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Brownian motion in confinement
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This research modifies an earlier approach based on the single-wall reflection method to predict the perpen-
dicular and parallel diffusion coefficients of a Brownian sphere in confinement. The modified version provides
predictions that match experimental data reported in the literature more accurately than those provided by other
available models, including the linear superposition approximation, the coherent superposition approximation,
and Oseen’s equation.

DOI: 10.1103/PhysRevE.68.021401 PACS number~s!: 82.70.2y, 95.30.Lz, 81.05.2t, 81.05.Rm
ed

e
t-
ro
it
e
o
d

im
c

es
t

re

io
ig
th
w

x
g

if-

ee

-

lip
on

ow
n

n,

is

ent
fe

:

I. INTRODUCTION

Although the first investigations concerning confin
Brownian motion were performed a long time ago@1#, this
problem remains the subject of discussions@2,3#. The impor-
tance of understanding the motion of spheres in confinem
lies in its applicability to the description of particles migra
ing in porous media or near fluid-solid boundaries, mac
molecules diffusing in membranes, and cells interacting w
surfaces@4,5#. In addition to the influence of the wall on th
Brownian motion of particles, the hydrodynamic coupling
two colloidal spheres through a boundary has been foun
affect attractive interaction of the spheres@6,7#.

Recent advances in information processing power and
age processing by means of dynamic-light-scattering te
niques@8#, video microscopy@4,9#, and digital imaging@10#,
as well as controlled manipulation of colloidal spher
through optical tweezers@11,12#, have provided new insigh
into the influence of walls on the diffusion coefficient.

While the influence of a wall on the motion of a sphe
may be solved mathematically@1#, the effect of a second
boundary is still an open question. In 1923, Faxe´n developed
formulas describing the effects of a single wall on the mot
of a sphere and expanded these formulas to describe h
symmetric arrangements of two walls. Oseen suggested
the effects of two single walls be added, deriving the follo
ing equation@1#:
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wherea is the radius of the sphere,d is the width of the gap,
z is the center of the sphere-to-wall distance, andD i

II is the
parallel diffusion in confinement. Using the analogous e
pression for the motion of a sphere perpendicular to a sin
wall (D'

I ) @1#, Oseen’s equation, Eq.~1a!, originally derived
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for parallel diffusion, may be adapted for perpendicular d
fusion in confinement (D'

II ), as shown by Eq.~1b!,

D'
II

D0
512

9a

8 S 1

z
1

1

d2zD . ~1b!

In the equations above, the diffusion coefficient in fr
space,D0 , is given by the Stokes-Einstein formula

D05
kT

6pha
, ~2!

wherek is the Boltzmann constant,T is the absolute tempera
ture, andh is the viscosity of the fluid.

Integrating the solution of Liron and Mochon@13#, who
employed Blake’s treatment for the stokeslet in a no-s
boundary@14#, one obtains an accurate but unwieldy soluti
@9#. Dufresne, Altman, and Grier@9# obtained a solution for
cases in which the far-field contribution dominates the fl
at the boundary~i.e., where the radius is much smaller tha
the width!. Through extension of the single-wall reflectio
Lobry and Ostrowsky@8# derived the diffusion coefficient in
confinement that includes multiple reflections, which
given by
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Here, the diffusion coefficientD II for two walls represents
both cases, the perpendicular (D'

II ) and parallel (D i
II) diffu-

sion in confinement, and depends on the diffusion coeffici
in free spaceD0 , as defined by Eq.~3!, and the diffusion
coefficient for the single wallD I, which is given by Eq.~4a!
for perpendicular (D'

I ) and Eq. ~4b! for parallel (D i
I )

diffusion:

n,
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The variableu is used as a general transformation ofnd
1z, (n11)d2z, andnd. In this work, the model of Lobry
and Ostrowsky@8# is referred to as coherent superpositi
assumption~CSA!, as introduced by Lin, Yu, and Rice@4#.
These researchers showed the CSA to be less accurate
the linear superposition approximation~LSA! adopted by
Faucheux and Libchaber@10# and given by Eq.~5!:
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As before, Eq.~5! may be applied for either case, the pe
pendicular (D'

II ) or parallel (D i
II) diffusion in confinement, if

Eq. ~4a! or ~4b! is, respectively, inserted forD I and Eq.~3! is
inserted forD0 . The LSA, however, violates boundary co
ditions at both bounding surfaces@9#. Note that the drag
force F II and the diffusion coefficientD II are related by
F II /F05D0 /D II , so that similar equations may be derive
for the drag force. Both quantities have been used ex
sively in the literature@1,4,8,9,15#. This paper deals exclu
sively with the diffusion coefficient, since all available e
perimental data are in terms of this quantity. We revisited
experiments of Refs.@4,8#, and compared Oseen’s solutio
the LSA, and the CSA with a modified CSA~MCSA! solu-
tion @16#.

II. DERIVATION OF THE MODIFIED COHERENT
SUPERPOSITION APPROXIMATION

The diffusion coefficient for a sphere in confinement
derived by analogy to Lobry and Ostrowsky@8#, using the
method of reflections and assuming the motion of the sph
as a point force~‘‘stokeslet’’! shown in Fig. 1. The complete

FIG. 1. Motion of a sphere in confinement. The velocity fiel
as well as the reflections ofnth order are reflected at the left an
right boundaries and at the sphere.
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force is the sum of the point force and the reflections ofnth
order:

F II5Fp1Fp1p1Fp2p1Fp12p1Fp21p1¯ . ~6!

One can express the reflections by the single-wall reflecti
F I, which are given by Eq.~4! when the relationF/F0
5D0 /D is used:

Fp1p5F I~z!2F0 , Fp2p5F I~d2z!2F0 ,

Fp12p52F I~2d2z!1F0 , Fp21p52F I~d1z!1F0 ,

Fp121p5F I~2d1z!2F0 , Fp212p5F I~3d2z!2F0 ,

Fp1212p52F I~4d2z!1F0 ,

and

Fp2121p52F I~3d1z!1F0 . ~7!

The significant difference between the CSA and t
MCSA is the consideration of the sphere-wall distance in
higher-order terms. In Ref.@8#, the second reflections (Fp12p

and Fp21p) are taken into account as a particle placed a
distanced away from the original particle, the third reflec
tions ~i.e., Fp121p and Fp212p) as a particle placed at a dis
tancez1d away from the original particle, etc. Thus, on
obtains three series, as shown in Eq.~3!, in which the first
accounts for the odd reflections on the wall that is placed
a distancez away from the sphere, the second accounts
the odd reflections on the opposite side, and the third su
the even reflections. In the MCSA, the first reflections a
analogous to those of the CSA. However, it is assumed
after being reflected at the first wall, the velocity fie
spreads over the distanced between the two walls and then
reflected at the second wall and spreads over the distand
2z. Thus, the second reflection is considered as a reflec
of the motion of a sphere that is placed a distance 2d2z
away from the wall. Analogously, the second reflection of t
opposite wall is considered as the reflection of a sph
placed at distanced1z, as given by Eq.~7!. The higher-
order reflections, up to the fourth, are derived in an ana
gous way@16#. Therefore, the total force is given by
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In order to be comparable to Eqs.~1!, ~3!, and ~5!, Eq. ~8!
must be written in terms of diffusion coefficients through t
relationF/F05D0 /D:
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FIG. 2. Motion of a small
sphere and a large sphere in co
finement. The larger the sphere
the less possible are higher-ord
reflections.
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By using Eq. ~4a! or ~4b! for D I, Eq. ~9! may apply for
perpendicular (D'

II ) or parallel (D i
II) diffusion in confine-

ment.
Noting that the results of Lin, Yu, and Rice@4# show that

the higher-order terms are more relevant for largerh/a ratios
~i.e., small spheres in wide gaps with half-widthh!, while the
motion of a sphere in a small gap can be better describe
the LSA, one may assume that not the center-of-sphere
wall distance, but the shortest sphere-to-wall distance de
mines the diffusion in confinement. Figure 2 emphasizes
the sphere is a resistance that hinders the reflected w
from crossing the whole gap. Thus, the influence of
higher-order reflections diminishes with increasing sphere
ameter. This effect cannot be described by Eq.~9!, since the
equation is derived for a point force. To account for the fin
size of the sphere, empirical factors need to be introdu
that set the shortest distance of the sphere to wall into r
tion with the distance of the stokeslet as shown in Fig. 3. T
second-order reflections are reduced by the ratio between
shortest sphere-to-wall-distances and the center-of-spher
wall distances (z2a)/z and (2h2z2a)/(2h2z), and third-
order reflectionsFp121p andFp212p are reduced by the factor
02140
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(2h1z2a)/(2h1z) and (4h2z2a)/(4h2z). In the same
way, the nth-order reflections are reduced by@2(n21)h
1z2a#/@2(n11)h1z# and (2nh2z2a)/(2nh2z), re-
spectively.

On one hand, the higher-order terms become negligible
h/a→1, while on the other hand, Eq.~10! gives the theoret-
ical derivation, i.e., Eq.~9!, asa→0:
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The variablesD I, D II , andD0 are used in analogy to Eqs
n the
the ratio
FIG. 3. Reduction of the higher-order reflections through the finite size of the sphere. In~a!, one can see the first-order reflectionsFp1p

andFp2p and the second-order reflectionsFp12p andFp21p: the waves that are reflected on the wall may hit the sphere or reflect again o
opposite wall. The larger the radiusa, the less the chance is for the wave to pass the sphere. The second reflections are reduced by
between the shortest sphere-to-wall-distances and the center-of-sphere-to-wall distances (z2a)/z and (2h2z2a)/(2h2z). Because of the
same reason, the third-order reflectionsFp121p andFp212p are reduced by the factors (2h1z2a)/(2h1z) and (4h2z2a)/(4h2z).
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~3!, ~5!, and ~9! and may be adapted in the same way
perpendicular (D') or parallel diffusion (D i

II). The widthd
is replaced by the half-widthh, i.e., d52h.

III. RESULTS

The computations and measurements of Lin, Yu, and R
@4# for the perpendicular diffusion coefficient of a sphe
placed at the midplaneh of a gap are shown in Fig. 4. Th
equations used in the computations of Fig. 4, as well as F
5 and 6, are listed in Table I. The comparison of the mod
in Fig. 4 shows that the MCSA predicts the experimen
data of Lin, Yu, and Rice@4# for the perpendicular diffusion
much better than the CSA. The variances2 given by Eq.
~11! is 1.4831023 for the MCSA, 4.3131023 for the CSA,

FIG. 4. Perpendicular diffusion coefficient of a sphere that
placed atz5h as a function of the half-widthh of the gap. The
influence becomes negligible for gaps with half-widths that are
times larger than the radius. Solid line, LSA; dotted line, Osee
equation; short-dashed line, CSA; dashed-dotted line, MCSA; s
dots, experiments of Lin, Yu, and Rice~Ref. @4#!.

FIG. 5. Average perpendicular diffusion coefficient in a co
parison of three models with experimental data taken from Ref.@8#.
The spheres fluctuate betweenz5a and z5h. Solid line, LSA;
dotted line, CSA; short-dashed line, MCSA; solid dots, experime
(a50.11mm); open squares, experiments (a50.039mm).
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1.4431023 for the LSA, and 2.3631022 for Oseen’s equa-
tion:

s25
1

~N21!D0
2 (

n51

N

~Dexpt
II 2Dmodel

II !2. ~11!

Note that the largest error results from the second exp
mental point. Excluding this point yields as2 of
5.7731024 for the MCSA, which is more accurate than as2

of 1.0331023 for the LSA.
If the particle is free to move perpendicular to the wall,

will be located at any distancez from the wall that is between
the radius of the spherea and the gap half-widthh5d/2. To
account for these fluctuations, Lobry and Ostrowsky@8#
measured the average diffusion coefficient. Therefore, E
~3!, ~5!, and~10! have to be averaged in order to be comp
rable with the experimental data of Ref.@8#:

^D II&5

E
a

h

D II~z,h!dz

E
a

h

dz

, ~12!

whereD II(z,h) is the parallel or perpendicular diffusion co
efficient given by Eqs.~3!, ~5!, and~10!, respectively.

The integral of Eq.~12! has been solved numerically b
means of the Monte Carlo simulation. The values are
tained from 100 000 random steps that are required fo
smooth line:

K DS h

aD L 5

(
i 51

N

DFR~ i !S h

a
21D11G

N
, ~13!

whereR( i ) is a random number between 0 and 1 andN is the
number of random steps.

s

0
’s
id

ts

FIG. 6. Parallel diffusion coefficient of a sphere that is placed
z5h as a function of the half-widthh of the gap. The influence
becomes negligible for gaps with half-widths that are 20 tim
larger than the radius. Solid line, LSA; dotted line, Oseen’s eq
tion; short-dashed line, CSA; dashed-dotted line, MCSA; solid d
experiments of Lin, Yu, and Rice~Ref. @4#!.
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TABLE I. Models used for the computations shown in Figs. 4–6.

Model Geometry Perpendicular diffusion Parallel diffusion

Single wall Eqs.~2! and ~4a! Eqs.~2! and ~4b!

Oseen Double wall Eqs.~1b! and ~2! Eqs.~1a! and ~2!

CSA Double wall Eqs.~2!, ~3!, and~4a! Eqs.~2!, ~3!, and~4b!

LSA Double wall Eqs.~2!, ~5!, and~4a! Eqs.~2!, ~5!, and~4b!

MCSA Double wall Eqs.~2!, ~10!, and~4a! Eqs.~2!, ~10!, and~4b!
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Figure 5 shows that the average diffusion coefficient
smaller than the diffusion coefficient at the midplaneh. Fur-
thermore, one can see that the values predicted by the M
are between those predicted by the LSA and the CSA m
els. A comparison with the experimental data of Ref.@8#
shows that the model of this work predicts the experime
more accurately than the other models. For the lar
sphere~i.e., a50.11mm), values ofs2 are 1.5231023,
2.0131023, and 1.9531023 for the MCSA, the CSA, and
the LSA, respectively. For the smaller sphere~i.e.,
a50.039mm), s2 is 8.9931024, 9.4531024, and
1.5531023 for the MCSA, the CSA, and the LSA, respe
tively. Therefore, the MCSA more accurately predicts t
experimental data of Ref.@8#.

Figure 6 compares the theoretical predictions obtained
the parallel diffusion of a sphere placed at the midplaneh by
Oseen’s equation, the LSA, the CSA, and the MCSA with
experimental data of Ref.@4#. Analogous to the previous re
sults, the influence of confinement on the parallel diffus
coefficient diminishes in wide gaps. With a variance
2.7231023, the MCSA matches better with the experimen
of Lin, Yu, and Rice@4# than does the CSA approximation
which has as2 of 3.8731023, or Oseen’s equation, whic
has a s2 of 6.4931023. However, with a s2 of
2.2731023, the prediction of the LSA is still better than tha
of the MCSA. The fact that Ref.@4# reports only 12 data
points, however, suggests that more experimental data
needed for a better comparison. As for the perpendicular
fusion, also in this measurement, one data point is very
accurate. Excluding this point yields as2 of 1.3631023 for
the MCSA, which is more accurate than as2 of 1.57
31023 for the LSA.
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IV. CONCLUSION AND SUMMARY

In this work, an equation based on the method of refl
tion has been used for the computation of the perpendic
and parallel diffusion coefficients in confinement. This equ
tion, a modification of the coherent superposition approxim
tion ~CSA!, is referred to as the MCSA. Computations usi
the MCSA have shown that the higher-order reflections
less relevant when large spheres are suspended in small
Furthermore, the reflection at the close wall dominates if
sphere is placed asymmetrically in the gap. These effe
may be explained by the fact that the motion of a sph
depends on the distance between the surface of the sp
and the wall and that higher-order reflections are hindered
large spheres. An additional factor in the MCSA corrects
failure in describing the motion of a sphere with finite si
by means of a stokeslet. Therefore, reflections on the op
site site are negligible ifd2z2a@z2a, and higher-order
reflections are negligible forh/a→1. Comparisons of vari-
ous models with the experimental data of Lin, Yu, and R
@4# and Lobry and Ostrowsky@8# have shown that the MCSA
predicts perpendicular as well as parallel diffusion bet
than other existing models.
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