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Transport properties of incipient gels
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We investigate the behavior of the shear viscosijyp) and the mass-dependent diffusion coefficient
D(m,p) in the context of a simple model that, as the cross link demsityincreased, undergoes a continuous
transition from a fluid to a gel. The shear viscosity diverges at the gel point accordingp)e-(p.—p) ~*
with s=0.65. The diffusion constant shows a remarkable dependence on the mass of the dystep:
~m~%6% not only atp, but well into the liquid phase. We also find that the Stokes-Einstein reldign
«kgT breaks down already quite far from the gel point.
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[. INTRODUCTION divergence ofy at the gel point.
The structure of this paper is as follows. In Sec. II, we

When a system of polyfunctional molecules is crossdescribe our model and the computational details. Section Il
linked, the transport properties such as the shear viscosityontains a discussion of the geometric properties of the clus-
and the diffusivity can be dramatically affected. In particular,ters and the nature of the percolation transition. The shear
the diffusivity decreases as the number of cross links is inviscosity calculation and results are described in Sec. 1V, and
creased and the shear modulus increases, diverging at thesults for the diffusion constants are found in Sec. V. We
critical point at which a gel is formed. The diffusivity re- conclude with a short discussion in Sec. VI.
mains finite as the system gels since monomers and small

clusters can diffuse through the tenuous structure that char- Il. MODEL
acterizes the amorphous solid close to the critical point. Al- o )
though gels have been studied for many y¢atstheir criti- The model is similar to the one employed in Ref], but

cal behavior remains poorly understood. In particular theve include the detgils below for completeness. Our system is
question of whether or not there exist universality classe§omposed oN=L" (L=10,13,15,20, and 30) particles in-
into which different materials can be grouped remainsteracting pairwise through the shifted Lennard-Jones poten-

largely unanswered. tial
In this paper, we report on extensive molecular dynamics
simulations of a simple model for a gel. We study the system U(r = Upy(r)—U(2.50), r<250, @

on the fluid side of the gel point from the simple liquid limit
into the critical region. We investigate the structural proper-
ties of clusters and calculate both the shear viscosity) =~ whereU_(r) =4¢[ (a/r)*—(a/r)®]. All of our simulations
and the mass-dependent diffusion cons@fm,p) as func- are three-dimensionaBD) constant energy molecular dy-
tions of the cross link densitp. We find that asp—p,,  nhamics simulations corresponding to an average temperature
7(p) ~(pe—p) ~S with s~0.65, a value somewhat smaller of kgT/e~1 and densityP=0.80"3. These choices ensure
than that conjectured by de Genn@ on the basis of an that the system is in the liquid-phase region of the phase
analogy with a random superconductor network and also prediagram[6,7]. We use periodic boundary conditions and a
dicted recently by Broderiet al.[3] for a Rouse-like model time step of magnitudelt=0.005r, where r=\mo?/¢ is
network. The mass-dependent diffusion constBx{im,p) the reduced Lennard-Jones time. From a typical equilibrium
~m~ %% for a range ofp near the critical point and8m  state of this liquid, we let the particles form a specified num-
<50. This behavior is consistent with earlier results for bern of permanent chemical bonds if they come closer than
=p. [4] and rather close to a predictid2] made on the r.=2Y%0~1.12, coinciding with the minimum dfi(r). The
basis of a simple scaling argument. On the other hand, olvond interaction is a harmonic oscillator potentifil,{r)
value for this exponent is somewhat larger than the ones=1/2kr?; in our simulations we tak&o?/e=2.0 (different
found by Kintzel et al. in a recent papef5] in which the  from Ref.[4]). Note that this way of adding bonds violates
exponent varies between 0.5 and 0.25 as the strength of tlemergy conservation; indeed we actually pump energy into
Zimm hydrodynamic interaction is varied. The diffusion co- the system when adding bonds. To compensate we cool
efficientD(m,p) — const agp— p, for m at least as large as down the system again after having established the required
10 but displays critical behavior in the next leading term. Itnumber of bonds. With this bonding procedure cross linking
is also worth noting that, in contrast to simple liquids, theis very fast—the average distance between the particles is
productD(p) »(p) is not a constant but rather reflects the comparable ta., so a large number of particles are avail-
able for bonding at any given instant. Each particle can bond
to a maximum off =6 other particlegexcluding itself, and
*Email address: sune@mr.au.dk the cross link density is then given in terms of the number
"Email address: plischke@sfu.ca of bondsn asp=2n/fN. Any number of particles, if fulfil-

0, otherwise,
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FIG. 1. Fraction of system§V(L,p), percolating in thex direc-
tion as a function op for five different system sizes as indicated on
the plot. The lines are guides for the eye, except in the tase
=30 for which the data are fitted to a stretched exponeqtial.
We estimatep,=0.2565.

FIG. 2. Same as Fig. 1, except herqL,p) is plotted as a
function of LY”(p—p.) with p.=0.2565 andv=0.9. The data col-
lapse very nicely in agreement with finite size scaling theory.

LY (p.—p) with y=1.8 being the expected 3D percolation

ing the conditions above, can be cross linked per time ste|6’,alue andv andp, as determined previously. Again there is

but we halt the bond formation whemreaches a predeter- a very n_ice data collapse, and we ther_efore cgnclude e
mined value here as in Refd4,8,9 our system is consistent with the 3D

percolation universality class insofar as static properties are

concerned.
I1l. GEOMETRIC PROPERTIES

Before discussing the dynamic properties of this model, IV. VISCOSITY
we need some basic information about the static properties.
In this section, we determine the geometrical percolation We measure the shear viscosiyp) by using the appro-
point p. as well as the two critical exponenis the correla- ~ priate Green-Kubo formulgl3,14:
tion length exponent, ang, the exponent characterizing the
divergence of the weight average cluster m@aéginite clus- 1
terg. We follow a procedure similar to the one used and _ fm
outlined in Refs[4,8,9. In order to findp,, we calculate 77 VkeT Jo K1) (O], @
numerically the fractionNV(L,p) of percolating systems of
sizeL® with a bond density. This function is plotted in Fig.
1 for all five system sizes. The crossing points of the differ-whereV is the volume andr,,(t) is thexy component of the
ent curves seem to coincide, and the corresponding value sfress tensor:
p is thus a good estimate @, [4,10]. From the figure, we

determinep.=0.2565 as in Ref[4]. Finite size scaling N
theory predicts thaw(L,p) does. no't depend oh a'nd p ny(t)zz mvx,ivy,i+2 2 (Yi—ypiyi- (4)
separately but only on the combinatiané (and the sign of i=1 i=1j<i
p—p.), Whereé=|p—p.|~" is the correlation length and
is the correlation length exponelit2]. Thus we may write 07 T T T T P
06 | v% B XA
W(L.p)=F(LY(p-po)), 2 osh o & % 2 -
v
+ o4l i
wheref(x) is a scaling function. To test this hypothesis, we % a‘ X
replot the data fow/(L,p) from Fig. 1 in Fig. 2 as a function 03r T
of LY(p—p,) with p,=0.2565 as determined above and 0zl o Yo .
=0.9. The collapse is very good, confirming the correctness o1k x@)? i
of the values fomp, and v. ’ . o4 o0
To compare with percolation theory we need one more ol 1 1 1 L 120 ok
exponent, and here we consider the behavior of the weigh A '&ip)p Nt

average cluster masd,, . In the thermodynamic limit, the

expected behavior i81,,(p) ~|p—pc|~? [12]. Therefore we FIG. 3. Scaling plot of the weight average molecular weight
computeM,, as a function ofp for different system sizes, M,,. The quality of the data collapse confirms=1.8 in accor-
and in Fig. 3 we plot the results in the for,,/L"'” versus  dance with the 3D percolation value.
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FIG. 5. Same as Fig. 4, but here plotted in a scaling form with

FIG. 4. The dimensionless shear viscosity as a functiopof 0.65
s=0.65.

—p for differentL.

mixture of normal and superconducting elements, and a good
In this equationf, ;; is the x component of the force from agreement with this was found in a related model in Rgf.
particle j on particlei, and the meaning of the remaining Here we have observed a slightly smaller valuegor
terms is self-explanatory. In the simulations, we average over
several hundred samples for eaphand over three off- V. DIFFUSION

diagonal componenty,yz, andzx) of the stress tensor to In this section, we extend our earlier stuf§] on the

obtain s_hghtly better statistics. It is Important to note that Wejiffusion of clusters. Previously, we were concerned mainly
have discarded any sample containing a spanning cluster.

; . o ) g with the behavior of the diffusion constam(m,p) as a
since for SU(.:h a system t.he viscosity is not defined, .., th‘?unction of cluster masm at the gelation poinp=p.. Here
right hand side of Eq(3) diverges. Although we have simu- we address the dependence db for different cluscters and
lated very long rungup tOt:?SOT)' the stress correlator the validity of the Stokes-Einstein relationD(p)
Cog(t) =(0y(1) 7,(0)) has still not decayed completely «kgT/7(p) for a given cluster mass. We restrict our atten-
and it is necessary to add by hand an additional contrlbutlor‘;don t0 thel = 20 system
in particular forp close top,. A stretched exponential To determine the diffl:lSiOﬂ constant, we use the Einstein
C,.(t)=aexp(—bt) with 0.1<c<0.3 seems to fit the data relation: '
well for long times, and there are also theoretical reasons '
[15] to believe that this is the appropriate form. See Ref. 1 e
for a thorough discussion of this point. —((r () =1 (0))2) — D(m,p), (7)

In Fig. 4, we have plotted the resulting values for the 6t< " " )
viscosity for different systems sizes and at different stages of

the cross linking. We note the clear power-law behavior Out_vvhererm(t) is the center-of-mass position of a cluster of

side the critical region, and a fit to tHe=10 data in this massm at timet, for a given va_lu_e op (for clarity .Of the
region yieldss=0.65. The line 5o (p.—p)~*5 has also presentation, we omit the explicit dependencepom the

been drawn on the plot, and it is apparent that the data ar%otatmr). When calculating the diffusion constant numeri-

consistent with this exponent. For largep>0.23, there are ;ﬁl(ljyg:l/irhsg\?e?;/leﬁ%%?e%vi:o?s CI:zEItﬁrSS 0;2 dg\l/://gnhgxl/-fséis-
larger error bars and this will also affect the scaling plot. gs,

Since the viscosity diverges at the critical point with an ex-Carded any percolating samples. This has been done mainly

S . . for consistency when comparing withy but in any event we
> . e
ponents>0, the finite size scaling form is do not expect this to affect the diffusion of any but the very

7(p,L)=L"9g(&/L), p<pe, (5) largest clusters.
First, we examine the convergence of Eg). by plotting
whereg is a scaling function with the limits in Fig. 6 the behavior of (r u(t) —rm(0))?)/6t for m=1
o (monomer$ as a function of time and for three different
x> x=0, values ofp. From these curves, we clearly see the existence
g(x)ex const, X— oo, 6) of long-time tails in the velocity auto-correlation function.
Consider the “Green-Kubo” formula corresponding to Eq.
and é~(p.—p)~ " is the correlation length, cf. Sec. lll. (7):
Therefore we plot in Fig. 5L versusL"(p.— p) and the (D) (O
collapse is quite good outside the critical region wih Fm(l)=TI'm [t
=0.65, whereas there is a larger scattering of the pointp for t - deS<Vm(S)-Vm(O)>(1—S/t). ®

closer top,.
de Gennes has suggesi{@] a value ofs~0.7 based on The dominant contribution tg(r (t) —r,(0))?)/t at large
an analogy between gelation and conductance in a randotimes is
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FIG. 6. ((rl(t)—rl(O))Z)/Gt a function of time for monomers, FIG. 7. Same as Fig. 6 but this time for clusters of size 10.

and for three different values @f 0.125, 0.2 and 0.25 from top to

bottom. The long-time tails are clearly visible, and the solid lines | ) ) )
are fits to the same functional foraee text with simulations that are twice as long, and at least for the 20

lightest clusters for which we had good enough statistics, the
error was less than 5%. For the smallesivhere the statis-
® tics are very good, one can also obtdd{m,p) from a
=D(m,p)—f dsc™(s), (9  power-law fit as mentioned above, and the outcome is still
t consistent with the statement just madee error here is
even much smaller thabh%).
In Ref.[4], we studiedD (m,p.) and found the power law
m,ps) ~m~ %% We have repeated this study up to clus-
s of size 50 and observe the same behavior over the entire
range. Fop<p., we see the same power law as a function
of m, at least for small cluster sizes. The quality of the sta-
tistics for larger cluster sizes is insufficient to determine

<(rm(t) - rm(o))2>
t

where C{™(s) = (vi(s) - vin(0)) is the velocity autocorrela-
tor. Therefore, a power-law ta@{™(s)~t~ in the velocity D(
autocorrelation function will translate into a corresponding,.
power-law tail {(r n(t) —r (0))?)/t~D(m,p) + constt* %)

in the Einstein relation. In simple liquids, a value eof
=3/2 is ubiquitoud14], and has also been observed for ge-
lating systems in Ref9]; here we find that the same power whether there is a crossover or cutoffras-m* (p), where
law provides a very good fit to the data for af, but in '

. . m* (p)~ (p.— p) ~ Y7 is the mass of the largest cluster, but it
particular fpr the small clusters. In E'l% 6, we have a.'s‘? Plotseems likely that there is. de Gennes has argued that for
ted these fits to the power laa~bt™~<, and the deviation

masses £m<m*(p), D(m)~m~*9(B*" on the basis

frpm the simulation results at early times is barely visible. In ¢ - ‘i1 as_Einstein relation with a mass-dependent viscosity
Fig. 7, we have done the same for clusters of mass 10, a

: o ]. Here B is the exponent that describes the decrease of the
we see the same behavior. The agreement is slightly wors

" rder parameter near percolatioy~ (p— pe)?, wherex
presumably due to poorer statistics of larger clusters. We P b 0~ (P P) gel

. . X s the fraction of particles on the spanning cluster gnd
note the existence of a maximum in all of the cur¢d®ugh .
— Pt .
not visible in Fig. 6 form=1) for ((r(t) — 1 (0))2)/t. By p.+. The other exponents have been introduced already.

) L . By using the appropriate scaling relations for 3D percolation
d|fferent|a_1t|ng Eq.(8)_, this can be shown to occur &, [12], the exponent can be rewritten so the prediction is
wheret,, is the solution to

D(m)~m 2+9)/(dv+9) - where d=3 is the Euclidian di-
mension. With our values for the remaining exponents, we

tI'T'I
J dstT)(s)s=O. (100  get
0
_ . D(m,p)~m % for 1<m<m*(p). (12
An obvious consequence of the fact that fort,,, [using Eq.
9] This is in very good agreement with our simulation results
) within the observed power-law regime. The theoretical pre-
9 ()~ 1(0)) >~C§T)(t)<o (17  diction can be rewritten a®(Ry)~Ry 79", where R,

dt t ~m'P1 s the radius of gyration and is the fractal dimen-

. - _ . . sion. This form of the relation has sometimege, for ex-
is thatC,,’(t) becomes negativianticorrelation for larget  ample, Ref[16]) been used to infes from the scaling oD
and stays negative thereafter. This means that the thils  with Ry, but to the best of our knowledge the present study

in Figs. 6 and 7 correspond tanagative t > tail in Cf,”U“)(t). presents the first direct verification of such a link.
We also note that,, is an increasing function afn and a However, even in this regime one would expect some
decreasing function g. additionalp dependence of the diffusion coefficient, a point

The error made by takingd(m,p) to be the value of not addressed in Ref2]. To this end, we plot in Fig. 8
((rm(t)—rm(0))?)/6t at the end of the simulation time  D(m,p) as a function op for monomers, dimers, and trim-
=120r is neglibly small. Forp=0.2, we have compared ers, and we see that the diffusion constants decreds®st
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FIG. 8. Diffusion constant as a function pfor clusters of three FIG. 10. Plot ofD(m,p) times #; obviously this is only ap-

different sizesm=1, m=2, andm=3 from top to bottom. The proximately a constant, as predicted by the Stokes-Einstein relation,
solid line is a fit to the functiorD(p)=a(p.—p)°+ D, and D, far away fromp.

=0.0398,a=0.131, ancb=1.103(see texk
VI. CONCLUSIONS

linearly) as a function op. Moreover, the curves seem to fit The main results of this study are the power-law behavior

hicely to the functional fomD(p)za_l(pc— p)°+Dc, with a of the mass-dependent diffusion coefficient which seems to
value of the exponenb=1.1. In Fig. 9, we have made a 44 well away from the critical point, the failure of the
similar plot for massesn=2,...,10, and the trends ob- siokes-Einstein relation and the resas0.65 for the critical
served above appear to carry over to larger masses. Th&ponent of the shear viscosity. This last result, taken to-
curves are r0ugh|y para||e|, and therefore it is not Unlikelygether with other recent resu'Es'g]’ seems to Support the
that the value ob is independent ofn, but we are unable 0 conjecture that the gelation transition is not classifiable in
confirm this from a fit to the data: the exact value of theterms of a single universality class: exponents in the range
exponent appears to be very sensitive to noise in the data.0.3<s<0.7 have been found for models that seem, on the
Finally, we demonstrate a striking violation of the Stokes-surface, to be very similar. The experimental situation also
Einstein relation when approaching the gelation transitiondoes not provide much evidence for universality, both expo-
The idea thaD 1/ is used so widely that one may some- nents neas=0.7[17—19 and in the range 12s<1.3[20—
times forget its lack of universal validity. In Fig. 10, how- 24] have been reported. We sound a note of caution here: The
ever, it is clear thaD(m,p) » increases significantly when determination of exponents through finite size scaling is not
p—pc. This is consistent with our previous observationsyery precise, especially when quantities that are as difficult
that whereasy diverges at the gelation poinQ(m,p) ap-  to calculate as the shear viscosity form the dataset. However,
proaches a nonvanishing constant even for large masses it seems very unlikely that the errors are large enough that a
Further away from the gelation poimt<0.20, there does, factor of more than 2 in the exponent could be explained that
however, seem to be an approximate proportionality betweeway.
D(m,p) and ». However, in Figs. 8 and 9 we saw indica- The mass-dependent diffusion coefficient in this model
tions that D(p)~a(p.—p)°+D, with b>1 whereasn displays a power-law behavi®(m,p)~m~%5 consistent
~(pc—p) %% and so this apparent proportionality is at with a scaling argument of de Genrl&. Reexpressing this
best only approximate. in terms of the radius of gyration of clusters through
= Rng, whereD;=2.5 is the fractal dimension of the perco-
lating cluster, the scaling prediction isD(Rg,p)
~R, M%) This yields an estimats=0.65 for the viscos-
ity exponent, in good agreement with the direct calculation
from the Green-Kubo formula. Whether this connection be-
tween diffusion and viscosity is general or specific to the
present model and whether there exists a similar relationship
between diffusion and the elastic shear modulus in the solid
phase remains a subject for further study. Using a quite dif-
ferent model, Gadet al.[16] have studied the self-diffusion
of cross linked polymer clusters on a lattice by bond fluctua-
L tion dynamics. They have also used this scaling ansatz to
0 002 004 006 008 01 01z 014 016  jufar the critical exponent of the shear viscosity and found

T
)

D(p)

Pemp s~1.3. Their result translates to a mass dependence of the
FIG. 9. Same as Fig. 8, but for clusters of sizes 2, ...,10 diffusion constantD(m,p)~m~*, very different from that
from top to bottom. The solid line is a fit, and hebe=0.0064,  of the present model.
a=0.0324, andb=1.029. Finally, we have shown that as the fluid becomes more
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