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System size dependence of the diffusion coefficient in a simple liquid
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An equation to estimate the system size dependence of the self-diffusion coefficient of a tagged particle
moving in a simple fluid is given using linear-response theory and linearized hydrodynamics. Estimates made
by the equation are compared with the results of the molecular dynamics simulation for a hard-sphere fluid at
two densitiespa®~0.88 and 0.47, where is the hard-sphere diameter. Good agreement between theory and
simulation is obtained at the higher density. At the lower density, the agreement becomes poorer, but it is
improved by taking into account the diffusion effect of the tagged particle. The equation gives the same
diffusion coefficient for the infinite system as that obtained by taking into account the long-time tail contribu-
tion of the velocity autocorrelation functigi. J. Alder, D. M. Gass, and T. E. Wainwright, J. Chem. Piags.
3813(1970]. When the tagged particle has a larger mass than the fluid particles, the equation presented here
gives the better estimates. It is confirmed by the molecular dynamics calculation.
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[. INTRODUCTION Ugrite,n/F2 for a sufficiently smallF, gives the diffusion
coefficient for theN-particle fluid,

The self-diffusion coefficienD, one of the fundamental
transport coefficients in a simple liquid, has been studied by %: me  Udgrite N 3)
experiment and molecular level simulation for many years KT my+m; F, °
[1-3]. We should note, however, thBtas obtained by simu- ) ) )
lations is always affected by the finiteness of the simulatiovherem;=(N—1)m is the mass of the surrounding fluid,
box, and the correction for it is not negligiblabout 10% in @ndm; andm are mass of the solute and solvent particles,
the case of a 500-particle dense hard-sphere)ffdfl Al- respectively. The diffusion coefficient in E() can be writ-
though this correction has been argued in connection witf{€n as
the long-time behavior of the velocity autocorrelation func- "
tion [2,3], the argument is not applicable fér of a heavy DN:J po(t;N)dt, (4)
particle moving in a fluid of lighter particlef4]. In this 0
paper, we present an equation to estimate the system size , , .
dependence db. It can be utilized even for the diffusion of With the velocity autocorrelation functiofVAF)

a heavy particle. N —

Let us first consider a fluid consisting of one solute par- po(t;N)=(v1,()v1,(0)), (5
ticle labeled 1 andN—1 solvent particles labeled 2N Where<> denotes an equi”brium ensemble averm Ap-
placed in a cubic simulation box, and impose periodicpendix A for the derivation of Eq(3)]. When we take the
boundary conditions. The solute particle may have differeniahoratory frame as a reference and look at the fluid in the
size, mass, etc., from the solvent particles. When a constagteady state at the hydrodynamic scale, we will see that ve-
force F; in the z direction is applied to the solute particle, |ocity field v('2®)(r) is created around the solute particle. The
after a time the system reaches a steady state in which thiean velocity of the surrounding fluid defined by E2).can

solute particle has a constant drift velocity be approximately written with the component of/(2°)(r),
Udrittn=01,~05"" 1) v;'“idzf v {0 (r)dr/L8, (6)
measured relative to the mean velocity of the surroundin%vherel_ is the simulation box length. Sinde, in Eq. (3)
fluid, jth. 5 -
should be small enough to ensure linear resporf§&)(r) is
N likely to obey linearized hydrodynamics, i.e., the so-called
fluid _ 1 2 v 2) Stokes equation. Since the solution of the Stokes equation
z N-1/= "% for a sufficiently large simulation box decays as fr from

the solute particlé¢7—9], by putting the solution into Eq6)

wherev, , is thez component of théth particle velocity. We ~ we find thatv{,,;4 is inversely proportional t&. Using this
see from linear-response theoris,6] that the ratio fact together with Eqs(l) and(3), we have

o
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whereD., is the diffusion coefficient for the infinite system
and « is a constant which is independent of the system size.
Since the solute particle and its images form a cubic lattice,
the constantr can be evaluated using the hydrodynamic cal-
culation for a cubic lattice of spherical particles.

We will show the results of the hydrodynamic calculation
in Sec. Il and compare them with those obtained by the equi-
librium molecular dynamic§MD) simulations for a hard-
sphere fluid in Sec. Ill.

dfy(r) N fr(r)+fy(r)

dr r (14

fu(r)=

When we take the rotation of E¢B), we have the Laplace
equation forw,

A=V -0—VX(VXw)=—VX(VXw)=0. (15

Substitutingew=(0,00,) into Eq. (15), we obtain the ordi-
nary differential equation fof ,(r),

II. STOKES EQUATION FOR A CUBIC LATTICE OF

SPHERES d?f (1) 2dt(n T _ 16
2 2 '
In this section we will solve the Stokes equation for a dr rodr '
cubic lattice of spheres by using the vortici, andUgritt,n - The solution of Eq(16) is
in Eq. (3) can be written with the azimuthal component of
the vorticity. A
When we change the frame of reference for measuring the fo(r)= — +Br (17)
r

velocity field from the laboratory frame to one that is moving

with the solute particle, we have a hydrodynamic problem of . h h h .
a steady flow along the direction through a cubic lattice of With two constants andB, where the ratio betweehandB

is determined by the boundary conditions at the four side

spherical particles from the positive to negative of zreis.

When the fluid is incompressible and has a uniform viscosit)P

7, the steady state velocity fieldr) is obtained by solving
the Stokes equations

Vp=7nAv (8)
and

divw=0, ©)

wherep=p(r) is the local pressure at We consider one of
the spherical particles located at the center of a unit@sgll

lanesl’; ,i=1, ... ,4, of theunit cell (}y. Since eacH’; is
the plane of mirror symmetry10] and the vorticity is an
axial vector, vorticity components parallel 1§ vanish on
I'; . By approximating the boundary 61, with the Wigner-
Seitz sphere of radiugy= (3/47) L [11], and remembering
that the vorticity has only one nonzero componen{r, 6)
=f,(r)siné, the boundary conditions for the vorticity com-
ponents af’; lead to

f,(ro)=0. (18)

Equation(18) gives the ratio betweeA andB and the final

When we take the spherical coordinate system centered &rm is

the particle, we can expand each component \of

=(v,,vg,v4) In Qg with the spherical harmonics and their

derivativeq 7,8]. If L is much larger than the radiasof the

spherical particle, only the lowest-order terms in each of the

expansions
v,(r,0)=f,(r)cosé, (10
vy(r,0)="1,(r)sing, (11
and
vy(r,0)=0 (12)

give a set of good approximate solutions.

Substituting these approximate solutions, Ed$)—(12)
into Eq. (9) and calculating div in the spherical coordinate
system lead to

dfe(r)  fOFf(
dr r

13

On the other hand, the substitution of E¢E))—(12) into
the expression of the vorticitgy=V X v in the spherical co-
ordinate system leads tow,=wy=0 and w,(r,0)
=f,(r)siné, where

f(N=Ar[1—(r/ry)°]. (19
Equations(13) and(19) are the basic relations in our hy-
drodynamic calculation, anB, and U ¢ y Can be written
in simple forms using these relations. To evaluktg we
first note that the constaitin Eq. (19) is related to the force
Fuiq €xerted on a spherical particle by the fldge Appen-
dix B for the derivation,

Friuig=—4mnA. (20
When we look at the equation of motion for the solute par-
ticle in the finite fluid, we see that

mg

Fiuia=—

(see Appendix B for the derivatipnBy combining Eqs(20)
and(21) we have

F,= 4 nA. (22

m
1+ —
My

On the other hand, substituting E®) into Eq. (1), Ugyis N
is written as
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Udrift,N:_J' vAN)dr/Voye, (23

where

vr)=v,(r,0)cosf—uvy(r,0)sino (24

is thez component of the velocity field defined in the frame o
moving with the solute particle and,,=L3—4=7a%3. By 0.6 ' ' ' '
putting Egs.(10) and (11) into Eq. (24) and performing the 0 005 01 015 02 025

angular integration in E¢23), we obtain alr,
N 5 FIG. 1. Diffusion coefficient for a hard-sphere fluid as a func-
f fo(r)redr tion of system size ,=(3V/47)Y3. Circles and triangles are MD
a

(25) results alv/V,=1.6 and 3, respectively. Straight lines are the least
—a3 ' squares fits of the MD results. The standard deviations of the MD
results are less than the sizes of the symbols.

Ugriftn="""3

f(r)=1fu(r)—2f,(r), (26)

where we have approximated the unit cell with the Wigner-="=" : : o
Seitz sphere introduced above H48). By differentiating during a 1.& 10°7e time period for equilibration and a
Eq. (26) with respect tor and calculatingdf,(r)/dr and 10°P7e—4x10°7 time period forztaklng_an ensemble aver-
df,(r)/dr in the resulting equation using Eq43) and(14),  age, whererg=ym/(7kT)/[4pa°g(o)] is the Enskog col-

Vo=No?/\2 is the close-packed volume andis the diam-
eter of a hard spherel4]. Each simulation was carried out

we have a differential equation fd(r): lision time with the mean fluid density=N/V and the ra-
dial distribution function at the contact distangég). From
df,(r) the result of each MD simulation, the diffusion coefficient
—ar = 2fu(r). (27)  was calculated using E@4). Since the velocity autocorrela-

tion function for identical particles is written as
When we put Eq(19) into Eq.(27) and integrate it, we have

1 N
po(t;N)= 3N izl (vi(1)-vi(0)), (3D

1
1+ §(r1/r0)3},
(28) putting Eq.(31) into Eq. (4) and performing the time inte-
gration, we havé3]

2A 1 2A
fr)=f,(r)+—|1+ —(r/r0)3} -—
r 2 rq

where r (=a) is a reference distance anfg(r,) is the ) _
boundary value. Substituting E€R8) into Eq. (25) and per- Dn=limD(t;N), (32)
forming the integration, we have o

oY 24| 1282 [(a)’ where
driftN= ~ 3 z(rl)_ﬁ _TE+ o) | 1 N
(29) D(EN)= g 2, (O =ri(O)]- (D +vi(0)]).
Substituting Eqs(22) and(29) into the right hand side of Eq. (33
(3) and omitting higher-order terms tharir,, we have In the numerical calculation lim _ on the right-hand side of
Dy D, 1.2a Eq. (32 is replaced with the plateau value Bf(t;N).
= - , (30 We note that the viscosity; appears in the asymptotic
D li D i o
slip slip

equation, Eq.(30), through Dg;,=kT/4mna. We took 7

whereDy,;,=kT/4m7a is the diffusion coefficient obtained Vvalues atV/Vo=1.6 and 3 as 14 [15] and 1.0% [2]
with the hydrodynamic slip boundary conditiga]. Since  from the previous MD results for the hard-sphere fluids,
ro=(3/4m)Y3L, Eq. (30) is equivalent to Eq(7) with coef- ~ Where 7g=(57/24)poymkT/m(1ly+0.8+0.76Yy) is the
ficient = 1.2(4m/3)Y¥4m 5. We note that the slope 1.2 of ~ Enskog estimatg16,17] with the configurational part of the
Eq. (30) was obtained by approximating the cubic cell with apressure y=PV/NkT—1=(2m/3)po’g(s) [18]. After
sphere. This value is slightly different from that obtained by€valuatings in this way, we plotted the MD results &fy at
the expansion of the Ewald sum wigtir,, —1.173[12,13.  the two densities as functions afr, in Fig. 1. Except for
the result of the smalledl at V/Vy=1.6, all the MD results
1. COMPARISON WITH SIMULATION RESULTS at each density seem to sit on a line, so we determined the
line by the least squares fit of the MD data. The slopesyand
We have examined the asymptotic equat{df) by a se- intercepts are in Table I. The table shows that the slope at the
ries of equilibrium MD simulations for identical hard sphereshigher density is in fairly good agreement with the hydrody-
of N=16-16 384 at two volume¥,=1.6V, and 3y, where  namic estimate—1.2, but at the lower density the fitted
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TABLE I. Slope andy interceptsD.. /Dy, , of the least squares 1 T T T T T
fitted line in Fig. 1.
09 .
VIV, Slope D../Dgiip & \\
0.8 ° .
1.6 —1.158+0.008 1.0072-0.0007 gz 0 "
3.0 —0.981+0.005 0.93050.0004 07| + )
+
value of the slope be_comgs 20% s_mal_ler in absolute value 0'60 002 004 006 008 01 012
than the hydrodynamic estimate. This disagreement at lower ar
density can be attributed to diffusion of the solute particle. 0

Substituting Eq(29) into Eq. (3), we see that the slope of k. 2. Diffusion coefficient for a hard-sphere fluid ¥V,
Eq.(30) is proportional to the ratié/F,, and with the aid of  —1 6 as a function of system size. Circles, triangles, and crosses are
Eq. (22 the ratio A/F, is evaluated asA/F,=(1  MD results form;/m=4,10, and 25, respectively. Each straight
—1/N)/4mn~1/4m 7y for a fluid consisting of identical par- line is the asymptotic line passing throudhy /Dy, of a/rg
ticles. However, due to the diffusion of the solute particle=0.039. The standard deviations of the MD results are about same
that acts as a mediator of the momentum from the outside tas the sizes of the symbols.

the fluid, A/F, becomes smaller than that determined by Eq.

(22). A similar diffusion effect of the solute particle has beenacoustic wave propagating across the periodic cells and dis-
considered by Alder and Wainwright in the argument of theappears around timg [3,19,27,28 Using this fact,D., is
long-time behavior of the VAF19,20. By adopting their estimated a$2,3]

argument, we multiply the correction factor

te » 2
” szf pD(t;N)dH—af t¥dt=Dy+ —5. (37)
(34) 0 te te
V+DE

By applying Eq.(37) to the MD results foN =108 and 500,
to the slope of Eq(30), wherev= 5/(pm) is the kinematic Alder et al. obtainedD.. /Dg);,=0.98 and 0.927 fo/V,
viscosity of the fluid andDg=3kT7z/(2m) is the Enskog =1.6 and 3.0, respective[,29]. Erpenbeck and Wood later
estimate of the diffusion coefficief21]. When we put the; analyzed their own results fad=4000 hard-sphere fluids
values presented above into E4), we have the corrected [28] and obtained an improved vali../D);,= 1.007 for
slopes—1.2y=—1.19 and—1.00 forV/V,=1.6 and 3, re- V/V,=1.6 [3,17]. Our estimates shown in Table | are in
spectively. Each of the corrected slopes agree with that tabiagreements with these values within a few percent. However,
lated in Table | within a few percef2]. we should note that, due to theni/ factor in Eq.(36), « in
Thus we found that the MD results of the diffusion coef- Eq. (37) becomes insignificant for a heavy solute particle.
ficient in the largeN region can be estimated by E(B0)  Thus Eq.(37) implies thatDy for a heavy solute particle
with the corrected slope-1.2y. Using this fact, we can es- converges with a finitéN. On the other hand, since EO)
timate D.. with a few to several MD simulations for finite does not contaim;, this implies that the difference between
systems. For instance, after fitting the MD resultsDgf at D, andD., remains in the same order of magnitude irrespec-
the three smallesN values inV/Vy=1.6 using a quadratic tive of the solute mass. In order to see the mass effect, we
function of a/ry, we can determin®., with the condition have performed the MD simulations for hard-sphere fluid at
that the asymptotic line is tangent to the quadratic functiony= 1.6V, with mass ratiosn, /m=4, 10, and 2930]. The
In this way we obtairD..=1.02, which is in a fairly good results ofD\ together with the line of E¢(30) are shown in
agreement with the value in Table I. Fig. 2. The figure shows thdDy has similar system size
Another method of estimatinD.. may be worth mention- dependence as that for the identical particles. No mass de-
ing. This method is based on the long time behavior of thgpendence was obtained arity, can be described by the
VAF that was referred to in deriving Ed34). More than  asymptotic equation(30). From they intercepts of the
three decades ago, Alder and Wainwright found a long-timestraight lines, we obtaineB.,/D,=0.94, 0.89, and 0.85
tail in the VAF of a hard-disk or hard-sphere fliti9,23, for m;/m=4, 10, and 25, respectively. We note that the
_ a2 computation oD for the heavy solute particle is time con-
po(t;N)~at™=%, (39 suming because the sampling oWeparticles in Eq(33) no
longer holds. Thus our method of extrapolating at small
N to D, is very relevant in these cases.

X:

whered is the space dimension of the fluid. Fdr=3 the
coefficienta is evaluated ag2,24—-2q

_ 2kT
- 3pml
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T. Ikeshoji for useful comments. —1kdv,196) are respectively the —r andr— 6 compo-
nents of the shear stress and integration is done at a spherical
APPENDIX A: LINEAR-RESPONSE THEORY surface of radius=a. By performing the angular integral in

Eqg. (B1) and using Eqs(13) and(14), we get
In this appendix we will derive Eq(3) using linear- a- D) 9 East13) (14 g

response theory. The derivation is analogous to that for a A

fluid consisting of identical particle81-33. We first note Friia=— 3~ 2 fo(r)+27f ()], (B2)
that the situation of a constant external fofegapplying to

the solute particle fot>0 is handled by adding a perturba- wheref (r) is the coefficient for cos in the spherical har-

tion term He,(t) = —2;F,6(t) to the system Hamiltonian, monic expansion of the pressure. When we write @)as
where 6(t) is the Heaviside step function. Then linear-

response theory tells us that the nonequilibrium ensemble Vp=—7VXw (B3)
average of a dynamical variab@ for t>0 is related to the ) )
(B3) leads to
F, [t
Q(t) =—f Q(t")v1,(0))dt’, (A1) df,
< >ne kT 0< 12 > fp(r):— rw‘kf(ﬂ(r) . (B4)

where ( ), denotes the nonequmbrlum ensemble average.

When we choos®(t)=u1,(t) — U|d(t)_ rel(t) we have BY putting Eq.(B4) into Eqg. (B2), we get

from Eq. (A1), A df
Fhiuid =3 nr? rar = —f,(r)]. (B5)

F, (t
<U;e|(t)>ne:k_-|z—j (U;m(t)vl’Z(O»dt’
0 When we put Eq(19) into Eq. (B5), we obtain Eq(20) in

F m,\ [t the text.
= k_'lz'( 1+ H) f (v1(t")v1,(0))dt’. To 'relateFf,uiq with F,, we note theg component of the
f/ 70 equation of motion for the solute particle in the laboratory
(A2)  frame of reference,
To derive the last equation we have used the fact that total mli)l,z:Fz+ Ffiuid » (B6)
momentum is zero. By taking—o of Eq. (A2) and noting
lim v (t)=Uygise, We obtain Eq(3). for the total momentum balance condition,

+ " fluid _ =F B7

APPENDIX B: DRAG FORCE mlvlz msv, z (B7)
According to hydrodynamics, the force exerted on a@nd for the steady state condition,

spherical particle by a fluids,iq, is written as the surface ) . - fluid

integral of the stress g9)] Ugriftn=v1,— 0, =0. (B8)

. By eliminatingv ,, andv '"!¥ from Egs.(B6)—(B8), we have
Fiuia= J’ {[_p(r)+0'rr]cos‘9_0'r65m ﬁ}ds, (Bl) E}C;. (21) in thg t;;t. z q (B6)-(BY)
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