties of mixed colloidal suspensions at a fundamixtures of colloidal spheres with rods, those of colloidal
mental microscopic level. It is commonly accepted that mu-spheres with platelets has received little attention. The phase
tual asymmetry of the particles in these mixtures alone maypehavior of platelets may nevertheless be of great interest to
induce a net attraction between them by the so-called deplgghenomena observed in, e.g., soil science, drilling muds, and
tion effect. paints[32,33. Although the phase behavior of binary mix-
For binary mixtures of asymmetric hard spheres thistures of hard colloidal rods and plate34—3§ as well as
depletion effect has been established both experimentallglates and nonadsorbing polyni&7—39 have been studied,
[3—8] and theoreticallf9—-16]. When large spheres of diam- binary mixtures of hard spheres with plates are still unex-
eter o approach each other up to a distaficemaller than  plored. Recently, a stable system of hard spheres and plate-
the diameter of a smaller spheegthe latter is expelled from lets has been developed in our laboratpt9], as presented
the gap. Using the Derjaguin approximation, the resultingn Fig. 1, which opens up the possibility for fundamental
depletion potential foa<o up to first order in the number studies underpinning the aforementioned practical applica-

density of the smaller spheres,, is given by[17,1§ tions.
Analogous to rods, the orientation of platelets is restricted
when confined between two spheres. Approximating the
(1) platelets by disks, i.e., infinitely thin of diamet&, the
depletion potential for such systems up to first order in the
Up to first order in the density of small spheres the exachumber density of disksp,, reads by applying the Der-
depletion potential can also be calculated analyticill§].  jaguin approximatiori41]
The relative error introduced by the Derjaguin approximation
can from straightfoward algebra be determined as 1/(1 Wiisks 7 D24
+30/2a) at contact of the large spheres. Hence, for a size keT B En
ratio of the spheres @/ o=0.1 the Derjaguin approximation
underestimatethe depth of the potential by 6%.
Also colloidal mixtures of hard spheres with hard rods
give an entropically driven phase separation according to
experiment$20,21] as well as theory22—24. When placed Comparison of the depletion potentials of hard spheres
between two spheres, the orientational entropy of infinitelydue to disks, Eq(3), small spheres, Ed1), or rods, Eq(2),
thin rods of lengthL decreases. The consequent pressurgeveals that all have the general form
deficit leads to a depletion potential that reads up to first
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order in the number density, using the Derjaguin approxi-

mation[25—27] kBT —cinit?oF; 7 4
Wiods - L2g|1— * 5 where € is the characteristic length scale of the depletion
keT ki [ 2) agenti. The prefactorc; determines the depth of the poten-

tial, whereasF; determines its distance dependence that
Calculationd 28] reveal what error the Derjaguin approxima- equals unity at contact of the large spheres. In terms of vol-
tion has introduced for the depletion of large spheres due tame fractions, it is readily seen that rods are compared to
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FIG. 2. The distance dependerfeeof the depletion potential of
hard spheres due to the presence of other particles(4xgas a
function of the scaled interparticle distantgf. The depth of the
potential is given byc;. Disks (full line, €=D) are intermediate
depletion agents compared to ro@mshed linef=L) and small
sphereqdotted line,{ =a).

FIG. 1. TEM micrograph of a mixture of silica spheres ( 0of small disks D<o) can be derived from the interaction
=700 nm) with silica coated gibbsite plategiameter D between two walls using the Derjaguin approximatjidg]
=200 nm, thicknes& =30 nm).

1 ©

small spheres already at low volume fractions effective Wdisks(h)ziﬂ'o'j w(h")dh’, (5)
depletion agents, whereas colloidal platelets give rise to at- h
traction at intermediate volume fractions. From the numeri- ) , ) )
cal plot, Fig. 2, it is seen that the distance dependence of rogén€rew is the potential of mean force per unit area of disks
decays fastest, that of spheres the slowest, and disks are qffteen two planar walls. Next we will derive an expression
between. for w. - .

From their top view, disks may be regarded as two- In the vicinity of a wall, at a distancbh<D from the

dimensional spheres and from their side view as infinitelyother, the disk can no longer assume all configurations, as

thin rods. Consequently, upon rotating the particles at a givefjlustrated in Fig. 8a). As a consequence of this loss of con-

number density the apparent volume fraction of disks seemédurational entropy the number density of disks that are in
higher than that of spheres but lower than that of rods. Thi§ontact with the wallsn;(h), is less than the coexisting
is also exhibited by the depletion potential due to disks offumber density in the bullkg,. Hence, there will be a net
which it was shown above that both the depth and the disat.tracnon bgtween the walls according to the generalized
tance dependence is in between that of rods and smaffiPbs equatiori43-4§

spheres. If we carry this comparison further, the error intro-

duced by the Derjaguin approximation in E§) may also be _(‘WV) = N(h)—N(c) (6)
assumed to be intermediate. That is, the Derjaguin approxi- ), '

mation could be surprisingly accurate for mixtures of thin

platelets with large spheres. In this paper we will show thatjereN(h) andN(s) are the(ensemble averaggdumber of
this is indeed the case. To that end, we first rederive(8q. disks in the system when the walls are at separaticsr
from the Gibbs adsorption equation by applying the Der-infinity, respectively. Expressing Ed6) per unit area, we
jaguin approximation and subsequently do the full calculagptain

tion.

1%
Il. THE SPHERE-DISK DEPLETION POTENTIAL ((?W) =T'(h)—TI'(«), (7
\ /u“p h

A. The Derjaguin approximation

Consider a dilute dispersion of disks of diameflerThe  wherel is the number of disks per unit area adsorbed at both
depletion potential between two spheres due to the presengells,

021404-2



TESTING THE DERJAGUIN APPROXIMATION F® . . . PHYSICAL REVIEW E 68, 021404 (2003

D/2 \/ﬁ m
F(OO)Z—ZJO Np l—(m) dX:—anD. (ll)

Insertion of Egs.(10) and (11) into Eq. (9) straightfor-
wardly gives the potential of mean force per unit area of the
walls due to disks up to first order in the number density

T ~h h h\?
——arc5|rB+5 1-| =] |

1
W(h)=—§kBTnpD 5 D
(12)

Substitution of Eq.(12) into the Derjaguin approximation,
@ (b) Eq. (5), yields the depletion potential of hard spheres due to
hard disks, Eq(3).

Where Eq.(12) is exact to first order in the number den-
sity, Eq. (3) is approximate due to the Derjaguin approach.
Although the usefulness of the Derjaguin approximation for
depletion forces is questione@t7,4g, we believe with
Hendersori49] that this analysis is justified in the appropri-
ate limits, i.e., dilute suspensions of small depletion agents.
We will show that the Derjaguin approximation for spheres
in a dilute suspension of disks is actually very accurate up to
relatively large aspect ratios.

Since we consider a dilute dispersion of disks, we may write
the chemical potential of the disks aq)=,ug+ KgTInnp. B. Exact solution
Hence, integration of E(7) gives

FIG. 3. (3) In the bulk the director of a disk with diameteD
can describe a full unit sphereght), whereas a disk at a distance
x<D/2 to a wall only describes part of fteft). (b) The maximum
angle 6, between the directop and the normal on a planar wail
follows from singy,=x/(D/2).

h
ran:j;mmm—ngdx (®

In order to arrive at the exact depletion potential of dilute
suspensions of disks, we may write E6), in analogy to Eq.
Np 1 (9), as
w(h)= _kBTf [[(h)=T()]—dng
0 n
p

W
=—KkgT[T(h)—T'()]. 9) kB—T=—[N(h)—N(w)]=N|+Nu—Nm- (13

Here we used that up to first ordét,is linear inn,,.

The relative number density of disks between the twoThe N, term accounts for the number of conformations the
confining planar walls can be derived from the orientationaldisks now may assume in the bulk when the two spheres are
freedom of the director of the disk. Consider the anglef ~ closer tharh<D, whereasN, accounts for the actual num-
the director of a disk with the normal on one of the walls. Inber of possible orientations in that gap. The number of con-
bulk this angle can describe all polar angles, whereas in thtormations that used to be accessible when not hindered by
vicinity of a wall it is limited to 6, which follows from the other sphere is denoted bly, . The three contributions
sin#,=x/(D/2), as indicated in Fig.(®). Hence, forh<D it N,, N,;, andN,, are depicted schematically in Figa}and
follows from Eq.(8) that made more explicit below. Henceforth we will drop the ex-

plicit distance dependence of these terms.

hi2 9 Around each of the two spheres there is a layer of thick-
F(h)zzf Ny f sinfdo— 1)dx nessD/2 in which the disks are hindered by the spheres; the
0 0 so-called depletion zone. When two spheres approach each
hi2 X 12 other up to a distance<Oh<D the depletion zones of both
=— 2j Np\ [1— <_) dx spheres overlap, which restricts the number of conformations
0 D/2 of the disk there further. However, due to the overlap, disks
1 h o 5 in the bulk have more volume accessible to move freely. This
=—_n.D arcsirBJr — 1_(_) } (100 s reflected by the gaif, in the bulk and follows from the
2" D D volume of a spherical cap of heighb( h)/2

If the two walls are infinitely apart, a disk can rotate
freely until it approaches the wall up to a distance D/2. N =zn D2 %
Completely analogous to E¢L0), we find 6P

3D1h1h2 14
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1 1
(o+h)2+ SO+X —Z(O'+D)2
A s ¥1(x)=arcco (o+h)(o+2%)

(17

Remains the actual number of conformationéx, ¢)/n,, a

disk can assume at a given positias. As can be seen from
Fig. 3, at that position the disk can move within a certain
cone around the normal of each of the spheres ignoring the
other. From the intersection of both cones follows the pos-
sible number of conformations between both spheres, as can
be seen from Fig. &),

nix,) 1 (%
id =— sinf¢g(0)do
np TJ) -0,
1(6s | % c0sf,— cosf cospB
=— sinf arcco ——
TJ)B— 0, sinésing

(18

Here 6, and 0z give the widths of the accessible cones

around the normals on spher&sandB, respectively. More-

over, the angle between these normals is givergbyf 8

+ 60,>m7— 65, complementary conformations can be as-

sumed, which adds an extra term similar to Etf) but the

lower limit equal tor— B8— 6, . Expression for the anglé,

can be derived straightforwardly from Fig(b}, where we

must distinguish the case for<xy, when the face of the
FIG. 4. (8 The three contributions to the excess adsorption dendisk touches the sphere first, frox®x, when the edge of

sity forh=D/2. (b) Definitions of the distances and angles of a disk the disk touches the spheres, whege=2(/D%+ %~ o).

in the overlapping depletion zone relative to sph&réc) The over- Similarly the expression fofg can be derived.

lap of cones relative to spherésandB [cf. Fig. 3a)] determines Since the depletion potential requires the excess amount,

the area accessible to a disk at a certain position between the tV\fQ(h) —N(=), we finally have to subtract the number of con-

spheres. formations of disks when the two depletions zones did not

yet overlap, i.e.h>D. Analogously to Eq(15), we find
The number of particledl, that fits in the gap between the

two spheres is formally given by the volume integral over B b/2
the number density of particles that fit in the gap Ny =2n,

A(x){1—cosf(x)}dx. (19
max(0h—D/2)

Here the area in the overlap volume at radial distaxdg

D/2 w2 .
N,,=4wf f =+X]| n(x,y)sinydydx. given by
max(0h—D/2) J y;(x) \ 2
(15 1 .
A —W 27 h h)2 ! D ! D?
The radial integration over goes from the edge of the over- 0= | X=X+ 5oD+ 7 DY
lap volume to the outer shell of a depletion zone. In order to
describe the whole volume, for each radial position an inte- (20)
gral over the angleg that describe the overlap volume is )
required. From Fig. é) basic trigonometry gives The anglesd(x) follow, like 6 and g, from
(O
h if X$X0
0 if x<— o+ 2x
_ 2 D|? 2
h09= o o 19 cosao = (3] xio
arcco% s if X>5 1 5 it X>Xo.
(o+ 2X) 5)
\
and (22
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FIG. 6. The value of the exact solution at cont@ymbols may
be fitted by Eq.(22) (solid line).
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From this equation we find that fdd/0<0.25 the error is
less than 1%.

IV. DISCUSSION

We conclude that the Derjaguin approximation for the
depletion potential between spheres due to disks, (Bx.
yields very accurate results. The Derjaguin approximation

for D/o=1.0. (b) The difference of the distance dependence of theunderestimates the potential for a bimodal mixture of
depletion potential of the exact solution compared to the Derjaguirspheres, Eq.1), while it overestimates it for sphere-rod mix-

approximation for several size ratios.

Ill. RESULTS

Invoking Egs.(14), (15), and (19), we determined the
depletion potential from Eq(13). All integrals are solved
numerically using Romberg integrati¢B0] up to a numeri-
cal accuracy of X10 °. As can be seen from Fig.(&,
even for a size rati®/o=1.0, the resemblance between the
exact solution(symbolg and the Derjaguin approximation
(line), Eq. (3), of the depletion potential is striking. For
smaller aspect ratios the difference is on the scale of th
depletion potential hardly visible. We therefore plot the dif-

tures, Eq.(2). The generic intermediate behavior of disks
leads to the result that the Derjaguin approximation is indeed
surprisingly accurate. For instance, an error-00.2% is
found forD/o=0.1 at contact, whereas for the same aspect
ratios it is +6% and —7% for mixtures of spheres with
small spheres and spheres with rods, respectively.

So far we only considered disks, i.e., infinitely thin plate-
lets. Going to platelets of finite thickness, e.g., oblate ellip-
soids, the deviation from the Derjaguin approximation may
change sigi41]. We nevertheless reckon the Derjaguin ap-
proximation in dilute suspensions to be a useful guide to our
experiments of colloidal mixtures of spheres and platelets.
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