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Brownian motion in confinement
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This research modifies an earlier approach based on the single-wall reflection method to predict the perpen-
dicular and parallel diffusion coefficients of a Brownian sphere in confinement. The modified version provides
predictions that match experimental data reported in the literature more accurately than those provided by other
available models, including the linear superposition approximation, the coherent superposition approximation,
and Oseen’s equation.
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[. INTRODUCTION for parallel diffusion, may be adapted for perpendicular dif-
fusion in confinement[()ﬂ), as shown by Eq(1b),
Although the first investigations concerning confined
Brownian motion were performed a long time afdd, this D! . 9%l 1
problem remains the subject of discussipas]. The impor- D, = 8lz + d—z/ (1b)

tance of understanding the motion of spheres in confinement
lies in its applicability to the description of particles migrat- In the equations above, the diffusion coefficient in free
ing in porous media or near fluid-solid boundaries, macrospaceDg, is given by the Stokes-Einstein formula
molecules diffusing in membranes, and cells interacting with
surfaceq4,5]. In addition to the influence of the wall on the
Brownian motion of particles, the hydrodynamic coupling of
two colloidal spheres through a boundary has been found to ) ]
affect attractive interaction of the sphef€s7]. wherek is the Boltz.manr_\ constari,is the absolute tempera-
Recent advances in information processing power and imUreé; andz is the viscosity of the fluid.
age processing by means of dynamic-light-scattering tech- Integrating the solution of Liron and Mochdi3], who
niques[8], video microscopy4,9], and digital imaging 10], employed Blake'’s treatment for the stokeslet_ in a no-_sl|p
as well as controlled manipulation of colloidal Spheresboundary{14], one obtains an accurate but unwieldy solution

through optical tweezefd 1,12, have provided new insight [9]- Dufresne, Altman, and Grig] obtained a solution for
into the influence of walls on the diffusion coefficient. cases in which the far-field contribution dominates the flow

While the influence of a wall on the motion of a sphereat the boundaryi.e., where the radius is much smaller than
may be solved mathematicalfit], the effect of a second the width. Through extension of the single-wall reflection,
boundary is still an open question. In 1923, Faxeveloped Lobr.y and Ostrows!q[S] derived the d|ffu5|on_coeff|C|ent in
formulas describing the effects of a single wall on the motionconfinement that includes multiple reflections, which is
of a sphere and expanded these formulas to describe high§jven by

kT
6mpa’

@

Do

symmetric arrangements of two walls. Oseen suggested that " -
the effects of two single walls be added, deriving the follow- i D 2 Do _q
ing equation1]: Do n=o | D'(nd+2)
D| 9a/1 1 ) ” D
. =116\ 2t a=2) (13 T Y [ — |
Do 16 Z d z n_0|:D|((n+1)d_Z)
wherea is the radius of the spherd,is the width of the gap, o D a12) 1
zis the center of the sphere-to-wall distance, &Jdis the 23 ° 4 +O(—) _ &)
parallel diffusion in confinement. Using the analogous ex- n=1|D'(nd) d

pression for the motion of a sphere perpendicular to a single

wall (DIL) [1], Oseen’s equation, E¢la), originally derived  Here, the diffusion coefficienb" for two walls represents
both cases, the perpendiculd'() and parallel D}') diffu-
sion in confinement, and depends on the diffusion coefficient
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FIG. 1. Motion of a sphere in confinement. The velocity fields
as well as the reflections afth order are reflected at the left and
right boundaries and at the sphere.

D! (u) 9a

D, 17 B (43
and
Dij(u) 9a
) =1- 60 (4b)

The variableu is used as a general transformation raf
+2z, (n+1)d—2z, andnd. In this work, the model of Lobry
and Ostrowsky[8] is referred to as coherent superposition
assumption(CSA), as introduced by Lin, Yu, and Ridd].
These researchers showed the CSA to be less accurate t
the linear superposition approximatiqghSA) adopted by
Faucheux and Libchabét0] and given by Eq(5):

-1
] . (5)

As before, Eq.(5) may be applied for either case, the per-
pendicular D) or parallel ©}') diffusion in confinement, if
Eq.(4a) or (4b) is, respectively, inserted f@' and Eq.(3) is
inserted forD,. The LSA, however, violates boundary con-
ditions at both bounding surfacd8]. Note that the drag
force F!' and the diffusion coefficienD'" are related by
F''/Fo=D,/D", so that similar equations may be derived

Dll

Do

Do
D'(d—2)

Dy
D'(z)

1+ —1[+ -1

for the drag force. Both quantities have been used exten-

sively in the literaturd1,4,8,9,13. This paper deals exclu-
sively with the diffusion coefficient, since all available ex-

perimental data are in terms of this quantity. We revisited the

experiments of Refd4,8], and compared Oseen'’s solution,
the LSA, and the CSA with a modified CSMCSA) solu-
tion [16].

II. DERIVATION OF THE MODIFIED COHERENT
SUPERPOSITION APPROXIMATION

The diffusion coefficient for a sphere in confinement is
derived by analogy to Lobry and Ostrowsk§], using the

method of reflections and assuming the motion of the sphere

as a point forcd“stokeslet”) shown in Fig. 1. The complete
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force is the sum of the point force and the reflectionsitf
order:

Fl'=FP+FPIPL FP2PLEPIZ L EP2IP L ... (6)
One can express the reflections by the single-wall reflections
F', which are given by Eq(4) when the relationF/F,
=D,/D is used:

FPIP=Fl(2)—Fy, FP?=F!(d—2)—F,,

FPlP= —Fl(2d-2)+F,, FPP=—F!(d+2)+F,,

FPIZP=Fl(2d+2)—F,, FP?P=F'(3d-2z)—F,,

FPI212— —Fl(4d—2z)+F,,
and

Fr2i2%— —Fl(3d+2)+F,. (7)

The significant difference between the CSA and the
MCSA is the consideration of the sphere-wall distance in the
higher-order terms. In Ref8], the second reflectiong 1%
and FP?) are taken into account as a particle placed at a
distanced away from the original particle, the third reflec-
tions (i.e., FP?® and FP?'?) as a particle placed at a dis-
tancez+d away from the original particle, etc. Thus, one
obtains three series, as shown in E8), in which the first
accounts for the odd reflections on the wall that is placed at
a distancez away from the sphere, the second accounts for
t%ﬁ: odd reflections on the opposite side, and the third sums

e even reflections. In the MCSA, the first reflections are
analogous to those of the CSA. However, it is assumed that
after being reflected at the first wall, the velocity field
spreads over the distandéetween the two walls and then is
reflected at the second wall and spreads over the disthnce
—z. Thus, the second reflection is considered as a reflection
of the motion of a sphere that is placed a distande-2
away from the wall. Analogously, the second reflection of the
opposite wall is considered as the reflection of a sphere
placed at distancé+z, as given by Eq(7). The higher-
order reflections, up to the fourth, are derived in an analo-
gous way[16]. Therefore, the total force is given by

Fl'=Fo+ ZO (—1)"[F(nd+2)—Fq]

+ ZO (—1)”[F'((n+1)d—2)—Fo]+o(a) . (8

In order to be comparable to Eq4), (3), and(5), Eq. (8)
must be written in terms of diffusion coefficients through the
relationF/Fy=Dg/D:

Dll

Do

L2, (-1 m*}

©

+ (1"

n=0

Do

[D'((n+1)d—z)_

J" e
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FIG. 2. Motion of a small
sphere and a large sphere in con-
finement. The larger the sphere,
the less possible are higher-order
reflections.

By using Eq.(4a) or (4b) for D', Eq. (9) may apply for (2h+z—a)/(2h+2z) and (h—z—a)/(4h—2z). In the same
perpendicular D'') or parallel @) diffusion in confine- way, the nth-order reflections are reduced Hg(n—1)h

ment. +z—a]/[2(n+1)h+2z] and (hhh—-z—-a)/(2nh—2Z), re-
Noting that the results of Lin, Yu, and Ri¢d] show that ~ Spectively. ) o
the higher-order terms are more relevant for lafyer ratios On one hand, the higher-order terms become negligible as

(i.e., small spheres in wide gaps with half-width while the ~ h/a—1, while on the other hand, E_qlo) gives the theoret-
motion of a sphere in a small gap can be better described @l derivation, i.e., Eq(9), asa—0:

the LSA, one may assume that not the center-of-sphere-to-
wall distance, but the shortest sphere-to-wall distance deter-
mines the diffusion in confinement. Figure 2 emphasizes that
the sphere is a resistance that hinders the reflected waves
from crossing the whole gap. Thus, the influence of the
higher-order reflections diminishes with increasing sphere di-
ameter. This effect cannot be described by . since the
equation is derived for a point force. To account for the finite
size of the sphere, empirical factors need to be introduced
that set the shortest distance of the sphere to wall into rela-
tion with the distance of the stokeslet as shown in Fig. 3. The
second-order reflections are reduced by the ratio between the
shortest sphere-to-wall-distances and the center-of-sphere-to-
wall distancesf—a)/z and (zh—z—a)/(2h—2z), and third-

D' [ { Do
—=11+|—-1
Do D'(2)

Do
+|—1
D'(2h—2)
Do
-1
D'(2nh+2)

o

2nh—z—a

n=1 2nh—z
n(n—1)2h+z—a
n=1 (n—=1)2h+z

-1

Do

X |—1H . (10)
D'(2(n+1)h—2)

order reflectiongP1?% andFP?'? are reduced by the factors The variablesD', D", andD, are used in analogy to Egs.
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FIG. 3. Reduction of the higher-order reflections through the finite size of the spheg, tme can see the first-order reflectidFisP
andFP?P and the second-order reflectioR&'? andFP2%: the waves that are reflected on the wall may hit the sphere or reflect again on the
opposite wall. The larger the radiasthe less the chance is for the wave to pass the sphere. The second reflections are reduced by the ratio
between the shortest sphere-to-wall-distances and the center-of-sphere-to-wall digtara)é¢g and (h—z—a)/(2h—z). Because of the
same reason, the third-order reflectidtfd?® and FP?'? are reduced by the factorstf2 z—a)/(2h+z) and (h—z—a)/(4h—7z).
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FIG. 4. Perpendicular diffusion coefficient of a sphere that is FIG. 6. Parallel diffusion coefficient of a sphere that is placed at
placed atz=h as a function of the half-widtlh of the gap. The z=h as a function of the half-widtih of the gap. The influence
influence becomes negligible for gaps with half-widths that are 2(becomes negligible for gaps with half-widths that are 20 times
times larger than the radius. Solid line, LSA; dotted line, Oseen'darger than the radius. Solid line, LSA; dotted line, Oseen’s equa-
equation; short-dashed line, CSA; dashed-dotted line, MCSA,; solidion; short-dashed line, CSA; dashed-dotted line, MCSA, solid dots,
dots, experiments of Lin, Yu, and Ri¢Ref.[4]). experiments of Lin, Yu, and RicgRef.[4]).

(3), (5), and (9) and may be adapted in the same way for]...44>< 10 2 for the LSA, and 2.3& 10 2 for Oseen’s equa-
perpendicular D ) or parallel diffusion D|'). The widthd ~ tion:

is replaced by the half-width, i.e.,d=2h. L N

NI (Dext~ Dimode)” (11)
Ill. RESULTS o

The computations and measurements of Lin, Yu, and Ricé\lc’te that the largest error results from the second experi-
1 1 . . . . . 2

[4] for the perpendicular diffusion coefficient of a sphere M€Nta _p40]|cnt. hEchudmg ﬁh'ﬁ point yields a’h Oé
placed at the midplank of a gap are shown in Fig. 4. The 2:/7<10 for the MCSA, which is more accurate tharr
equations used in the computations of Fig. 4, as well as Fig®f 1:03x 10" for the LSA. _ _
5 and 6, are listed in Table I. The comparison of the models If the particle is free to move perpendicular to the wall, it
in Fig. 4 shows that the MCSA predicts the experimentaIWi” be located at any distanarom the wall that is between
data of Lin, Yu, and Ricé4] for the perpendicular diffusion (he radius of the sphemeand the gap half-width=d/2. To
much better than the CSA. The variane? given by Eq. account for these fluctuations, Lobry and Ostrowgigy

11) is 1.48< 103 for the MCSA, 4.3 103 for the CSA, measured the average diffusion coefficient. Therefore, Egs.
(1D (3), (5), and(10) have to be averaged in order to be compa-

10 rable with the experimental data of RE8]:

h
f D'"(z,h)dz

a
h 1
f dz
a
whereD''(z,h) is the parallel or perpendicular diffusion co-
efficient given by Eqs(3), (5), and(10), respectively.
The integral of Eq(12) has been solved numerically by

means of the Monte Carlo simulation. The values are ob-
tained from 100000 random steps that are required for a

(D")= (12)

<D,>/D,

smooth line:
0.0 : T :
0 10 20 30 N h
hia D[R(i)(——l +1
FIG. 5. Average perpendicular diffusion coefficient in a com- <D E >: =1 a (13)
parison of three models with experimental data taken from [Réf. a N '

The spheres fluctuate betweern-a and z=h. Solid line, LSA;
dotted line, CSA; short-dashed line, MCSA, solid dots, experimentsvhereR(i) is a random number between 0 and 1 &hid the
(a=0.11um); open squares, experiments=0.039um). number of random steps.
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TABLE |. Models used for the computations shown in Figs. 4—6.

Model Geometry Perpendicular diffusion Parallel diffusion
Single wall Eqgs(2) and(4a Egs.(2) and(4b)
Oseen Double wall Eqg1lb) and(2) Egs.(1a) and(2)
CSA Double wall Eqgs(2), (3), and(4a) Egs.(2), (3), and(4b)
LSA Double wall Eqgs(2), (5), and(4a) Egs.(2), (5), and(4b)
MCSA Double wall Eqgs(2), (10), and(4a Egs.(2), (10), and(4b)
Figure 5 shows that the average diffusion coefficient is IV. CONCLUSION AND SUMMARY

smaller than the diffusion coefficient at the midpldnd-ur- In this work. an equation based on the method of reflec-
thermore, one can see that the values predicted by the MCS{ ’ d

are between those predicted by the LSA and the CSA mo ion has been used for the computation of the perpendicular

els. A comparison with the experimental data of R and parallel diffusion coefficients in confinement. This equa-

: . : ion, a modification of the coherent superposition approxima-
shows that the model of this work predicts the experiments. . . )
more accurately than the other [:nodels. For t?]e Iarge%on (CSA), is referred to as the MCSA. Computations using

sphere(i.e., a=0.11um), values ofo? are 1.5%10 3 he MCSA have shown that the higher-order reflections are
v : . : ' less relevant when large spheres are suspended in small gaps.
3 3
tZHgle:goA ' f:;d elct9|\?(<all 0 Fl;orr ttf;:z MSCn?Sl,etrheSChSQ(égmd Furthermore, the reflection at the close wall dominates if the
a=0 039’ m) P 2 isy. 8.99<10 4 9.45¢ 10_p4 an.(;i sphere is placed asymmetrically in the gap. These effects
iy fé 7 ’ ’ ) ’ may be explained by the fact that the motion of a sphere
1.55x 10" ° for the MCSA, the CSA, and the LSA, respec-

. : depends on the distance between the surface of the sphere
tlvely._ Therefore, the MCSA more accurately predicts theand the wall and that higher-order reflections are hindered by
experimental data of Ref8].

Figure 6 compares the theoretical predictions obtained foIarge spheres. An additional factor in the MCSA corrects the

failure in describing the motion of a sphere with finite size
the parallel diffusion of a sphere placed at the midplargy : )
Oseen’s equation, the LSA, the CSA, and the MCSA with theby means of a stokeslet. Therefore, reflections on the oppo

experimental data of Ref4]. Analogous to the previous re- site site are negligible iti ~2~a>2-a, and higher-order
P : o 9 P . reflections are negligible fon/a— 1. Comparisons of vari-
sults, the influence of confinement on the parallel diffusion . X . .
- o . ; : . ous models with the experimental data of Lin, Yu, and Rice
coefficient diminishes in wide gaps. With a variance of

2.72<10" 3, the MCSA matches better with the experiments[4] and Lobry and Ostrowsi§8] have shown that the MCSA

of Lin, Yu, and Rice[4] than does the CSA approximation, Fr:gglg'[tie?eergii?iglc%%dzz well as parallel diffusion better
which has ao? of 3.87x10 3, or Oseen’s equation, which 9 '

has a o® of 6.49<10 3. However, with a o? of
2.27x10 3, the prediction of the LSA is still better than that
of the MCSA. The fact that Ref4] reports only 12 data Partial support for this research was provided by the Na-
points, however, suggests that more experimental data at@mnal Science FoundatidiGrant No. BES-9702356 to S)Y.
needed for a better comparison. As for the perpendicular difand by the Division of Chemical Sciences, Office of Basic
fusion, also in this measurement, one data point is very inEnergy Sciences, U.S. Department of Energy, under Contract
accurate. Excluding this point yieldsce of 1.36x 102 for No. DE-AC05-000R22725 with UT-Battelle, LLC. The au-
the MCSA, which is more accurate than & of 1.57 thors are also thankful to Dr. Marsha K. Savage for editing
x 103 for the LSA. the manuscript.
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