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Partially fluidized shear granular flows: Continuum theory and molecular dynamics simulations
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The continuum theory of partially fluidized shear granular flows is tested and calibrated using two-
dimensional soft particle molecular dynamics simulations. The theory is based on the relaxational dynamics of
the order parameter that describes the transition between static and flowing regimes of granular material. We
define the order parameter as a fraction of static contacts among all contacts between particles. We also propose
and verify by direct simulations the constitutive relation based on the splitting of the shear stress tensor into
a“fluid part” proportional to the strain rate tensor, and a remaining “solid part.” The ratio of these two parts
is a function of the order parameter. The rheology of the fluid component agrees well with the kinetic theory
of granular fluids even in the dense regime. Based on the hysteretic bifurcation diagram for a thin shear
granular layer obtained in simulations, we construct the “free energy” for the order parameter. The theory
calibrated using numerical experiments with the thin granular layer is applied to the surface-driven stationary
two-dimensional granular flows in a thick granular layer under gravity.
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[. INTRODUCTION proach based on the order parameter description of the
granular matter. The value of the order parameter specifies

In the last few years there have been many experimentdhe ratio between static and fluid parts of the stress tensor.
[1-7] and theoretica|8—14] studies that explored a broad The order parameter was assumed to obey dissipative dy-
range of granular flow conditions from rapid dilute flows to namics governed by a free energy functional with two local
slow dense flows, as well as the details of the shear-driveminima. This description based on the separation of static
fluidization transition. While dilute granular flows can be and fluid components of the shear stress, calls for an alterna-
well described by the kinetic theory of dissipative granulartive definition of viscosity as a ratio of thituid part of the
gased15], dense granular flows still present significant dif- shear stress to the strain rate. Since the fluid shear stress
ficulty in formulation of a continuous theory. In Rdf16], vanishes together with the strain rate, the viscosity coeffi-
Savage proposed a continuum theory for slow dense granulaient in our theory is expected to remain finite at the fluidi-
flows based on the so-called associated flow rule that relatemation threshold. We assumed the simplest Newtonian fric-
the strain rate and the shear stress in plastic frictional sydion law, so the viscosity coefficient is a constant. This model
tems. Averaging strain rate fluctuations yields a Binghamyielded a good qualitative description of many phenomena
like constitutive relation in which the shear stress has viscousccurring in granular flows, such as hysteretic transition to
as well as strain-rate independent parts. According to thishute flow, stick-slip regime of a driven near-surface flow,
theory, the stress and strain rate tensors are always coaxistructure of avalanches in shallow chute flows, etc.
and, furthermore, it also postulates that the viscosity diverges However, several important issues have not been ad-
as the density approaches close packing limit. Losedl.  dressed: mesoscopic definition of the order parameter, quan-
[3] (see also Ref[17]) proposed a similar hydrodynamic titative specification of the order parameter dynamics and the
model based on a Newtonian stress-strain constitutive relasonstitutive relation. In this paper we set out to perform two-
tion with density dependent viscosity without strain-rate-dimensional (2D) molecular dynamicSMD) simulations,
independent component. As observed in R&f. the ratio of  which should provide us with the way to achieve these goals.
the full shear stress to the strain rate diverges at the fluidizai/e classify all contacts as either “fluidlike” or “solidlike”
tion threshold. This was also interpreted in RE3] as a and define the order parameter as a mesoscopic space-time
divergence of the viscosity coefficient when the volume frac-average fraction of solidlike contacts. Using this order pa-
tion approaches the randomly packed limit. This descriptiomameter we obtain the constitutive relation and the relax-
works only in a fluidized state and cannot properly accoungational dynamics of the order parameter directly from simu-
for hysteretic phenomena in which static and fluidized statetations of granular flow in a thin Couette geometry at zero
coexist under the same external load such as stick-slip oscigravity. Preliminary account of our results is presented in
lations[2], avalanchind 6], or shear band formation. Ref.[20].

In many granular flows of interest static and dynamic re- The paper is organized as follows. Section Il outlines the
gions coexist under the same external load conditions. Exstandard granular hydrodynamics theory based on the kinetic
amples of such hysteretic phenomena include stick-slip ogheory of dissipative granular gases. Sec. lll introduces the
cillations[2], avalanching 6], or shear band formation. This continuum description of partially fluidized flows based on
calls for a unified theory which would be applicable both inthe relaxational dynamics of the order parameter. In Sec. IV
the flowing regime and in the static regime. we describe our 2D molecular dynamics simulations and de-

In our recent papergl8,19 we proposed a different ap- fine measurement protocol for the order parameter and fluid
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and solid components of the stress tensor. In Sec. V we study
the Couette flow in a thin granular layer to obtain the free
energy controlling the relaxational order parameter dynamics
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and to extract the constitutive relations. In Sec. VI the ob-

tained set of equations is used to calculate the stress ar
velocity distributions in adifferent system, a thick granular
layer under nonzero gravity driven by a moving heavy upper

plate.

Il. GRANULAR HYDRODYNAMICS

In this section we outline the standard continuum descrip-
tion of granular flows based on continuity equations for €=
mass, momentum, and fluctuation kinetic enef@y“granu-
lar temperature). This description is usually applied to di-

8vG(v)TY?
= (8)
T~'d
Be thermal conductivity
20T 1+3G( )+(9+4 G2, (9
K= —F/7F7— 14 - — 14 y
TV G(v) 4
and the energy dissipation rate
16vG(v)T3’2(1 2 10
=——— " (1-¢°.
773/2d3

Here 0<e<1 is restitution coefficient and is particle di-

lute granular gases where it can be rigorously derived fromymaer. The functio®(») which enters these relations is the

the kinetic theony[15], although slightly modified hydrody-
namics based on kinetic theory often works reasonably wel

patial particle-particle correlation function, and for a dilute
D gas of elastic hard disks was derived by Carnahan and

for relatively dense flows, even though the kinetic theoryStarling[Zl]

itself is not applicable to these conditions.

The mass, momentum, and energy conservation equations

have the usual form

Dv !

D_t v 'u, ()
Du 2
V—“———V-a'—i-vg, (2
DT . 3
VD—t——G'.‘y_V'q—S, ()

where v is the density,u is the velocity field, T=((u?)
—(u)?)/2 is the granular temperaturB/Dt=d;+ (u-V) is
the material derivativeg is the gravity accelerationr,g is
the stress tensoq is the energy flux vectory,z=d,Ug

+dgu, is the strain rate tensor, ardis the energy dissipa-

tion rate.

These three equations have to be supplemented by t

constitutive relations for the stress tensar energy fluxq,

and the energy dissipation rate For dilute systems, a linear

relations between stress and strain ratey is obtained,

Tap=[P+ (=N Tr ¥180p— L Vap, (4)

g=—«VT. (5)

In the kinetic theory of granular gasgs5|, these equations

are closed with the following equation of state
4vT
p=—7=[1+(1+e)G(v)], (6)
d

and the expressions for the shear and bulk viscosities

T1/2

)

_ 8l a2
n= 2 PG r) 1+ZG(V)+(1+ 77) G(v)

G - v(1—7v/16) (11
cs(v ——(1_V)2 .

This formula is expected to work for densities roughly below
0.7. For high density granular gases, this function has been
calculated using free volume thedr32],

1

(1t e)(v /) —1]

Gry (12

where v,~0.82 is the density of the random close packing
limit. Luding [24] proposed a global fit

GL=Gcst{1+exd —(v—vo)/myl} H(Gry— Gcs)(l

with empirically fitted parameters,~0.7 andmy~102.
However, even with this extension, the continuum theory

mprising of Eqs(1)—(10) cannot describe the force chains
that transmit stress via persistent contacts remaining in the
dense granular flows, as well as the transition from solid to
static regimes and coexisting solid and fluid phases.

IIl. ORDER PARAMETER DESCRIPTION OF PARTIALLY
FLUIDIZED GRANULAR FLOWS

In this section we review briefly our continuum theory
[18,19 that provides an alternative approach to the formula-
tion of the constitutive relations in partially fluidized granu-
lar flows. In the dense flow regime, the granular matter can
be considered incompressible, so Eh.can be replaced by
V-u=0 and the density=v.. This also allows us to drop
the energy equatio(B) and the equation of staté), as for
v—v., G(v)—o, andT—0, so thatG(v)T—const. This,
of course, leads to the familiar divergence of the viscosity
coefficientuoc G(v) T2,

Next, we separate the stress tengointo two parts, a
static (contac} part ¢°, and a fluid parte’. The latter is
assumed to take a purely Newtonian form
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(14) The control parametes is determined by the stress tensor,
which in Ref.[18,19 was taken to be a linear function of

wherep; is the “partial” fluid pressurey; is the viscosity ~#=MaXomn/ond, Where the maximum is sought over all
coefficient associated with the fluid stress tensor, which i$0Ssible orthogonal directioms andn. It is easy to see that
differentfrom w introduced for the full stress tensor. As we " the interval 6<6<1, Eq.(20) has two stable uniform
shall see in the following, unlike:, x; doesnot diverge as solutionsp=0,1 cqrrespondmg to fluid and solid states and
v— .. In our original model[18,19 we simply assumed ©nN€ unstable solutiop= 4. _ _
¢ =CONSst. Momentum conservation equatidg) toge_ther with Eqs_.
We postulated25] that the fluid part of the off-diagonal (19—(21) represent a closed set of continuous equations,
components of the stress tensor is proportional to the offhich, after being augmented by appropriate boundary con-
diagonal components of the full stress tensor with the Ioro_dmons, can describe a variety of interesting granular flows

portionality coefficient being a function of the order param-Such as avalanches in thin chute flows, drum flows, stick-slip
eterp oscillation in surface-driven flow$18,19. Since a rigorous

derivation of the continuum model of dense partially fluid-
ol =q(p)Tyy. (15) ized flows from first principles does not seem feasible, the
X X assumptions madad hocin the formulation of model?2)

This assumption stipulates the equation for the static part dFds-(19—(21) have to be checked against available experi-

f .
O-a,B: pfaa,B_ Mfyaﬁi

the off-diagonal stress components mental and/or numerical data. Unfortunately, it appears to be
extremely difficult to directly measure the order parameter in
0§x=[1—Q(P)]0yx- (16) the bulk of granular material, as it is determined by subtle

changes in the contact fabric. In this paper we attempt to

Both fluid and solid parts of the stress tensor are assumegi<tract the properties of the order parameter from molecular
symmetric,(r;'xs= 0;,5‘ This assumption is confirmed by our dynamics simulations and on this basis make a quantitative

numerical simulationgsee below. We choose a fixed range fit of the order parameter model.
for the order parameter such that it is 0 in a completely

fluidized state and 1 in a completely static regime. Thus, the V. MOLECULAR DYNAMICS SIMULATIONS
function q(p) has the propertg(0)=1, q(1)=0. In Refs. To model the interaction of individual grains we use the
[18,19 for simplicity we tookq(p)=1-p. _ so-called soft-contact approach. The grains are assumed to
A similar relationship can be postulated for the diagonalpe noncohesive, dry, inelastic disklike particles. Two grains
terms of the stress tensor, interact via normal and shear forces whenever they overlap.
] ‘ For the normal impact we emplapring-dashpomodel[9].
- - 17) : : i
Tx=Ax(P) Oxxs Tyy=0y(p)oyy, ( This model accounts for repulsion and dissipation; the repul-

sive component is proportional to the degree of the overlap,
on=[1=0x(p)loxy, oy=[1-0qy(p)loyy, (18  and the velocity dependent damping component simulates
the dissipation. The model for shear force is based upon the

where the scaling functiors, ,(p) can differ fromq(p). technique developed by Cundall and Str§2g]. It incorpo-
Combining Eqs(14)—(18), we obtain the constitutive re- rates tangential elasticity and Coulomb laws of friction. The
lation in the closed form, elastic restoring force is proportional to the integrated tan-
gential displacement during the contact and limited by the
Oup= pfgaﬁ/qa(p)_m'yaﬁ/q(p), (19 product of the friction coefficient and the instantaneous nor-
mal force. The grains possess two translational and one ro-
wherea, B e {x,y}. tational degrees of freedom. The motion of a grain is ob-

The order parameter itself was not related to any microfained by integrating Newton’s equations with the forces and
scopic properties of granular assemblies in Rif8,19. We  torques produced by its interactions with all the neighboring
simply assumed that because of strong dissipation in deng¥ains and walls of the container. , _ _
granular flows it has purely relaxational dynamics controlled Consider a grain of radiusR' located atr' moving with

by the Ginzburg-Landau equation, translational velocity' and angular velocity'. This grain
is in contact with grainj whenever overlaps,=R'+R/
Dp , dF(p) —|r'=r'|>0. The relative velocity at the contact point and
Dt DVp— ap (200 its normal and tangent components are given by

i — i i SRS BN N
Here D is the diffusion coefficient and(p) is the free en- visvioviH(Re'+Rloht, (22
ergy density, which was assumed to have a quartic polyno- — (i i il — (V= V)1t + (R + Rl
mial form to account for the bistability near the solid-fluid vp=(V=vOnt, - v=(vovitH (Re @), 23)
transition: ) -
wheren = (r'—r")/r' =(n,,n,) is the inward normal to the
(", _ surface ofi at the contact point witly, and the direction of
}—(p)_j plp=1)(p=20)dp. @D the tangent' = (ny,—n,) is chosen so that' xn'! is colin-
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ear with the angular velocity. Then the graiis subjected to
the contact force due to the interaction wijthvith normal
and tangential components

Fr=Knon—2y,Mev, (29

t
Fi=—sign( &) min(|k5{,| xFnl), 5t(t):f vi(7)dr,

to
(25)

wherek, ; are the corresponding spring constantg,is the
normal damping coefficientn,=m'm!/(m'+m') is the re-
duced massy, is coefficient of friction, ands, is tangential
displacement since the momeigt of the initial contact be-
tweeni andj. When the static yield criterion Eq25) is

satisfied, the magnitude & is adjusted to an instantaneous

equilibrium value providingF,= u;F,. According to the

analytical solution of the linear spring-dashpot model, th
coefficient of restitution and the duration of heads-on colli-

sion aree=exp(— yto), te= 7/ (K, /me— y2) 2

The advantages and limitations of the employed contact
force model were thoroughly studied by a number of authors
[9,8,10. In fact, this is the simplest model that allows us to

account for both static and dynamic friction.
When all forces acting on grain from other grains,

boundaries, and perhaps external fields are computed, the

e
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below deal with steady quantities, the procedure consists of
two steps: space and then time averaging. The space averag-
ing of a fieldx is performed over horizontal binglong the

flow direction of size V=L, X1 and is denoted a&) in

the following. Contributions of those particles that only par-
tially belong to a certain bin are weighted by the fraction of
their area. After a simulation has reached a steady state, in-
stantaneous profiles are averaged over a suitable number of

time snapshots. We shall denote the time averaging;vith
For example, steady solid fraction profile is given by

v(y)=(u(y,1)), <v<y.t>>=vali62V wi(y)Vi, (28

where the summation runs over grains at least partially in a
bin V,, centered ay, V' is the area of graim, andw'(y) is a
corresponding fraction of a grain’s area withity,. The
coarse-grained velocity field is

u(y)=(u(y,t)),
(u(y,))=w(y,t) "XV(y,1))

=u(y,t) WV, > wi(y)Viv.

IEVb

(29

problem is reduced to the integration of Newton’s equations

for translational and rotational degrees of freedom,

d?r .

m' —=m'g+ 2, F'¢, 26
dt? 9 zc: 8
do' :

e =R FE, 27)
Cc

where the mass of particlés denoted byn' and its moment
of inertia is|'=1/2m'R'?, g stands for an external gravity
field, and the sums in Eq&6) and(27) run over all contacts
of particlei.

For simplicity, we extend the space-time averaging technique
described above for other quantities, such as the stress tensor

a-aﬂ(y) =<0-aﬁ(y1t)>a

1 . s
<0’a,3(y,t)>=<§ ;i I’IOE:FL;:> +<m'vaz)18>, (30

where a,B={xy}, ri=r°e,, Fg=F‘, v,=v,
—(v',). The stress tensor in E¢30) has two distinct com-
ponents. The first one—virial or contact—describes pairwise
interactions of grains. The second one—kinetic or

The results of the simulations reported here are presentddeynolds—is due to velocity fluctuations.
in dimensionless form. All quantities are normalized by an
appropriate combination of the average particle diaméger
massm, and gravityg.

Equations(26) and (27) were integrated using the fifth-

A. Order parameter for granular fluidization:
Static contacts vs fluid contacts

order predictor-correctdi27] with a constant time stept.
The spring constark,, and damping coefficieng,, were cho-

At any moment of time all contacts are classified as either
“fluid” or “solid.” A contact is considered “solid” if it is in

sen to provide the desired value of the restitution coefficienft SUCK state Ry<uF,) and its duration is longer than a

e and guarantee an accurate resolution of an individual co

lision. Typically, we usece=0.92, st=10"4, t.=506t, k,
=2.0x10°, y,=16.7, k;=1/3K,.

ftypical time of collisiont,, . The first requirement eliminates

long-lasting sliding contacts, and the second requirement ex-
cludes short-term collisions pertinent for completely fluid-

ized regimes. We choose a typical collision to last

The computational domain spahgx L, area, and is pe- s - i s
=1.1t.. When either of the requirements is not fulfilled, the

riodic in horizontal directiorx. Unless otherwise mentioned, _ -
the granulate is slightly polydisperse to avoid crystallizationcontact is assumed “fluid. _

effects[8]. We assume that the grain diameters are uniformly e define the order parameter as the ratio between space-
distributed around mean with relative width . To provide a  time averaged numbers of “solid” contact&;) and all con-

link between micromechanical quantities obtained througtacts(Z) within a sampling are23],

simulations and continuous fields, we define the following —_

coarse-graining procedure. Since all experiments described p(Y)=(ZH(Z').

(31)
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This definition endures at least two limiting cases: when .
granulate is in a static state and when it is strongly agitated 4Y F
i.e., completely fluidized. In fact, in the former quiescent L,

state all contacts are stuck ape-=1. In the fluidized case -
(Zs) is 0 and(Z) is small but finite, therefore=0. -

Let us note that the order paramegejust introduced is
expected to be as sensitive to the degree of fluidization as th 0 |
stress tensor. A small rearrangement of the force network L = 1
may result in strong fluctuations of either field, while such S
quan;ities. as the solid fractiqn or granular temperature will FIG. 1. (Color onling Sketch of the granular shear flow model.
remain virtually constant. It is known that granular aggre-

gates exhibit rigidity phase transition near the critical volume V. TESTBED SYSTEM: COUETTE ELOW
fraction v [11]. When the volume fraction is near or above IN A THIN GRANULAR LAYER

Ve, the granular material has elastoplastic rheology and be-

low this critical value it behaves as a fluid. Near and above A. Bifurcation diagram

the critical volume fraction for the same boundary conditions e studied the fluidization transition in a thin (8Q.0)

the granular aggregate may exhibit either slow creeping flowgranular layer between two “rough plates” under fixed pres-
solid-like behaV|or, or both. The latter case, known as Sthk-sureP and zero gra\/ity Conditioné:ig_ 1) The parameters
slip phenomenon, is observed both experimentally and nupf simulations wereu,=0.5, e=0.92, A,=0.2, k,=2
merically[2,11,28. In an experiment under constant volume x 1%, k, /k,=1/3, y,= 16.7. We used the same material pa-
boundary conditions, a series of stick-slip events occur withrameters of grains throughout this section. The rough plates
out a S|gn|f|Cant Change in the solid fraCt|On, which is |nsenwere simulated by two Straight chains of |arge grd'mCe
sitive to global rearrangements relieving the accumulategs |arge as an average particle diamegéed together. The
stress. We expect the order_parameter to be able to reflegfyer was chosen narrow enough, so the properties of the
such rearrangements and ultimately describe the correspongranular layershear rate, shear stress components, order pa-
ing phase transition. rameter, etg.in the absence of gravity were approximately
B. Stress tensor constant across the layer within 10% accuracy. Two opposite
, - forcesF,=—F, were applied to the plates along the hori-
The full stress tensof30) consists of a contaawirial)  ;onea1x ‘axis to induce shear stress in the bulk. We started
part and the -Reynolds pgrt. In turn, the contact stress tensqfiy \eak forces not sufficient to initiate a shear flow and
can be split into the “solid contact” component and the o1y ramped them up in small increments well above the
fluid contact” componento in the same fashlor‘] as Was critical yield force at which the granular flow started. After
done with contacts themselves. Combining the *fluid con-,at we ramped the shear forces down until the granular layer
tact” component with the Reynolds stress, we obtain the full, o jammed again. At every “stop” we measured all stress
stress tensor as a sum of two parts components, strain rate, and the order parameter, and aver-
S S aged the data over the whole layer and over time of each
o=0'+0° (32

step. Figure 2 shows the strain ratéwe drop subscriptgx

1
s _ I .cpcC 0.8 T T
O-aﬁ_<52 raF3>r a

0.6

04
1 " i~
ohamolitoly=(3 37O 10T @0 el

0

where summation ir2’ andX"” is restricted to “solid” and 02 . .
“fluid” contacts, respectively. 58 19 12 14
The “fluid” part of the stress tensor is due to short-term b

collisional stresses and the Reynolds stresses, whereas tt 15| .
solid part accounts for persistent force chains. The Reynold:
contribution to the stress is negligibly small in the vicinity of & 1 ¢-e-e-e
the phase transition, but comes into play when the granulal
aggregate is highly fluidized. In the system, which is neither
completely rigid nor completely fluidized we expect the co-
existence(in time and spaceof both phases. A particular 8
grain may have both types of contacts at the same time, thus
contributing to boths anda®. This picture is reminiscent of FIG. 2. (Color onling The strain ratga) and the order param-
the concept of bimodal character of stress transmission ister(b) vs shear stress in a thin Couette geometry of Fig. 1 with 500
static contact network introduced by Radgial. [29,30. particles (1 50) atP=40.

0.5 |
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14 ' ' ' ] bifurcation diagram, which merges with the stable branch at
12 [ ] 6~0.26, we can make a simple analytic fit of this curve as
b <«—<40

1t €€ < <R <30 b 2 2 2 2

08 L <+—<30 ] F(P15):(1_P){P _2P*P+P*eXﬁ:_A(5 _5*)]}20
a0 L\ 20 (39

0.6 | “‘«; +«—<20 1
04 —. 1 with p, =0.6A=25, =0.26 (see Fig. 3, lingand use it in
021 ] the polynomial expansion of the free energy density which

83 o5 53 e $s  enters the order parameter equati@n):

d=-c,/P
p

FIG. 3. (Color online The order parameter as a function of the f(p):f F(p,d)dp. (39

normalized shear stress in a thin Couette geometry. We also measured the density and the granular tempera-
ture of the grains as we decreased the shear force. These
. ) measurements could only be performed in the rapge
at the strain rateand the order parameteras functions of <0 55 since for largep the partially fluidized state is un-
the shear stress,, which is approximated by the applied staple. Note that the density of grains stays almost constant
force F normalized by the layer length,, for P=40. As it iy 3 wide range of the order parameter 0.1 [see Fig. 4a)].

is to be expected, the strain rate remains 0, and the ordgp granular temperaturgvhich is defined ad = (T,0;)/2)

parameter is one until the shear stress reaches a certain criH- i h i ;
cal valueo;~12.6. This value differs slightly for different wor:(r:?i?)rlwzte)?t?wﬁ tored:rpgéfgrﬁéféssgej&r))]ears to be a unique

runs because of the finite system size and absence of se
averaging in the static regime. Above the yield stress, the
strain rate abruptly jumps to a finite value0.35, and the
order parameter drops t&0.15. At Iarger|ayx|, the strain We probed the relaxation dynamics of the order parameter
rate increases faster than it does linearly, and the order pdy performing the following numerical experiment. The
rameter rapidly approaches 0. The return curve correspondyanular layer was prepared as in the preceding section. Lat-
ing to the diminishing of the shear stress follows roughly theeral shear forces were increased adiabatically until the granu-
same path, and then continues to anofisenalley value of lar system reached a metastable sghgnmed state within a
the shear stress$~9.4). At this value the layer jams, the hysteretic region. Then the layer was perturbed by applying
strain rate returns to 0, and the order parameter jumps backndom forces to a small randomly selected fraction of par-
to 1. ticles. The dynamics of the order parameter varies depending
The most striking feature of this figure is the hystereticon the magnitude of the perturbation. Figure 5 shows an
behavior of both the strain rate and the order parameter asexample of the evolution from the same jammed state for
function of the shear stress. This hysteresis was anticipatdsvo different magnitudes of initial perturbation. Interestingly,
in our order-parameter modgl8,19; however, now we are the relaxation back to the jammed state is very fast, whereas
in a position to fit the model equations quantitatively. Wethe relaxation toward stable shear flow is much slower. We
repeated these simulations at several different values of theelieve that it has to do with inertia of grains and the upper
compressing pressuke Data for different pressure values in plate, so the intrinsic time scale of the order parameter relax-
the flow regime fall onto the same universal curve if oneation is rather smallQ(1).
normalizes the shear stress by the presssge Fig. 3. As- Unfortunately, our thin Couette flow system does not al-
suming that there is afunobserveplunstable branch of the low us to probe the local coupling of the order parameter

B. Relaxation dynamics of the order parameter

1 : : ; : 10'
a b
0.8 00 f3 W® it ¢ ¢ = o P=20
10° = P=30
+P=40
0.6
> 107
o
0.4 L = o“h
102 | “I o¢
0.2 1 'm
©é
@
0 . * * ' 107 . ! : 3
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
p p

FIG. 4. (Color online The density(a) and the normalized granular temperat(vevs the order parameter in a thin Couette geometry for
three different values of pressuire
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T T T 04 T T T
1 b T T T T T T T T T T T T T T T T T T T T T T T T T .“*
* 0
. _ny
g’X
03 r = -0 yx
o — -o,a(p)
05 1 o - _ny“_Q(P)]
2
3 0.2 r
i)
0 1 1 1
0 20 40 60 80 0.1 r
time
FIG. 5. (Color online Relaxation of the order parameter to-
wards shear flowsolid line) and jammed stat@lashed lingfor two 0 g 0'1 .o %O'é--- 0'3 B
different initial perturbations in a thin Couette system of 500 par- ) 6 ’

ticles with P=40, oy,=—12.

since the order parameter is uniformly distributed throughout FIG. 6. (Color onling Fluid and stafic components of the shear

the system. In the absence of this data, this coupling WagtreSS in a thin granular layer (¥%0) at external pressufé=30

modeled by the linear diffusion term in EQO) with the as a funCtior.' of nc_)rmalized_external shear Strésg:/('.‘xp): dif
. . L . ) . rect calculation(points, obtained from total stress using relations
constant diffusion coefficient. As we will see in the following Eqs. (15 and(16) with q(p) = (1— p)2° (line
section, this approximation indeed provides a good descrip-q ' ale P '
tion for spatiallynonuniformnear-surface flow; however, the
value of the diffusion coefficient appears to be a function of The fluid as well as solid parts of the stress tensor are
local stress. nearly symmetric.oy$= o}, so the ratioo| /oy, is de-
scribed by the same scaling functig{p). On the other
C. Fitting the constitutive relation hand, the same procedure for the diagonal elements of the
The next step is to fit the constitutive relation from MD Stress tensor yields a noticeably different scalisge Fig.
simulations. To this end, we use the same Couette flow simuZ(b)]. Furthermore, a small but noticeable difference is evi-
lations, but now we analyze the “fluid stress,; and the ~ dent betweenr}, /oy, and o}/, . More detailed analysis
“static stress” o, separately during our ramp-down simu- shows that, in fact, fluid parts of the diagonal components of
lations at three different values d?. Figure 6 shows a the stress tensask, and cr{,y are nearly identical, and the
sample of these data fér=30. At larges=F/(L,P), when difference is due to the solid part of the normal stregses
the order parameter is low, the total stress is dominated by Fig. 8). This observation is consistent with the fact that the
the fluid component, but as the flow stops anédpproaches diagonal terms of the static stress tensor are determined by
unity, the fluid stress turns to 0, and the total stress is equal tthe details of the external loading. On the other hand, in a
the static stress. Plottinczr§xlcryX as a function of the order completely fluidized state the diagonal terms are all equal to
parametep for differentP [Figure 7a)], we observe that all the hydrodynamic pressume [31]. In a partially fluidized

data collapse onto a single curve, which is well fitted byregime, the diagonal terms of the shear stress can be ex-
a(p) =(1—p)?> The lines in Fig. 6 show the fit of the fluid pressed as

and static stress tensors using E4$) and (16) with q(p)

:(1_p)2.5_ Oxx= pf/qX(P): Oyy= Pt /Qy(P) (36)
1 1
b
0.8 038
06 0.6
L L
© ©
04 04
02 02
0 ; L 1 0 : L 4 4 =
0 0.2 0.4 p 0.6 0.8 1 0 0.2 0.4 p 0.6 0.8 1

FIG. 7. (Color onling Ratios of the fluid stress components to the corresponding full stress compmjgmgﬁ vs p for three different
pressures’: (a) shear stress components, closed symbgls open symbolsr,,, line is a fitq(p)=(1—p)>> (b) normal stress compo-
nents, closed symbols,,, open symbolsr,,, lines are the fits|,(p) = (1-p)*° q,(p)=(1-p*H*°.
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tions of temperature and density in the dilute regime. Note
R that in contrast, the full shear stress does not goes to 0 as
90000000 2 22 *o . . . . .. .
L ! 'o" "“’;ﬁﬁ!ﬁ&&g! y—0 [see Fig. ®)], so a viscosity coefficient convention-
$00000 °i° 905 6 00,0098" ally defined as the ratio of the full shear stress to the strain
= g" °c /P rate diverges at the fluidization threshold as observed in Ref.
& o, ® " oo /P [3].
X o) .. n = f P L. i i .
o o em nyy/ Combining the Newtonian law for the fluid stress-strain
fha Oiﬁu. 00,/P 1 dependence with the order parameter scaling of the fluid
Eun°o '. i GVY/E stress tensor, we arrive at the relationship between the full
!E! 8 & © 0yl stress tensor and the strain rate ten€®) with wi=12,
| ° o a(p)=(1=p)** ay(p)=(1-p")*®, a(p)=(1-p)*®
[ )
ol 000888895." -
0= 03 s o4 D. Toward dilute granular flows—granular temperature
revisited

FIG. 8. (Color online Diagonal stress componenftuid, solid, . _ .
and total in a thin granular layer (1850) at external pressuf@ While the above fittings have been made for the regime of

=30 as a function of external shear stréd&, normalized by the & slow den_se flow withy— v " it is tempting to generalize
external pressure. the theoretical model so that it smoothly crosses over to the
standard kinetic continuum theof)—(10) for p—0. This

Both functionsq, ,(p) should approach 1 gs—0 (the nor- ~ 9oal can be achieved by including the equation of stéfe
mal stresses should be equal in the fluid $tdtat they may and the equation for the granular temperat(8eback into
have different functional form to reflect the anisotropy of thethe theory. The important difference with respect to the stan-
static stress tensor. In our simple Couette flow, the diagonalard kinetic theory is that the pressure, which we calculate
stress tensor components can be well fitedopgp)~(1  With Eq.(6), is not the total pressure, but the partial pressure
—p)*® and q,(p)~(1—p')*? [see Fig. T)]. So we ob- associated with the fluid part of the stress tensor. Of course,
serve that even in a partially fluidized regime, the “fluid asp—0, the static part of the stress tensor disappears, and
phase” component indeed behaves as a real fluid with a welthe partial pressure becomes the total pressure.
behaved “partial” pressurg; which is zero in a solid state at ~ We can test the relevance of this combined approach by
p=1 and is becoming the full pressure in a completely flu-calculating the spatial correlation functio(v)=(1
idized statep=0. +e) Y wd?ps/4vT— 1] with the values of fluid pressurs ,
Plotting the fluid shear stress versus the strain rate, we cdg@mperaturd and density calculated in our testbed Couette
test the validity of the Newtonian model for the stress-strairflow at different external pressur&@and comparing it with

relation (14). Figure 9 shows- o7, vs y for three different the theoretical functionScg(v),Ges(v),GL(v) [Egs.(11)—

. . (13)]. Figure 10 shows that the Carnahan-Sterling formula
pressure$ =20,30,40. At smally all three lines are close to works very well in the dilute range<0.67 as expected. In
the same straight liner,,=12y, which indicates that the the high density regim&(») approaches the free volume
Newtonian scaling for fqu shear stress holds reasonablyesylt(12), and the overall dependence is in agreement with
well. The deviations at large are evidently caused by varia- the global interpolatiorG, (v) by Luding[24].

15 i . , . 15 . : : .
1 ey ‘ a A
08 | R b aah st 2 ’
06| 2 st
. * A
10 |04 - o . e 10; ik - - = = " .
02l ] . . o
=5 S " % -
L 0 0204 06 08 4 7, o et c o ® .
Y ° 5 °® o
5 5
® :P=38 2 P=40
4P=40
0 : : : . oo ' : : '
02 04 06 08 02 ~ 04 06 08
Y Y

FIG. 9. (Color onling Stress-strain rate relation for a thin granular Couette flow at three different external pre&@uheist shear stress
Vs strain rate, the straight line is a constant viscositwﬁt: 12'3/; inset: scaled fluid shear strep:;la;x as a function of'y; (b) full shear

stress vs strain rate.
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100 - - - - - the presented data strongly suggest that the constitutive rela-
. tions for thefluid part of the stress tensor are well described
gl ) by the standard granular hydrodynamics.
107 1 3
60 o 10 ] E. Order parameter description of partially fluidized
© 10° . P=20 granular flows—take 2
1o J * P=30 Let us summarize the equations of the continuum theory
40 r 0 D2 04,0608 1 i *P=40 | 1 as specified on the basis of the 2D molecular dynamics simu-
T gcs lation of the thin Couette flow.
20 P The mass, momentum, and energy conservation condi-
L tions are expressed by Eq&l)—(3). The order parameter
. . . . equation now has the form
0 02 04 06 08 1 1.2
v %=DV2p—(p—1){p2—2p p+plexd —A(5~85)1}
Dt * * *
FIG. 10. (Color onling Particle-particle correlation function (37)

G(v) calculated via equation of staté) using the values of fluid

pressure, temperature, and density in a thin granular Couette flow gjth p,=0.6, 5, =0.26, A=25. As mentioned before, for
three different external pressures. Inset: the same data in a semi-lgge |ack of simulation data. we assume linear diffusion cou-
scale pling of the order parameter with a constant nondimensional

) . diffusion coefficientD. The constitutive relation now reads
We can carry this analysis one step further and test the

kinetic theory prediction for the shear viscosity. If we scale
a;x by the shear viscosity calculated using kinetic formula
(7) with globally fitted correlation functios, (v) and actual
temperature anq density values from correspondin_g runs, allith g, (p)=(1—p)*° qy(p)=(1—pl'2)1'9, a(p)=(1
three lines in Fig. @) collapse onto the same straight line —p)?5.
dependencmf‘la;xz'y [see Fig. 99), inset. The equation of state and expressions for viscosity, ther-
One more test of the kinetic theory predictions can bemoconductivity, and the energy dissipation have the same
performed by analyzing the granular temperature as a fundunctional form as Eqs(6)—(10), but they are now written
tion of the shear strain rate. According to RgE6], TV?  for the “fluid” parametersps, us, \¢, ande.

=Avy for a plane parallel shear flow whereis a material
constant weakly dependent on volume fraction. Our numeri-  VI. SURFACE-DRIVEN SHEAR GRANULAR FLOW
cal data for three different external pressures shown in Fig. UNDER GRAVITY
11, are consistent with this scaling law although small devia-
tions can be observed at smal

We have not done a similar comparison for the bulk vis-
cosity, thermal conductivity, and the energy loss; however

Tap=LPi/0a(p)+ (=) Tr 'y/q(p)]aaﬁ—maﬂ/q&%é )

In this section we apply the theoretical description that
was formulated in the preceding section on the basis of nu-
merical simulations of a thin Couette flow with no gravity to
anothermodel problem. We consider shear granular flow in a
thick granular layer under gravity driven by the upper plate,
which is pulled in a horizontal direction, see Fig. 12. A simi-
. lar system has been studied experimentally by Naira.

[2], as well as by Tsaét al. [7].
. We simulated up to 20000 particles in a rectangular box
under a heavy plate, which was moved either with a constant
(4 speedV, or a constant forc&, . Periodic boundary condi-
2 v tions were assumed in a horizontal direction. After a tran-
sient, a quasistationary fluidization and shear flow estab-
Al lished in the near-surface layer, while near the bottom grains
e remained in a nearly static jammed regime. Here, we show
Tt <> ] the results of several different runs with sm@#rge pres-
&% sure and smalllarge shear. The details of these runs are
f given in Table I. The vertical profiles of the density, flow
0 s . . | velocity, and the order parameter are shown in Fig. 13. The
0.5 ] 2 2 density of grains remains nearly constant, very close to the
Y : . : '
maximum random packing density value, except for a nar-

FIG. 11. (Color online Granular temperature as a function of fow near-surface boundary layer. The most significant den-
strain rate in a thin granular Couette flow at three different externasity variations were observed for the caB&0v50 corre-
pressures. sponding to a light, fast moving upper plate. The horizontal

4 . . :
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Y Fx or VX

FIG. 12. (Color online The geometry of the MD simulation of

a surface-driven shear flow.

X
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TABLE |. Parameter values for the simulations of deep Couette
flows for different geometries and boundary conditions. The first six
runs were performed at constant velocity of the top plate and the
last two runs were for a constant horizontal force applied to the
plate; for all runsu,=0.3, e=0.82, A,=0.2, k,=2Xx 10, k,/k,
=1/3, y,=16.7.

Run ID N, Lx Ly PV, FJ(PL) —oy
P10V5 5x10° 50 100 10 5 5.0
P10V50 5%x10° 50 100 10 50 6.0
P50V5 5x10° 50 100 50 5 17.0
P50V50 5x10° 50 100 50 50 25.0
P50V5L 1x10* 50 200 50 5 18.5
P50V50L 1x10* 50 200 50 50 26.5
P20F10 5x10° 50 100 20 10 20.0
P20F20XL 1.92x10* 96 200 20 20 20.0

width of the “interface” grows with the applied pressuire
which indicates the stress dependence of the diffusion coef-
ficient for the order parameter. Surprisingly, we found that
the order parameter does not approach 1 at large depths, but
instead seems to saturate at some value slightly below 1. We
believe that this behavior is inherent to our 2D geometry
with periodic boundary conditions on side walls. The moving

velocity decays roughly exponentially off the plate in agree-upper plate oscillates vertically and produces vibrations in

ment with experimental evidend®,7]. The vertical profiles

the bulk of granular layer. These slowly decaying with depth

of the order parameter demonstrate a well-defined transitionibrations break weak contacts between particles that are not
from fluid state near the upper plate to solid state below. Thetrongly pressed against each oth@.g., lying under

> P10V5 —E—
P10V50 —e—
P50V5 ~ —a—
P50V50 —w—

02 r

100 [ P10V5 —&—
P10V50 —e—

10 ¢ P50V5 ~ —aA—

o 1 P50V50

B

E 0.1

A

*

S 001

0.001
0.0001

1e-05

90

45 T T T T T T T

a0 L PlOV5S —B— b |
P1OV50 —e—

35 - P50V5 ~—a— b
P50V50

0.6

(=%
P10V5
04T |piovs0 —e—
P50V5  —a—
02 P50V50 —v—

FIG. 13. (Color onling Density(a), horizontal velocity(b), temperaturéc), and the order parametét) profiles in a deep granular layer

driven by upper moving plate for four different runs from Table I.
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1 . : : :
100 a
o 0.8 | b P1OV5 o |4
2 o, P10V50 4
© o
5 ol < 06| 9 P50V5 v ||
2 © 3 P50V50 o
e &,
g L5 (1-p)*°
o 40+ © 04 r R
£
8
20 02 .
0 0 ;
0 0.2 0.4 0.6 0.8 1
P
100 1 T T T T
9 b
o 08 | P10V5 . |
e 70 & X P10V50 s
3 60 X 06} P50V5 v
5 50 © P50V50 .
c a
g 40 2 (1-p"3)"*
1S © 04 25 §
g 30 5 (1-p)
20 ©
10 0.2 [ T
0
0 L 1 1
y 0 0.2 0.4 0.6 0.8 1
p
20 T
P20F10 c . . :
- = FIG. 15. (Color onling Ratios of fluid and full components of
] ) ¥cx g the stress tensor as a function of the order parameter for four dif-
é 3 ) cs ! s ) ferent runs at different speeds and pressu@sshear stress com-
S ) Gy e ponento,, (b) normal stress components, ,,. Closed symbols
o X correspond tasy,, open symbols correspond tey, . Solid lines
5 show the fitsg(p) = (1— p)?®in (a), andq,(p) = (1— p*I*%in (b).
8 ponent of the stress tensey, are mostly related to the static
component of the tensor. According to Eq5) and (16),
fluid and solid parts of the shear stress components should be

related to the shear component of the full stress tensor
(which in this geometry is roughly independentydfvia the

4 function g(p). Figure 1%a) depicts this function as a para-
metric plot of o;x(y)/oyx vs p(y) made by using vertical
profiles of stresses and the order parameter. As seen from this
figure, the same fitj(p)=(1— p)?° approximates the data
quite well. However, unlike the zero-gravity case of the thin

. . . . . Couette flow, the normal stress components seem to be iso-
arche$. We believe that in full 3D simulations with more tropic o= oy, and they both are well described ly(p)
realistic boundary conditions this effect may be less PrOTsee Fié(xlﬂ)i]y

nounced. In principle, it may be included in the theoretical
descrlp_tlon by proper averaging of fluctuations of the Stralrbonent on the strain ratéig. 16 shows the same behavior
tensor in the spirit of Savadd 6. for the thin C lith

By averaging velocity fluctuations and forces acting on@S Or the thin Couette system: at smallthe viscosity is
individual particles, we calculated vertical profiles of the nearly constaniu;~12, and at largery shear thinning is
fluid and solid parts of the shear and normal stress compaebserved. Interestingly, the dependence of the local Reynolds
nentso, s (see Sec. IY. These profiles for rufP10v50 are  shear stress on the Iocal strain rate is well described by the
shown in Fig. 14. Strong fluctuations of the horizontal com-Bagnold scalmgrryxoc yyx Eventually, at largey, this scal-

0 10 20 30 40 50 60 70 80

FIG. 14. (Color onling Stationary profiles of the verticdh),
horizontal (b), and sheai(c) stress components for rua20F 10.
Herea 5 1S the contact part of the fluid stress defined in E38)

The dependence of the fluid part of the shear stress com-
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45 . r r ¢ r T T T T T T T T = T
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¥ FIG. 17. (Color onling Full viscosity—ayxlly (solid symbol$

and “fluid” viscosity — o;xlly (open symbolscoefficients as func-

FIG. 16. (Color online “Fluid” shear stress vs local shear strain tions of density(a) and the order parametés) for two runs.

rate for several runga) total fluid shear stresg¢h) Reynolds part of
the shear stress.

boundary conditions here as it is a subject of a separate study
ing should dominate the full stress-strain rate relationship(see for example, Ref32]). Here we simply use the values
Figure 17 compares the behavior of the viscosity coefficienthat are obtained in numerical simulaticftise last column in

M=ny/5’ and,uf:g;x/'y calculated along the vertical pro- Table ), as parameters in our theoretical model.
. - . : In the stationary regime, the relevant stress tensor compo-
files of o andy, as a function of density and order param-

eter p. While the former diverges as— v, and p—1, the nents are specified as follows:
latter approaches the constant vajug~12, in agreement

with the results of Sec. V. 100 ' ' '
As in the preceding section, we can extract the particle-

. . . . P10V5 o}
particle correlation function by calculatings(v)=(1 80 BRI i -
+e) Y[ wd?p/4vT — 1] using the vertical profiles o}, T, e
and v. Again, we obtain a good agreement with theoretical i P5OVS0 o | |
predictions based on the kinetic theory for fluid component
of the stress tensdFig. 18. o PSOVSOL  ©

Finally, we can compare the stationary vertical profiles of 40 Ges 1
the order parameter and the horizontal velocity with theoret- CGrv ——
ical predictions. In most of our numerical simulations we 00 | L |
specified the velocity of the upper plate rather than the ap-
plied force. That allowed us to study the regimes of slow
dense flows, which would be unstable had we applied a con 0 a 1 1'2 1'4

stant shear force. The shear stress tensor compaengrin

the stationary regime was indeed constant across the layer
[see, for example, Fig. 1d)]. However, due to slippage near  FIG. 18. (Color onling Particle-particle correlation function as a
the moving plate the relation between the plate speed and thenction of density for several runs of the thick Couette flow simu-
shear stress is complicated. We do not address the issue lafions
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FIG. 19. (Color online Profiles of the order parameter and velocity in a thick granular layer driven at the surface by a heavy moving plate
for run P10V5 (a), P10V50 (b), P50V5 (c), P50V50 (d). Lines show the theoretical results obtained from continuum maa8&)sand(38),
empty symbols indicate numerical data. Insets show the velocity profiles in the logarithmic scale.

oy =P+(H-y), (39)  the granular flow can be considered incompressible. This al-
lows us to use the reduced set of E@, (37) and(38) with
the fixed viscosityu;=12. The stationary shear flow solu-
tion of the continuum equations can be found numerically as
) ) follows. Since the components of the full stress tensor are
whereP is the external pressure applied to the upper wall3ssymed known, we solve the time-dependent order param-
andH is the thickness of the granular layerote that it is  eter equatior{37) using the pseudospectral method until the
different fromL, due to compaction In the regime of slow  splution reaches a stationary state. The resulting solution for
dense flow, the volume fraction of grains is nearly constantthe order parameter is then used to obtain the velocity profile
close to the random close packing density, and so the flowy integrating the constitutive relatiaq@8) from the bottom
can be assumed incompressible. (y=0) up. Since the grains are strongly compressed near the
We also need to specify the boundary conditions for theough bottom plate due to gravity, we assume the no-slip
order parameter at the top and bottom plates. This is a serboundary condition for the horizontal velocity w+=0. The
ous issue in its own right, which we will address elsewheremomentum conservation equati¢®) is satisfied automati-
Here we simply impose no-flux boundary conditions both atcally. Thus, obtained profiles of velocity and the order pa-
the top and the bottom plate for the order parameterrameter were compared with our 2D molecular dynamics
dyp(0)=dyp(H)=0. simulations.
We limit ourselves with the case of slow dense flow re- The results of the comparison between the velocity and
gime, when the granular temperature plays a minor role, andrder parameter profiles obtained in simulation and by using

Oyx= Oxy=CONSt, (40
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the continuum theory are shown in Fig. 19 for four runslarger shear rates when the density begins to drop. We ob-
P10V5 (@), P10V50 (b), P50V5 (c), P50V50 (d). The only  served that the Reynolds part of the fluid shear stress obeys
fitting parameter used was the diffusion constantn the  the Bagnold scalingrffp ¥%. We anticipate that for very
order parameter equation, which has not been determined jgrge shear rates when the Reynolds stress becomes domi-
our testbed analysis. We usé@=1 for runs P10V5 and  npant, the overall stress tensor should exhibit Bagnold scaling
P10V50, D=5 for P50V5 andD =10 for P50V50. From  |ocally.

this we can conclude that the diffusion coefficient depends While this theory is primar”y intended for dense and slow
on the local stress tensor; however, more elaborate numericgtanular flows, we have shown that it can be combined with
experiments are needed to pinpoint this dependence mogisting models of rapid granular flows based on the kinetic
quantltatlvely. All other parameters were identical for all fOUrtheory of granu|ar gases. This requires to drop the assump-
cases as specified in Sec. V E. The vertical profiles of thgion of incompressibility and include the equation for the
order parameter and the horizontal velocities are reasonablfanular temperature. Our simulations showed that the ki-

well described by the theory. However, for low pressure rungetic theory works well for théluid part of the stress tensor
P10V5 andP10V50, the horizontal velocity profiles deviate in the whole range of densities from dilute regime to the

from the numerical data presumably because the viscosityritical random close packing density.
coefficient is no longer a constant in a dilute region near the Many issues still remain open. The spatially nonuniform
top plate. dynamics of the order parameter requires a more detailed
study. We found that the diffusion constant postulated in Eq.
VIl. CONCLUSIONS (37) appears to be a function of the normal shear stress as
well as the local strain rate; however, we do not have suffi-
‘cient numerical data to provide a quantitative description of
this dependence. It would be of interest to analyze the propa-
“gation of a fluidization front in a granular layer prepared in a

tinuum theory of partially fluidized granular flows, which : : . : :
. . . meta-stable static regime. Such simulations could provide an
was introducecad hocearlier[18,19. We defined the order insight into the mechanisms of the local coupling of the or-

parameter as a ratio of the number of static contacts to thSer parameter
total coordination number averaged over a small mesoscopiC The molecu.lar dynamics algorithm employed is based on

Xz(l)u:r(l)e. LJ S'ggtes'muelaggpesm?.fn: dtr:Lne fc:rglée:r?e?ow dl;?]geefg? number of approximations. These approximations, however
ugh piates, w ! 9y 'Y T0lell tested and widely accepté8-10], directly affect the

the order parameter. Simulations confirmed that the ratio o esults of our fitting the continuum model. For example, if

the shear to the normal stress in the bulk of the granular fIO‘%ne replaces the Hookian model of particle interaction with a

can pgrametnze the s.tat|onz';1ry states of the order parametﬁrertzian one, an appreciable difference in the structure of the
equation. The same simulations allowed us to determine thgr

) o ; . der parameter may be observed. More numerical work is
detailed structure of the constitutive relation. We split th?needed to quantify the relationships between the microscopic

to;gl hSttfssf tensor into @he ﬂtl;]'d Snd S?é'd ctomponentz, tl arameters of the systefnature of collisions, restitution co-
which he former comprises the Reynoids stresses an ficient, friction, etc. and the parameters of the continuum
stresses transmitted through short-term collisions, while th odel

latter is formed by the force chains through persistent con- Finally, our simulations were limited by 2D systems, and

tacts. The ratio of fluid and solid stress components is mdeegf course the resulting continuum theory can only be directly

determined by the order parametgr through scaling fur]Ctiongpplicable to 2D systems. While we anticipate the structure
d(p). Axy(p). Remarkably, the fluid component of the SU€SSf the model to remain in 3D systems, the specific form of

tensor is a linear function of the strain rajein the slow  the fitting functions should change. This future work will
dense flow regime. This jUStIerS the Newtonian Sca“ng Ofa”OW us to perform a Comparison of the 3D model not 0n|y

the stress-strain relationship adopted in the theory. with numerical simulations but also with experimental data.
Using the calibrated theory, we studied the flow structure
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