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Partially fluidized shear granular flows: Continuum theory and molecular dynamics simulations
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The continuum theory of partially fluidized shear granular flows is tested and calibrated using two-
dimensional soft particle molecular dynamics simulations. The theory is based on the relaxational dynamics of
the order parameter that describes the transition between static and flowing regimes of granular material. We
define the order parameter as a fraction of static contacts among all contacts between particles. We also propose
and verify by direct simulations the constitutive relation based on the splitting of the shear stress tensor into
a‘‘fluid part’’ proportional to the strain rate tensor, and a remaining ‘‘solid part.’’ The ratio of these two parts
is a function of the order parameter. The rheology of the fluid component agrees well with the kinetic theory
of granular fluids even in the dense regime. Based on the hysteretic bifurcation diagram for a thin shear
granular layer obtained in simulations, we construct the ‘‘free energy’’ for the order parameter. The theory
calibrated using numerical experiments with the thin granular layer is applied to the surface-driven stationary
two-dimensional granular flows in a thick granular layer under gravity.

DOI: 10.1103/PhysRevE.68.021301 PACS number~s!: 45.70.Cc, 46.55.1d, 46.25.2y
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I. INTRODUCTION

In the last few years there have been many experime
@1–7# and theoretical@8–14# studies that explored a broa
range of granular flow conditions from rapid dilute flows
slow dense flows, as well as the details of the shear-dri
fluidization transition. While dilute granular flows can b
well described by the kinetic theory of dissipative granu
gases@15#, dense granular flows still present significant d
ficulty in formulation of a continuous theory. In Ref.@16#,
Savage proposed a continuum theory for slow dense gran
flows based on the so-called associated flow rule that rel
the strain rate and the shear stress in plastic frictional
tems. Averaging strain rate fluctuations yields a Bingha
like constitutive relation in which the shear stress has visc
as well as strain-rate independent parts. According to
theory, the stress and strain rate tensors are always co
and, furthermore, it also postulates that the viscosity diver
as the density approaches close packing limit. Losertet al.
@3# ~see also Ref.@17#! proposed a similar hydrodynami
model based on a Newtonian stress-strain constitutive r
tion with density dependent viscosity without strain-ra
independent component. As observed in Ref.@3#, the ratio of
the full shear stress to the strain rate diverges at the fluid
tion threshold. This was also interpreted in Ref.@3# as a
divergence of the viscosity coefficient when the volume fr
tion approaches the randomly packed limit. This descript
works only in a fluidized state and cannot properly acco
for hysteretic phenomena in which static and fluidized sta
coexist under the same external load such as stick-slip o
lations @2#, avalanching@6#, or shear band formation.

In many granular flows of interest static and dynamic
gions coexist under the same external load conditions.
amples of such hysteretic phenomena include stick-slip
cillations @2#, avalanching@6#, or shear band formation. Thi
calls for a unified theory which would be applicable both
the flowing regime and in the static regime.

In our recent papers@18,19# we proposed a different ap
1063-651X/2003/68~2!/021301~15!/$20.00 68 0213
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proach based on the order parameter description of
granular matter. The value of the order parameter spec
the ratio between static and fluid parts of the stress ten
The order parameter was assumed to obey dissipative
namics governed by a free energy functional with two lo
minima. This description based on the separation of st
and fluid components of the shear stress, calls for an alte
tive definition of viscosity as a ratio of thefluid part of the
shear stress to the strain rate. Since the fluid shear s
vanishes together with the strain rate, the viscosity coe
cient in our theory is expected to remain finite at the flui
zation threshold. We assumed the simplest Newtonian f
tion law, so the viscosity coefficient is a constant. This mo
yielded a good qualitative description of many phenome
occurring in granular flows, such as hysteretic transition
chute flow, stick-slip regime of a driven near-surface flo
structure of avalanches in shallow chute flows, etc.

However, several important issues have not been
dressed: mesoscopic definition of the order parameter, q
titative specification of the order parameter dynamics and
constitutive relation. In this paper we set out to perform tw
dimensional ~2D! molecular dynamics~MD! simulations,
which should provide us with the way to achieve these go
We classify all contacts as either ‘‘fluidlike’’ or ‘‘solidlike’’
and define the order parameter as a mesoscopic space
average fraction of solidlike contacts. Using this order p
rameter we obtain the constitutive relation and the rel
ational dynamics of the order parameter directly from sim
lations of granular flow in a thin Couette geometry at ze
gravity. Preliminary account of our results is presented
Ref. @20#.

The paper is organized as follows. Section II outlines
standard granular hydrodynamics theory based on the kin
theory of dissipative granular gases. Sec. III introduces
continuum description of partially fluidized flows based
the relaxational dynamics of the order parameter. In Sec
we describe our 2D molecular dynamics simulations and
fine measurement protocol for the order parameter and fl
©2003 The American Physical Society01-1
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and solid components of the stress tensor. In Sec. V we s
the Couette flow in a thin granular layer to obtain the fr
energy controlling the relaxational order parameter dynam
and to extract the constitutive relations. In Sec. VI the o
tained set of equations is used to calculate the stress
velocity distributions in adifferent system, a thick granula
layer under nonzero gravity driven by a moving heavy up
plate.

II. GRANULAR HYDRODYNAMICS

In this section we outline the standard continuum desc
tion of granular flows based on continuity equations
mass, momentum, and fluctuation kinetic energy~or ‘‘granu-
lar temperature’’!. This description is usually applied to d
lute granular gases where it can be rigorously derived fr
the kinetic theory@15#, although slightly modified hydrody
namics based on kinetic theory often works reasonably w
for relatively dense flows, even though the kinetic theo
itself is not applicable to these conditions.

The mass, momentum, and energy conservation equa
have the usual form

Dn

Dt
52n“•u, ~1!

n
Du

Dt
52“•s1ng, ~2!

n
DT

Dt
52s:ġ2“•q2«, ~3!

where n is the density,u is the velocity field,T5(^u2&
2^u&2)/2 is the granular temperature,D/Dt5] t1(u•“) is
the material derivative,g is the gravity acceleration,sab is
the stress tensor,q is the energy flux vector,ġab5]aub
1]bua is the strain rate tensor, and« is the energy dissipa
tion rate.

These three equations have to be supplemented by
constitutive relations for the stress tensors, energy fluxq,
and the energy dissipation rate«. For dilute systems, a linea
relations between stresss and strain rateġ is obtained,

sab5@p1~m2l!Tr ġ#dab2mġab , ~4!

q52k¹T. ~5!

In the kinetic theory of granular gases@15#, these equations
are closed with the following equation of state

p5
4nT

pd2
@11~11e!G~n!#, ~6!

and the expressions for the shear and bulk viscosities

m5
nT1/2

2p1/2dG~n!
F112G~n!1S 11

8

p DG~n!2G , ~7!
02130
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8nG~n!T1/2

p3/2d
, ~8!

the thermal conductivity

k5
2nT1/2

p1/2dG~n!
F113G~n!1S 9

4
1

4

p DG~n!2G , ~9!

and the energy dissipation rate

«5
16nG~n!T3/2

p3/2d3
~12e2!. ~10!

Here 0,e,1 is restitution coefficient andd is particle di-
ameter. The functionG(n) which enters these relations is th
spatial particle-particle correlation function, and for a dilu
2D gas of elastic hard disks was derived by Carnahan
Starling @21#,

GCS~n!5
n~127n/16!

~12n!2
. ~11!

This formula is expected to work for densities roughly belo
0.7. For high density granular gases, this function has b
calculated using free volume theory@22#,

GFV5
1

~11e!@~nc /n!1/221#
, ~12!

wherenc'0.82 is the density of the random close packi
limit. Luding @24# proposed a global fit

GL5GCS1$11exp@2~n2n0!/m0#%21~GFV2GCS!
~13!

with empirically fitted parametersn0'0.7 andm0'1022.
However, even with this extension, the continuum theo
comprising of Eqs.~1!–~10! cannot describe the force chain
that transmit stress via persistent contacts remaining in
dense granular flows, as well as the transition from solid
static regimes and coexisting solid and fluid phases.

III. ORDER PARAMETER DESCRIPTION OF PARTIALLY
FLUIDIZED GRANULAR FLOWS

In this section we review briefly our continuum theo
@18,19# that provides an alternative approach to the formu
tion of the constitutive relations in partially fluidized gran
lar flows. In the dense flow regime, the granular matter c
be considered incompressible, so Eq.~1! can be replaced by
“•u50 and the densityn5nc . This also allows us to drop
the energy equation~3! and the equation of state~6!, as for
n→nc , G(n)→`, andT→0, so thatG(n)T→const. This,
of course, leads to the familiar divergence of the viscos
coefficientm}G(n)T1/2.

Next, we separate the stress tensors into two parts, a
static ~contact! part ss, and a fluid partsf . The latter is
assumed to take a purely Newtonian form
1-2
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sab
f 5pfdab2m f ġab , ~14!

wherepf is the ‘‘partial’’ fluid pressure,m f is the viscosity
coefficient associated with the fluid stress tensor, which
different from m introduced for the full stress tensor. As w
shall see in the following, unlikem, m f doesnot diverge as
n→nc . In our original model@18,19# we simply assumed
m f5const.

We postulated@25# that the fluid part of the off-diagona
components of the stress tensor is proportional to the
diagonal components of the full stress tensor with the p
portionality coefficient being a function of the order para
eterr,

syx
f 5q~r!syx . ~15!

This assumption stipulates the equation for the static par
the off-diagonal stress components,

syx
s 5@12q~r!#syx . ~16!

Both fluid and solid parts of the stress tensor are assu
symmetric,syx

f ,s5sxy
f ,s . This assumption is confirmed by ou

numerical simulations~see below!. We choose a fixed rang
for the order parameter such that it is 0 in a complet
fluidized state and 1 in a completely static regime. Thus,
function q(r) has the propertyq(0)51, q(1)50. In Refs.
@18,19# for simplicity we tookq(r)512r.

A similar relationship can be postulated for the diago
terms of the stress tensor,

sxx
f 5qx~r!sxx , syy

f 5qy~r!syy , ~17!

sxx
s 5@12qx~r!#sxx , syy

s 5@12qy~r!#syy , ~18!

where the scaling functionsqx,y(r) can differ fromq(r).
Combining Eqs.~14!–~18!, we obtain the constitutive re

lation in the closed form,

sab5pfdab /qa~r!2m f ġab /q~r!, ~19!

wherea,bP$x,y%.
The order parameter itself was not related to any mic

scopic properties of granular assemblies in Refs.@18,19#. We
simply assumed that because of strong dissipation in de
granular flows it has purely relaxational dynamics control
by the Ginzburg-Landau equation,

Dr

Dt
5D¹2r2

]F~r!

]r
. ~20!

HereD is the diffusion coefficient andF(r) is the free en-
ergy density, which was assumed to have a quartic poly
mial form to account for the bistability near the solid-flu
transition:

F~r!5Er

r~r21!~r2d!dr. ~21!
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The control parameterd is determined by the stress tenso
which in Ref. @18,19# was taken to be a linear function o
f5maxusmn/snnu, where the maximum is sought over a
possible orthogonal directionsm andn. It is easy to see tha
in the interval 0,d,1, Eq. ~20! has two stable uniform
solutionsr50,1 corresponding to fluid and solid states a
one unstable solutionr5d.

Momentum conservation equation~2! together with Eqs.
~19!–~21! represent a closed set of continuous equatio
which, after being augmented by appropriate boundary c
ditions, can describe a variety of interesting granular flo
such as avalanches in thin chute flows, drum flows, stick-
oscillation in surface-driven flows,@18,19#. Since a rigorous
derivation of the continuum model of dense partially flui
ized flows from first principles does not seem feasible,
assumptions madead hoc in the formulation of model~2!
Eqs.~19!–~21! have to be checked against available expe
mental and/or numerical data. Unfortunately, it appears to
extremely difficult to directly measure the order paramete
the bulk of granular material, as it is determined by sub
changes in the contact fabric. In this paper we attemp
extract the properties of the order parameter from molec
dynamics simulations and on this basis make a quantita
fit of the order parameter model.

IV. MOLECULAR DYNAMICS SIMULATIONS

To model the interaction of individual grains we use t
so-called soft-contact approach. The grains are assume
be noncohesive, dry, inelastic disklike particles. Two gra
interact via normal and shear forces whenever they over
For the normal impact we employspring-dashpotmodel@9#.
This model accounts for repulsion and dissipation; the rep
sive component is proportional to the degree of the over
and the velocity dependent damping component simula
the dissipation. The model for shear force is based upon
technique developed by Cundall and Strack@26#. It incorpo-
rates tangential elasticity and Coulomb laws of friction. T
elastic restoring force is proportional to the integrated t
gential displacement during the contact and limited by
product of the friction coefficient and the instantaneous n
mal force. The grains possess two translational and one
tational degrees of freedom. The motion of a grain is o
tained by integrating Newton’s equations with the forces a
torques produced by its interactions with all the neighbor
grains and walls of the container.

Consider a graini of radiusRi located atr i moving with
translational velocityvi and angular velocityv i . This grain
is in contact with grainj whenever overlapdn5Ri1Rj

2ur i2r i u.0. The relative velocity at the contact point an
its normal and tangent components are given by

vi j 5vi2vj1~Riv i1Rjv j !t i j , ~22!

vn5~vi2vj !ni j , v t5~vi2vj !t i j 1~Riv i1Rjv j !,
~23!

whereni j 5(r i2r i)/r i j 5(nx ,ny) is the inward normal to the
surface ofi at the contact point withj, and the direction of
the tangentt i j 5(ny ,2nx) is chosen so thatt i j 3ni j is colin-
1-3
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VOLFSON, TSIMRING, AND ARANSON PHYSICAL REVIEW E68, 021301 ~2003!
ear with the angular velocity. Then the graini is subjected to
the contact force due to the interaction withj with normal
and tangential components

Fn5kndn22gnmevn , ~24!

Ft52sign~d t!min~ uktd tu,um tFnu!, d t~ t !5E
t0

t

v t~t!dt,

~25!

wherekn,t are the corresponding spring constants,gn is the
normal damping coefficient,me5mimj /(mi1mj ) is the re-
duced mass,m t is coefficient of friction, andd t is tangential
displacement since the momentt0 of the initial contact be-
tween i and j. When the static yield criterion Eq.~25! is
satisfied, the magnitude ofd t is adjusted to an instantaneou
equilibrium value providingFt5m tFn . According to the
analytical solution of the linear spring-dashpot model,
coefficient of restitution and the duration of heads-on co
sion aree5exp(2gntc), tc5p/(kn /me2gn

2)1/2.
The advantages and limitations of the employed con

force model were thoroughly studied by a number of auth
@9,8,10#. In fact, this is the simplest model that allows us
account for both static and dynamic friction.

When all forces acting on graini from other grains,
boundaries, and perhaps external fields are computed
problem is reduced to the integration of Newton’s equatio
for translational and rotational degrees of freedom,

mi
d2r i

dt2
5mig1(

c
Fic, ~26!

I i
dv i

dt
5Ri(

c
Ft

ic , ~27!

where the mass of particlei is denoted bymi and its moment
of inertia isI i51/2miRi2, g stands for an external gravity
field, and the sums in Eqs.~26! and~27! run over all contacts
of particle i.

The results of the simulations reported here are prese
in dimensionless form. All quantities are normalized by
appropriate combination of the average particle diameted,
massm, and gravityg.

Equations~26! and ~27! were integrated using the fifth
order predictor-corrector@27# with a constant time stepdt.
The spring constantkn and damping coefficientgn were cho-
sen to provide the desired value of the restitution coeffici
e and guarantee an accurate resolution of an individual
lision. Typically, we usede50.92, dt51024, tc550dt, kn
52.03105, gn516.7, kt51/3kn .

The computational domain spansLx3Ly area, and is pe-
riodic in horizontal directionx. Unless otherwise mentioned
the granulate is slightly polydisperse to avoid crystallizat
effects@8#. We assume that the grain diameters are uniform
distributed around mean with relative widthD r . To provide a
link between micromechanical quantities obtained throu
simulations and continuous fields, we define the followi
coarse-graining procedure. Since all experiments descr
02130
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below deal with steady quantities, the procedure consist
two steps: space and then time averaging. The space av
ing of a fieldx is performed over horizontal bins~along the
flow direction! of size Vb'Lx31 and is denoted aŝx& in
the following. Contributions of those particles that only pa
tially belong to a certain bin are weighted by the fraction
their area. After a simulation has reached a steady state
stantaneous profiles are averaged over a suitable numb
time snapshots. We shall denote the time averaging withx̄.

For example, steady solid fraction profile is given by

n~y!5^n~y,t !&, ^n~y,t !&5Vb
21 (

i PVb

wi~y!Vi , ~28!

where the summation runs over grains at least partially i
bin Vb centered aty, Vi is the area of graini, andwi(y) is a
corresponding fraction of a grain’s area withinVb . The
coarse-grained velocity field is

u~y!5^u~y,t !&,

^u~y,t !&5n~y,t !21^vi~y,t !&

5n~y,t !21Vb
21 (

i PVb

wi~y!Vivi . ~29!

For simplicity, we extend the space-time averaging techni
described above for other quantities, such as the stress te

sab~y!5^sab~y,t !&,

^sab~y,t !&5K 1

2 (
cÞ i

r a
icFb

icL 1^mi ṽa
i ṽb

i &, ~30!

where a,b5$x,y%, r a
ic5r ic

•ea , Fb
ic5Ficeb , ṽa

i 5va
i

2^va
i &. The stress tensor in Eq.~30! has two distinct com-

ponents. The first one—virial or contact—describes pairw
interactions of grains. The second one—kinetic
Reynolds—is due to velocity fluctuations.

A. Order parameter for granular fluidization:
Static contacts vs fluid contacts

At any moment of time all contacts are classified as eit
‘‘fluid’’ or ‘‘solid.’’ A contact is considered ‘‘solid’’ if it is in
a stuck state (Ft,m tFn) and its duration is longer than
typical time of collisiont* . The first requirement eliminate
long-lasting sliding contacts, and the second requirement
cludes short-term collisions pertinent for completely flui
ized regimes. We choose a typical collision to lastt*
51.1tc . When either of the requirements is not fulfilled, th
contact is assumed ‘‘fluid.’’

We define the order parameter as the ratio between sp
time averaged numbers of ‘‘solid’’ contacts^Zs& and all con-
tacts^Z& within a sampling area@23#,

r~y!5^Zs
i &/^Zi&. ~31!
1-4
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This definition endures at least two limiting cases: wh
granulate is in a static state and when it is strongly agita
i.e., completely fluidized. In fact, in the former quiesce
state all contacts are stuck andr51. In the fluidized case
^Zs& is 0 and^Z& is small but finite, thereforer50.

Let us note that the order parameterr just introduced is
expected to be as sensitive to the degree of fluidization as
stress tensor. A small rearrangement of the force netw
may result in strong fluctuations of either field, while su
quantities as the solid fraction or granular temperature
remain virtually constant. It is known that granular agg
gates exhibit rigidity phase transition near the critical volu
fraction nc @11#. When the volume fraction is near or abov
nc , the granular material has elastoplastic rheology and
low this critical value it behaves as a fluid. Near and abo
the critical volume fraction for the same boundary conditio
the granular aggregate may exhibit either slow creeping fl
solid-like behavior, or both. The latter case, known as sti
slip phenomenon, is observed both experimentally and
merically @2,11,28#. In an experiment under constant volum
boundary conditions, a series of stick-slip events occur w
out a significant change in the solid fraction, which is inse
sitive to global rearrangements relieving the accumula
stress. We expect the order parameter to be able to re
such rearrangements and ultimately describe the corresp
ing phase transition.

B. Stress tensor

The full stress tensor~30! consists of a contact~virial!
part and the Reynolds part. In turn, the contact stress te
can be split into the ‘‘solid contact’’ componentss and the
‘‘fluid contact’’ components f in the same fashion as wa
done with contacts themselves. Combining the ‘‘fluid co
tact’’ component with the Reynolds stress, we obtain the
stress tensor as a sum of two parts

s5s f1ss, ~32!

sab
s 5 K 1

2 ( 8
c

r a
c Fb

c L ,

sab
f 5sab

f c 1sab
R 5 K 1

2 ( 9
c

r a
c Fb

c L 1^mi ṽaṽb&, ~33!

where summation in(8 and (9 is restricted to ‘‘solid’’ and
‘‘fluid’’ contacts, respectively.

The ‘‘fluid’’ part of the stress tensor is due to short-ter
collisional stresses and the Reynolds stresses, wherea
solid part accounts for persistent force chains. The Reyn
contribution to the stress is negligibly small in the vicinity
the phase transition, but comes into play when the gran
aggregate is highly fluidized. In the system, which is neit
completely rigid nor completely fluidized we expect the c
existence~in time and space! of both phases. A particula
grain may have both types of contacts at the same time,
contributing to boths f andss. This picture is reminiscent o
the concept of bimodal character of stress transmissio
static contact network introduced by Radjaiet al. @29,30#.
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V. TESTBED SYSTEM: COUETTE FLOW
IN A THIN GRANULAR LAYER

A. Bifurcation diagram

We studied the fluidization transition in a thin (50310)
granular layer between two ‘‘rough plates’’ under fixed pre
sureP and zero gravity conditions~Fig. 1!. The parameters
of simulations werem t50.5, e50.92, D r50.2, kn52
3105, kt /kn51/3, gn516.7. We used the same material p
rameters of grains throughout this section. The rough pla
were simulated by two straight chains of large grains~twice
as large as an average particle diameter! glued together. The
layer was chosen narrow enough, so the properties of
granular layer~shear rate, shear stress components, order
rameter, etc.! in the absence of gravity were approximate
constant across the layer within 10% accuracy. Two oppo
forcesF152F2 were applied to the plates along the ho
zontal x axis to induce shear stress in the bulk. We star
with weak forces not sufficient to initiate a shear flow a
slowly ramped them up in small increments well above
critical yield force at which the granular flow started. Afte
that we ramped the shear forces down until the granular la
was jammed again. At every ‘‘stop’’ we measured all stre
components, strain rate, and the order parameter, and a
aged the data over the whole layer and over time of e
step. Figure 2 shows the strain rateġ ~we drop subscriptsyx

FIG. 2. ~Color online! The strain rate~a! and the order param
eter~b! vs shear stress in a thin Couette geometry of Fig. 1 with 5
particles (10350) atP540.

FIG. 1. ~Color online! Sketch of the granular shear flow mode
1-5
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at the strain rate! and the order parameterr as functions of
the shear stresssyx , which is approximated by the applie
force F normalized by the layer lengthLx , for P540. As it
is to be expected, the strain rate remains 0, and the o
parameter is one until the shear stress reaches a certain
cal values1'12.6. This value differs slightly for differen
runs because of the finite system size and absence of
averaging in the static regime. Above the yield stress,
strain rate abruptly jumps to a finite value'0.35, and the
order parameter drops to'0.15. At largerusyxu, the strain
rate increases faster than it does linearly, and the order
rameter rapidly approaches 0. The return curve correspo
ing to the diminishing of the shear stress follows roughly
same path, and then continues to another~smaller! value of
the shear stress (s2'9.4). At this value the layer jams, th
strain rate returns to 0, and the order parameter jumps b
to 1.

The most striking feature of this figure is the hystere
behavior of both the strain rate and the order parameter
function of the shear stress. This hysteresis was anticip
in our order-parameter model@18,19#; however, now we are
in a position to fit the model equations quantitatively. W
repeated these simulations at several different values of
compressing pressureP. Data for different pressure values
the flow regime fall onto the same universal curve if o
normalizes the shear stress by the pressure~see Fig. 3!. As-
suming that there is an~unobserved! unstable branch of the

FIG. 3. ~Color online! The order parameter as a function of th
normalized shear stress in a thin Couette geometry.
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bifurcation diagram, which merges with the stable branch
d'0.26, we can make a simple analytic fit of this curve

F~r,d!5~12r!$r222r* r1r
*
2 exp@2A~d22d

*
2 !#%50

~34!

with r* 50.6,A525,d* 50.26 ~see Fig. 3, line! and use it in
the polynomial expansion of the free energy density wh
enters the order parameter equation~20!:

F~r!5Er

F~r,d!dr. ~35!

We also measured the density and the granular temp
ture of the grains as we decreased the shear force. T
measurements could only be performed in the ranger
,0.55 since for largerr the partially fluidized state is un
stable. Note that the density of grains stays almost cons
in a wide range of the order parameterr.0.1 @see Fig. 4~a!#.
The granular temperature~which is defined asT5^ũi ũi&/2)
normalized by the applied pressureP appears to be a uniqu
function of the order parameter@Fig. 4~b!#.

B. Relaxation dynamics of the order parameter

We probed the relaxation dynamics of the order param
by performing the following numerical experiment. Th
granular layer was prepared as in the preceding section.
eral shear forces were increased adiabatically until the gra
lar system reached a metastable solid~jammed! state within a
hysteretic region. Then the layer was perturbed by apply
random forces to a small randomly selected fraction of p
ticles. The dynamics of the order parameter varies depen
on the magnitude of the perturbation. Figure 5 shows
example of the evolution from the same jammed state
two different magnitudes of initial perturbation. Interesting
the relaxation back to the jammed state is very fast, wher
the relaxation toward stable shear flow is much slower.
believe that it has to do with inertia of grains and the upp
plate, so the intrinsic time scale of the order parameter re
ation is rather small,O(1).

Unfortunately, our thin Couette flow system does not
low us to probe the local coupling of the order parame
for
FIG. 4. ~Color online! The density~a! and the normalized granular temperature~b! vs the order parameter in a thin Couette geometry
three different values of pressureP.
1-6
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PARTIALLY FLUIDIZED SHEAR GRANULAR FLOWS: . . . PHYSICAL REVIEW E 68, 021301 ~2003!
since the order parameter is uniformly distributed through
the system. In the absence of this data, this coupling
modeled by the linear diffusion term in Eq.~20! with the
constant diffusion coefficient. As we will see in the followin
section, this approximation indeed provides a good desc
tion for spatiallynonuniformnear-surface flow; however, th
value of the diffusion coefficient appears to be a function
local stress.

C. Fitting the constitutive relation

The next step is to fit the constitutive relation from M
simulations. To this end, we use the same Couette flow si
lations, but now we analyze the ‘‘fluid stress’’sab

f and the
‘‘static stress’’sab

s separately during our ramp-down sim
lations at three different values ofP. Figure 6 shows a
sample of these data forP530. At larged5F/(LxP), when
the order parameterr is low, the total stress is dominated b
the fluid component, but as the flow stops andr approaches
unity, the fluid stress turns to 0, and the total stress is equ
the static stress. Plottingsyx

f /syx as a function of the orde
parameterr for differentP @Figure 7~a!#, we observe that al
data collapse onto a single curve, which is well fitted
q(r)5(12r)2.5. The lines in Fig. 6 show the fit of the fluid
and static stress tensors using Eqs.~15! and ~16! with q(r)
5(12r)2.5.

FIG. 5. ~Color online! Relaxation of the order parameter to
wards shear flow~solid line! and jammed state~dashed line! for two
different initial perturbations in a thin Couette system of 500 p
ticles with P540, syx5212.
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The fluid as well as solid parts of the stress tensor
nearly symmetric,syx

f ,s5sxy
f ,s , so the ratiosxy

f /sxy is de-
scribed by the same scaling functionq(r). On the other
hand, the same procedure for the diagonal elements of
stress tensor yields a noticeably different scaling@see Fig.
7~b!#. Furthermore, a small but noticeable difference is e
dent betweensxx

f /sxx and syy
f /syy . More detailed analysis

shows that, in fact, fluid parts of the diagonal components
the stress tensorsxx

f and syy
f are nearly identical, and the

difference is due to the solid part of the normal stresses~see
Fig. 8!. This observation is consistent with the fact that t
diagonal terms of the static stress tensor are determine
the details of the external loading. On the other hand, i
completely fluidized state the diagonal terms are all equa
the hydrodynamic pressurepf @31#. In a partially fluidized
regime, the diagonal terms of the shear stress can be
pressed as

sxx5pf /qx~r!, syy5pf /qy~r!. ~36!

-

FIG. 6. ~Color online! Fluid and static components of the she
stress in a thin granular layer (10350) at external pressureP530
as a function of normalized external shear stressd5F/(LxP): di-
rect calculation~points!, obtained from total stress using relation
Eqs.~15! and ~16! with q(r)5(12r)2.5 ~lines!.
-

FIG. 7. ~Color online! Ratios of the fluid stress components to the corresponding full stress componentssab

f /sab vs r for three different
pressuresP: ~a! shear stress components, closed symbolssyx , open symbolssxy , line is a fit q(r)5(12r)2.5; ~b! normal stress compo
nents, closed symbolssxx , open symbolssyy , lines are the fitsqx(r)5(12r)1.9, qy(r)5(12r1.2)1.9.
1-7
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VOLFSON, TSIMRING, AND ARANSON PHYSICAL REVIEW E68, 021301 ~2003!
Both functionsqx,y(r) should approach 1 asr→0 ~the nor-
mal stresses should be equal in the fluid state!, but they may
have different functional form to reflect the anisotropy of t
static stress tensor. In our simple Couette flow, the diago
stress tensor components can be well fitted byqx(r)'(1
2r)1.9 and qy(r)'(12r1.2)1.9 @see Fig. 7~b!#. So we ob-
serve that even in a partially fluidized regime, the ‘‘flu
phase’’ component indeed behaves as a real fluid with a w
behaved ‘‘partial’’ pressurepf which is zero in a solid state a
r51 and is becoming the full pressure in a completely fl
idized stater50.

Plotting the fluid shear stress versus the strain rate, we
test the validity of the Newtonian model for the stress-str
relation ~14!. Figure 9 shows2syx

f vs ġ for three different

pressuresP520,30,40. At smallġ all three lines are close to
the same straight linesyx

f 512ġ, which indicates that the
Newtonian scaling for fluid shear stress holds reasona
well. The deviations at largeġ are evidently caused by varia

FIG. 8. ~Color online! Diagonal stress components~fluid, solid,
and total! in a thin granular layer (10350) at external pressureP
530 as a function of external shear stressF/Lx normalized by the
external pressureP.
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tions of temperature and density in the dilute regime. N
that in contrast, the full shear stress does not goes to

ġ→0 @see Fig. 9~b!#, so a viscosity coefficient convention
ally defined as the ratio of the full shear stress to the str
rate diverges at the fluidization threshold as observed in R
@3#.

Combining the Newtonian law for the fluid stress-stra
dependence with the order parameter scaling of the fl
stress tensor, we arrive at the relationship between the
stress tensor and the strain rate tensor~19! with m f512,
qx(r)5(12r)1.9, qy(r)5(12r1.2)1.9, q(r)5(12r)2.5.

D. Toward dilute granular flows—granular temperature
revisited

While the above fittings have been made for the regime
a slow dense flow withn→nc , it is tempting to generalize
the theoretical model so that it smoothly crosses over to
standard kinetic continuum theory~1!–~10! for r→0. This
goal can be achieved by including the equation of state~6!
and the equation for the granular temperature~3! back into
the theory. The important difference with respect to the st
dard kinetic theory is that the pressure, which we calcul
with Eq. ~6!, is not the total pressure, but the partial press
associated with the fluid part of the stress tensor. Of cou
as r→0, the static part of the stress tensor disappears,
the partial pressure becomes the total pressure.

We can test the relevance of this combined approach
calculating the spatial correlation functionG(n)5(1
1e)21@pd2pf /4nT21# with the values of fluid pressurepf ,
temperatureT and densityn calculated in our testbed Couet
flow at different external pressuresP and comparing it with
the theoretical functionsGCS(n),GCS(n),GL(n) @Eqs.~11!–
~13!#. Figure 10 shows that the Carnahan-Sterling form
works very well in the dilute rangen,0.67 as expected. In
the high density regimeG(n) approaches the free volum
result ~12!, and the overall dependence is in agreement w
the global interpolationGL(n) by Luding @24#.
FIG. 9. ~Color online! Stress-strain rate relation for a thin granular Couette flow at three different external pressures:~a! fluid shear stress

vs strain rate, the straight line is a constant viscosity fits f512ġ; inset: scaled fluid shear stressm f
21syx

f as a function ofġ; ~b! full shear
stress vs strain rate.
1-8
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PARTIALLY FLUIDIZED SHEAR GRANULAR FLOWS: . . . PHYSICAL REVIEW E 68, 021301 ~2003!
We can carry this analysis one step further and test
kinetic theory prediction for the shear viscosity. If we sca
syx

f by the shear viscosity calculated using kinetic formu
~7! with globally fitted correlation functionGL(n) and actual
temperature and density values from corresponding runs
three lines in Fig. 9~a! collapse onto the same straight lin
dependencem f

21syx
f 5ġ @see Fig. 9~a!, inset#.

One more test of the kinetic theory predictions can
performed by analyzing the granular temperature as a fu
tion of the shear strain rate. According to Ref.@16#, T1/2

5Aġ for a plane parallel shear flow whereA is a material
constant weakly dependent on volume fraction. Our num
cal data for three different external pressures shown in
11, are consistent with this scaling law although small dev
tions can be observed at smallġ.

We have not done a similar comparison for the bulk v
cosity, thermal conductivity, and the energy loss; howev

FIG. 10. ~Color online! Particle-particle correlation function
G(n) calculated via equation of state~6! using the values of fluid
pressure, temperature, and density in a thin granular Couette flo
three different external pressures. Inset: the same data in a sem
scale

FIG. 11. ~Color online! Granular temperature as a function
strain rate in a thin granular Couette flow at three different exte
pressures.
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the presented data strongly suggest that the constitutive
tions for thefluid part of the stress tensor are well describ
by the standard granular hydrodynamics.

E. Order parameter description of partially fluidized
granular flows—take 2

Let us summarize the equations of the continuum the
as specified on the basis of the 2D molecular dynamics si
lation of the thin Couette flow.

The mass, momentum, and energy conservation co
tions are expressed by Eqs.~1!–~3!. The order paramete
equation now has the form

Dr

Dt
5D¹2r2~r21!$r222r* r1r

*
2 exp@2A~d22d

*
2 !#%

~37!

with r* 50.6, d* 50.26, A525. As mentioned before, fo
the lack of simulation data, we assume linear diffusion co
pling of the order parameter with a constant nondimensio
diffusion coefficientD. The constitutive relation now reads

sab5@pf /qa~r!1~m f2l f !Tr ġ/q~r!#dab2m f ġab /q~r!
~38!

with qx(r)5(12r)1.9, qy(r)5(12r1.2)1.9, q(r)5(1
2r)2.5.

The equation of state and expressions for viscosity, th
moconductivity, and the energy dissipation have the sa
functional form as Eqs.~6!–~10!, but they are now written
for the ‘‘fluid’’ parameterspf , m f , l f , and«.

VI. SURFACE-DRIVEN SHEAR GRANULAR FLOW
UNDER GRAVITY

In this section we apply the theoretical description th
was formulated in the preceding section on the basis of
merical simulations of a thin Couette flow with no gravity
anothermodel problem. We consider shear granular flow in
thick granular layer under gravity driven by the upper pla
which is pulled in a horizontal direction, see Fig. 12. A sim
lar system has been studied experimentally by Nasunoet al.
@2#, as well as by Tsaiet al. @7#.

We simulated up to 20 000 particles in a rectangular b
under a heavy plate, which was moved either with a cons
speedVx or a constant forceFx . Periodic boundary condi-
tions were assumed in a horizontal direction. After a tra
sient, a quasistationary fluidization and shear flow est
lished in the near-surface layer, while near the bottom gra
remained in a nearly static jammed regime. Here, we sh
the results of several different runs with small~large! pres-
sure and small~large! shear. The details of these runs a
given in Table I. The vertical profiles of the density, flo
velocity, and the order parameter are shown in Fig. 13. T
density of grains remains nearly constant, very close to
maximum random packing density value, except for a n
row near-surface boundary layer. The most significant d
sity variations were observed for the caseP10V50 corre-
sponding to a light, fast moving upper plate. The horizon

at
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VOLFSON, TSIMRING, AND ARANSON PHYSICAL REVIEW E68, 021301 ~2003!
velocity decays roughly exponentially off the plate in agre
ment with experimental evidence@2,7#. The vertical profiles
of the order parameter demonstrate a well-defined trans
from fluid state near the upper plate to solid state below. T

FIG. 12. ~Color online! The geometry of the MD simulation o
a surface-driven shear flow.
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width of the ‘‘interface’’ grows with the applied pressureP,
which indicates the stress dependence of the diffusion c
ficient for the order parameter. Surprisingly, we found th
the order parameter does not approach 1 at large depths
instead seems to saturate at some value slightly below 1
believe that this behavior is inherent to our 2D geome
with periodic boundary conditions on side walls. The movi
upper plate oscillates vertically and produces vibrations
the bulk of granular layer. These slowly decaying with dep
vibrations break weak contacts between particles that are
strongly pressed against each other~e.g., lying under

TABLE I. Parameter values for the simulations of deep Coue
flows for different geometries and boundary conditions. The first
runs were performed at constant velocity of the top plate and
last two runs were for a constant horizontal force applied to
plate; for all runsm t50.3, e50.82, D r50.2, kn523105, kt /kn

51/3, gn516.7.

Run ID Np Lx Ly P Vx Fx /(PLx) 2syx

P10V5 53103 50 100 10 5 5.0
P10V50 53103 50 100 10 50 6.0
P50V5 53103 50 100 50 5 17.0
P50V50 53103 50 100 50 50 25.0
P50V5L 13104 50 200 50 5 18.5
P50V50L 13104 50 200 50 50 26.5
P20F10 53103 50 100 20 10 20.0
P20F20XL 1.923104 96 200 20 20 20.0
r
FIG. 13. ~Color online! Density~a!, horizontal velocity~b!, temperature~c!, and the order parameter~d! profiles in a deep granular laye
driven by upper moving plate for four different runs from Table I.
1-10
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PARTIALLY FLUIDIZED SHEAR GRANULAR FLOWS: . . . PHYSICAL REVIEW E 68, 021301 ~2003!
arches!. We believe that in full 3D simulations with mor
realistic boundary conditions this effect may be less p
nounced. In principle, it may be included in the theoreti
description by proper averaging of fluctuations of the str
tensor in the spirit of Savage@16#.

By averaging velocity fluctuations and forces acting
individual particles, we calculated vertical profiles of th
fluid and solid parts of the shear and normal stress com
nentssab ~see Sec. IV!. These profiles for runP10V50 are
shown in Fig. 14. Strong fluctuations of the horizontal co

FIG. 14. ~Color online! Stationary profiles of the vertical~a!,
horizontal ~b!, and shear~c! stress components for runP20F10.
Heresab

f c is the contact part of the fluid stress defined in Eq.~33!
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ponent of the stress tensorsxx are mostly related to the stati
component of the tensor. According to Eqs.~15! and ~16!,
fluid and solid parts of the shear stress components shoul
related to the shear component of the full stress ten
~which in this geometry is roughly independent ofy) via the
function q(r). Figure 15~a! depicts this function as a para
metric plot of syx

f (y)/syx vs r(y) made by using vertica
profiles of stresses and the order parameter. As seen from
figure, the same fitq(r)5(12r)2.5 approximates the data
quite well. However, unlike the zero-gravity case of the th
Couette flow, the normal stress components seem to be
tropic sxx5syy and they both are well described byqy(r)
@see Fig. 15~b!#.

The dependence of the fluid part of the shear stress c
ponent on the strain rate~Fig. 16! shows the same behavio
as for the thin Couette system: at smallġ the viscosity is
nearly constantm f'12, and at largerġ shear thinning is
observed. Interestingly, the dependence of the local Reyn
shear stress on the local strain rate is well described by
Bagnold scalingsyx

R }ġyx
2 . Eventually, at largeġ, this scal-

FIG. 15. ~Color online! Ratios of fluid and full components o
the stress tensor as a function of the order parameter for four
ferent runs at different speeds and pressures:~a! shear stress com
ponentsyx , ~b! normal stress componentssxx,yy . Closed symbols
correspond tosxx , open symbols correspond tosyy . Solid lines
show the fitsq(r)5(12r)2.5 in ~a!, andq1(r)5(12r1.2)1.9 in ~b!.
1-11
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VOLFSON, TSIMRING, AND ARANSON PHYSICAL REVIEW E68, 021301 ~2003!
ing should dominate the full stress-strain rate relationsh
Figure 17 compares the behavior of the viscosity coeffici
m5syx /ġ andm f5syx

f /ġ calculated along the vertical pro

files of s andġ, as a function of densityn and order param-
eter r. While the former diverges asn→nc and r→1, the
latter approaches the constant valuem f'12, in agreement
with the results of Sec. V.

As in the preceding section, we can extract the partic
particle correlation function by calculatingG(n)5(1
1e)21@pd2pf /4nT21# using the vertical profiles ofsyx

f ,T,
and n. Again, we obtain a good agreement with theoreti
predictions based on the kinetic theory for fluid compon
of the stress tensor~Fig. 18!.

Finally, we can compare the stationary vertical profiles
the order parameter and the horizontal velocity with theo
ical predictions. In most of our numerical simulations w
specified the velocity of the upper plate rather than the
plied force. That allowed us to study the regimes of sl
dense flows, which would be unstable had we applied a c
stant shear force. The shear stress tensor componentsyx in
the stationary regime was indeed constant across the l
@see, for example, Fig. 14~c!#. However, due to slippage nea
the moving plate the relation between the plate speed and
shear stress is complicated. We do not address the issu

FIG. 16. ~Color online! ‘‘Fluid’’ shear stress vs local shear strai
rate for several runs:~a! total fluid shear stress,~b! Reynolds part of
the shear stress.
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boundary conditions here as it is a subject of a separate s
~see for example, Ref.@32#!. Here we simply use the value
that are obtained in numerical simulations~the last column in
Table I!, as parameters in our theoretical model.

In the stationary regime, the relevant stress tensor com
nents are specified as follows:

FIG. 17. ~Color online! Full viscosity2syx /ġ ~solid symbols!

and ‘‘fluid’’ viscosity 2syx
f /ġ ~open symbols! coefficients as func-

tions of density~a! and the order parameter~b! for two runs.

FIG. 18. ~Color online! Particle-particle correlation function as
function of density for several runs of the thick Couette flow sim
lations
1-12
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FIG. 19. ~Color online! Profiles of the order parameter and velocity in a thick granular layer driven at the surface by a heavy movin
for run P10V5 ~a!, P10V50 ~b!, P50V5 ~c!, P50V50 ~d!. Lines show the theoretical results obtained from continuum models~37! and~38!,
empty symbols indicate numerical data. Insets show the velocity profiles in the logarithmic scale.
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syy5P1~H2y!, ~39!

syx5sxy5const, ~40!

whereP is the external pressure applied to the upper w
and H is the thickness of the granular layer~note that it is
different fromLy due to compaction!. In the regime of slow
dense flow, the volume fraction of grains is nearly consta
close to the random close packing density, and so the fl
can be assumed incompressible.

We also need to specify the boundary conditions for
order parameter at the top and bottom plates. This is a s
ous issue in its own right, which we will address elsewhe
Here we simply impose no-flux boundary conditions both
the top and the bottom plate for the order parame
]yr(0)5]yr(H)50.

We limit ourselves with the case of slow dense flow
gime, when the granular temperature plays a minor role,
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the granular flow can be considered incompressible. This
lows us to use the reduced set of Eqs.~2!, ~37! and~38! with
the fixed viscositym f512. The stationary shear flow solu
tion of the continuum equations can be found numerically
follows. Since the components of the full stress tensor
assumed known, we solve the time-dependent order par
eter equation~37! using the pseudospectral method until t
solution reaches a stationary state. The resulting solution
the order parameter is then used to obtain the velocity pro
by integrating the constitutive relation~38! from the bottom
(y50) up. Since the grains are strongly compressed near
rough bottom plate due to gravity, we assume the no-
boundary condition for the horizontal velocity aty50. The
momentum conservation equation~2! is satisfied automati-
cally. Thus, obtained profiles of velocity and the order p
rameter were compared with our 2D molecular dynam
simulations.

The results of the comparison between the velocity a
order parameter profiles obtained in simulation and by us
1-13
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VOLFSON, TSIMRING, AND ARANSON PHYSICAL REVIEW E68, 021301 ~2003!
the continuum theory are shown in Fig. 19 for four ru
P10V5 ~a!, P10V50 ~b!, P50V5 ~c!, P50V50 ~d!. The only
fitting parameter used was the diffusion constantD in the
order parameter equation, which has not been determine
our testbed analysis. We usedD51 for runs P10V5 and
P10V50, D55 for P50V5 andD510 for P50V50. From
this we can conclude that the diffusion coefficient depe
on the local stress tensor; however, more elaborate nume
experiments are needed to pinpoint this dependence m
quantitatively. All other parameters were identical for all fo
cases as specified in Sec. V E. The vertical profiles of
order parameter and the horizontal velocities are reason
well described by the theory. However, for low pressure ru
P10V5 andP10V50, the horizontal velocity profiles deviat
from the numerical data presumably because the visco
coefficient is no longer a constant in a dilute region near
top plate.

VII. CONCLUSIONS

In this paper we performed a series of numerical simu
tions of 2D wall-driven granular flows. These simulatio
were designed with a specific goal, to quantify the co
tinuum theory of partially fluidized granular flows, whic
was introducedad hocearlier @18,19#. We defined the orde
parameter as a ratio of the number of static contacts to
total coordination number averaged over a small mesosc
volume. Using simulations of a thin Couette flow betwe
two rough plates, we determined the free energy density
the order parameter. Simulations confirmed that the ratio
the shear to the normal stress in the bulk of the granular fl
can parametrize the stationary states of the order param
equation. The same simulations allowed us to determine
detailed structure of the constitutive relation. We split t
total stress tensor into the fluid and solid components
which the former comprises the Reynolds stresses and
stresses transmitted through short-term collisions, while
latter is formed by the force chains through persistent c
tacts. The ratio of fluid and solid stress components is ind
determined by the order parameter through scaling funct
q(r), qx,y(r). Remarkably, the fluid component of the stre
tensor is a linear function of the strain rateġ in the slow
dense flow regime. This justifies the Newtonian scaling
the stress-strain relationship adopted in the theory.

Using the calibrated theory, we studied the flow struct
of a thick surface driven Couette granular flow under grav
We found the theoretical predictions to be in a goodquanti-
tative agreement with simulations.

The evidence presented here suggests an intriguing in
pretation for the order parameter description of dense
slow granular flows. The granular material under shear st
appears to be similar to a multiphase system with the fl
phase ‘‘immersed’’ into the solid phase. The fluid phase
haves as a simple Newtonian fluid for small shear rates w
the density is almost constant, but exhibits shear thinnin
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larger shear rates when the density begins to drop. We
served that the Reynolds part of the fluid shear stress ob
the Bagnold scalingsyx

R ;ġ2. We anticipate that for very
large shear rates when the Reynolds stress becomes d
nant, the overall stress tensor should exhibit Bagnold sca
locally.

While this theory is primarily intended for dense and slo
granular flows, we have shown that it can be combined w
existing models of rapid granular flows based on the kine
theory of granular gases. This requires to drop the assu
tion of incompressibility and include the equation for th
granular temperature. Our simulations showed that the
netic theory works well for thefluid part of the stress tenso
in the whole range of densities from dilute regime to th
critical random close packing density.

Many issues still remain open. The spatially nonunifo
dynamics of the order parameter requires a more deta
study. We found that the diffusion constant postulated in
~37! appears to be a function of the normal shear stres
well as the local strain rate; however, we do not have su
cient numerical data to provide a quantitative description
this dependence. It would be of interest to analyze the pro
gation of a fluidization front in a granular layer prepared in
meta-stable static regime. Such simulations could provide
insight into the mechanisms of the local coupling of the
der parameter.

The molecular dynamics algorithm employed is based
a number of approximations. These approximations, howe
well tested and widely accepted@8–10#, directly affect the
results of our fitting the continuum model. For example,
one replaces the Hookian model of particle interaction wit
Hertzian one, an appreciable difference in the structure of
order parameter may be observed. More numerical wor
needed to quantify the relationships between the microsc
parameters of the system~nature of collisions, restitution co
efficient, friction, etc.! and the parameters of the continuu
model.

Finally, our simulations were limited by 2D systems, a
of course the resulting continuum theory can only be direc
applicable to 2D systems. While we anticipate the struct
of the model to remain in 3D systems, the specific form
the fitting functions should change. This future work w
allow us to perform a comparison of the 3D model not on
with numerical simulations but also with experimental da
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