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Binary and multiparticle contributions to the velocity autocorrelation function
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A method for including the contribution of many-body correlation effects to the microscopically obtained
results of the two-body contribution to the velocity autocorrelation has been proposed. A significant improve-
ment over the results obtained through only binary contribution has been found, as can be judged by comparing
the results for force and velocity autocorrelation functions of Lennard Jones fluids with that of molecular
dynamic simulations. The agreement of results of self-diffusion coefficient is also quite good with simulation
data over a wide range of densities and temperatures.
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I. INTRODUCTION

Considerable progress in our theoretical understandin
atomic dynamics at wavelengths and frequencies on the
lecular scale of liquids and dense gases has been made
ing the last three decades@1–3#. Time autocorrelation func-
tions, such as the ones associated with velocity and den
contain information about the dynamics of atomic motions
a system. Computer simulation techniques and neutron s
tering experiments have given an invaluable informat
about the various time correlation functions~TCFs!. Theo-
retically, Mori’s memory function~MF! technique has played
a key role in the calculations of these time correlation fu
tions.

The microscopic calculations of the memory function in
specific problem can be initiated in two different ways. O
of the approaches is based on the investigations of a ge
alized phase-space kinetic equation for arbitrary freque
and wavelength. The use of phase-space coordinates en
one to analyze the microscopic details of molecular co
sions and thus to perform a direct calculation of the ti
correlation function in terms of a given potential functio
and equilibrium distribution function. Due to mathematic
complexity of solving the kinetic equation for continuou
potentials, these equations have been applied mostly to
sphere fluids@4#. The difficulty of extending hard spher
kinetic theory to continuous potential systems lies in the f
that the collisions are no longer instantaneous and ma
particle dynamics cannot be decomposed into sequence
two-particle collisions. There is yet no tractable kinetic equ
tion which can be readily solved to predict time correlati
functions and transport coefficients of fluids, particles
which are interacting via continuous potential.

The alternative theoretical approach for the study of ti
correlation functions is based on the space-time mem
functions. The memory function appearing in the Mo
Zwanzig continued fraction repesentation of the time cor
lation function can be so chosen that they preserve a num
of properties of the TCFs, regardless of the explicit form
the MF @1,5#. The MF can be written as a sum of two term
@6–8#, one reflecting two-particle dynamics, while the se
1063-651X/2003/68~2!/021202~6!/$20.00 68 0212
of
o-
ur-

ity,
f
at-
n

-

er-
y
les

-
e

l

rd

t
y-
of
-

f

e
ry

-
er
f

-

ond is generally thought of as due to the correlated multip
ticle collisions which are important at longer times and
high density. In the space-time description, it has been
cently possible@9–12# to evaluate binary contribution~BC!
to a system of particles interacting via continuous potent
In these calculations, only two-particle contributions ha
been included. The results of such microscopic calculati
are sufficient to explain the properties of a system at l
densities. On the other hand, for dense systems, it is kn
that multiparticle effects are necessary to predict the dyna
cal and transport properties. But it has not been possible
now to combine the microscopic calculation of binary co
tribution with that of multiparticle contribution. This, in fact
is one of the motivation behind the present work.

In this paper, first of all, we have numerically calculat
the binary contribution to the force autocorrelation functi
fB(t). The force autocorrelation functionf(t) is the auto-
correlation function of the forces at two different times a
ing on a tagged particle, and is directly related to the cal
lation of velocity autocorrelation function. The expressi
for fB(t) involves the six-dimensional integral over functio
of potential, pair distribution function, and the time depe
dent position and momentum. We have used Monte Ca
method to evaluate multiple integrals involved in the expr
sion of fB(t) for Lennard Jones~LJ! fluids over various
densities and temperatures. Having the microscopic infor
tion about the binary contribution, we propose here a met
for combining it with many-body correlation contribution
Many-body correlation effects are included in the pres
work by using a phenomenological function. The two para
eters of the many-body correlation function are so obtain
to satisfy two exact conditions forf(t). One of the param-
eters obtained has a value which is of the order of the th
body contribution to the fourth-sum rule obtained using t
superposition approximation.

The velocity autocorrelation function~VACF! has been
calculated from the knowledge of the force autocorrelat
function f(t). The results thus obtained are compared w
simulation results at few temperatures and densities, and
observes a significant improvement over binary contribut
results. We have also calculated self-diffusion coefficie
©2003 The American Physical Society02-1
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from the time evolution of the force autocorrelation functi
f(t). Our results for the self-diffusion coefficient are mu
closer to the simulation results of Heyes@13# and also show
a significant improvement over the binary contribution’s
sults. Thus, we are able to add multiparticle contribution a
estimate separately the many-body correlation effects to
microscopically obtained binary contribution to the force a
tocorrelation functionf(t).

The layout of the paper is as follows. In Sec. II, we ha
presented the proposed theory. Results and discussion
given in Sec. III. Conclusion is given in Sec. IV.

II. THEORY

The normalized velocity autocorrelation function

c~ t !5^v1x~0!v1x~ t !&/^v1x
2 ~0!&, ~1!

is related to the self-diffusion coefficient through the Gre
Kubo expression@1,2#, given as

D5
kBT

m E
0

`

c~ t !dt, ~2!

wherev1x(t) is thex-component of the velocity of particle 1
at timet. kB , T, andm are the Boltzmann constant, temper
ture, and atomic mass of the particle, respectively. Us
Mori’s projection operator procedure, the time evolution
the c(t) ~VACF! can be written as

dc~ t !

dt
52E

0

t

K~ t2t!c~t!dt. ~3!

Taking Fourier-Laplace transform of Eq.~3!, we get

c̃~v!52
c~0!

v1K̃~v!
, ~4!

where the expression for the first-order memory function
given by

K̃~v!5 KQLv1x~0!U 1

QLQ2vUQLv1x~0!L Y^v1x
2 ~0!&.

~5!

In the above equation,L is the Liouville operator defined by

L5L01(
j ,k

L1~ jk !

52 i(
j

pj

m
•

]

]r j
2 i (

j ,k
Fjk•F ]

]pj
2

]

]pk
G , ~6!

whereFjk52]u(r jk)/]r j is the force,p is momentum, and
r jk5ur j2r ku. Q512P is an operator orthogonal to projec
tion operator P5^v1x

2 (0)&21uv1x(0)&^v1x(0)u. The time
evolution of c(t) can be expressed in terms of a conve
tional correlation function whose time evolution is govern
by the original Liouville operatorL rather than the projecte
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one,QLQ, which appears in Eq.~5!. A simple way of doing
this is by applying the identity

v

L2v
5211

L
L2v

~7!

to the Fourier-Laplace transform ofc(t), given by

c̃~v!5 i E
0

`

dteivtc~ t !

5 K v1x~0!U 1

L2v Uv1x~0!L , ~8!

twice. This yields

v2c̃~v!5c~0!@2v1f̃~v!#, ~9!

where

f̃~v!5 KLv1x~0!U 1

L2vULv1x~0!L Y^v1x
2 ~0!& ~10!

is the Fourier-Laplace transform of the force autocorrelat
function. The comparison of Eqs.~4! and ~9! gives the fol-
lowing relation:

K̃~v!5
vf̃~v!

v2f̃~v!
. ~11!

Writing

f̃~v!5f8~v!1 if9~v!, ~12!

wheref8(v) and f9(v) are the real and imaginary part
respectively, off̃(v), we obtain expression for the real an

imaginary parts ofK̃(v), respectively, given by

K8~v!5
v2f8~v!2v„f82~v!1f92~v!…

@v2f8~v!#21f92~v!
, ~13!

and

K9~v!5
v2f9~v!

@v2f8~v!#21f92~v!
. ~14!

Defining the frequency spectrumf (v) of the VACF as

f ~v!52c9~v!52E
0

`

cos~vt !c~ t !dt, ~15!

wherec9(v) is the imaginary part ofc̃(v), given by

c9~v!5
K9~v!

@v1K8~v!#21@K9~v!#2 , ~16!

where

K̃~v!5K8~v!1 iK9~v!. ~17!

Therefore, the time evolution ofc(t) can be obtained from
2-2
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c~ t !5
1

pE0

`

cos~vt ! f ~v!dv. ~18!

The expression for the self-diffusion coefficient obtain
from Eqs.~2! and ~15! is given as

D5
kBT

m

f ~0!

2
5

kBT

mK9~0!
. ~19!

This expression for the calculation of self-diffusion has be
used frequently. However, it has been rarely used by expr
ing K9(0) in terms of the force autocorrelation function.
the present work, we use Eq.~14! to evaluateK9(0). Wefirst
note thatf(t) satisfies two exact relations given as

E
0

`

f~ t !dt50 and E
0

`

tf~ t !dt521. ~20!

Using these relations and Eq.~14! in v→0 limit, we find
that

lim
v→0

K9~v!5 lim
v→0

v2

f9~v!
5

22

E
0

`

dtf~ t !t2

. ~21!

This provide us with another relation for the diffusion coe
ficient, given as

D52
kBT

2mE
0

`

f~ t !t2dt. ~22!

This is still an exact result. To calculate self-diffusion fro
this expression, we need to know time evolution of the fo
autocorrelation functionf(t).

The exact calculation off(t) for a fluid consisting of
interacting particles is not yet possible. However, Liouvi
operator appearing in Eq.~6! can be expanded using clust
expansion method@14#. Using this technique, the expressio
for binary contribution tof(t) has been obtained by Patha
Ranganathan, and Johnson@9#. The expression obtained fo
binary contribution tof(t) is given @9# by

fB~ t !5
n

m2A2
E E drdpGF p

A2
G ]g~r !

]x
Fx„r ~ t !…,

~23!

where g(r ) and G(p)5(1/2pp0
2)3/2e2(p2/2p0

2) with p0

5(mkBT)1/2 are, respectively, the static pair correlatio
function and the Maxwellian momentum distribution. Th
position vectorr (t) and the momentum vectorp(t) of a par-
ticle moving in a central potential fieldu(r ) obey Newton’s
equation of motion given by

1

2

dpx

dt
5

m

2

d2x

dt2
5Fx~r !52

]u~r !

]x
, ~24!

wherex, px , andr are the initial values of these quantities
time t50.
02120
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In order to include the multiparticle contribution tof(t),
we examine its short-time expansion, which is given as

f~ t !5V22V4

t2

2!
1V6

t4

4!
1•••, ~25!

where

V2n5 K dn

dtn
v~ t !

dn

dtn
v~ t !L Y~kBT/m! ~26!

are essentially 2nth sum rules of the velocity autocorrelatio
function. The expressions for these sum rules are alre
known @15# up to sixth order. Here, it is important to not
that V2 , V4, and V6 involve static correlation upto two
three, and four particles respectively. On the other hand,
nary partfB(t) involves only two-particle correlations an
has a short-time expansion given as

fB~ t !5V22V42

t2

2!
1V62

t4

4!
1•••, ~27!

where Vmn representsn-body contribution to themth sum
rule. From the two expansions~25! and ~27!, one finds that

f~ t !5fB~ t !2
t2

2
V43S 12

V631V64

6V43

t2

2!
1••• D

'fB~ t !2At2FM~Bt!, ~28!

whereF(x) is a multiparticle correlation function even inx,
andA andB are two parameters. In the present work, we ta
F(x) as hyperbolic secant form. ParametersA andB can be
calculated exactly using two exact relations given by E
~20! and the expressions for these parameters are obtain
be

B5

C2

C1
f̃B~0!

11f̃1~0!
and A5

B3

C1
f̃B~0!, ~29!

where f̃B(0)5*0
`fB(t)dt, f̃1(0)5*0

`tfB(t)dt, C1

5*0
`x2sech(x)dx5p3/8, and C25*0

`x3sech(x)dx
511.8673.

III. RESULTS AND DISCUSSION

The expression for binary contribution to the force au
correlation function, i.e.,fB(t) given by Eq.~23! involves
six-dimensional integral over function of potential, pair di
tribution function, and the time dependence of position a
momentum. We have used Monte Carlo method of multi
integration to evaluate this six-dimensional integral. We p
form Monte Carlo integration by a user-supplied@16#
6-dimensional function over a rectangular volume specifi
by the region of 12-dimensional vector consisting
6-dimensional ‘‘lower left’’ coordinates of the region, fol
lowed by 6-dimensional ‘‘upper right’’ coordinates. The var
ous appropriate inputs used for this integration areDt*
50.0050, with each iteration approximately with 5000 ca
2-3
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SHARMA et al. PHYSICAL REVIEW E 68, 021202 ~2003!
to the function to do high accuracy integration on the op
mized grid over about 15 iterations. A Verlet algorithm@17#
is used to determine time dependent position and momen
coordinates. The dimensionless time variable used ist*
5t/t, with t5Ams2/e ~wheres ande are two parameters
of LJ fluids!, and fB(t* ) is evaluated for 0<t* <1.0. For
t* >1, fB(t* ) almost approaches 0, as expected.

We calculatef(t) from Eq.~28! by separately adding th

FIG. 1. Comparison of our results for the normalized force
tocorrelation functionf(t* )/f(0) ~solid line! with those of mo-
lecular dynamics~solid circles! and binary contribution~dotted line!
to it, for ~a! n* 50.6 and T* 54.53 and ~b! n* 50.84 andT*
50.73.
02120
-

m

multiparticle contribution tofB(t) obtained above. Param
etersA andB are determined from Eq.~29!. It is found that
parameterA thus obtained is of the order of the three-bo
contribution to the fourth-sum rule (V43) obtained by using
superposition approximation. It may be noted that like ma
body correlation effects,A andB also increase with increas
in density. The results obtained forf(t* ) are plotted in Figs.
1~a,b! for two different densities and temperatures at~a! n*
50.6, T* 54.53 and~b! n* 50.84, T* 50.73 ~triple point!,

- FIG. 2. Comparison of our results for the normalized veloc
autocorrelation functionc(t* ) ~solid line! with those of molecular
dynamics~solid circles! and binary contribution~dotted line! to it,
for ~a! n* 50.6 andT* 54.53 and~b! n* 50.84 andT* 50.73.
2-4
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where n* 5ns3 and T* 5kBT/e are, respectively, the re
duced density and the reduced temperature. We have c
pared our results with molecular dynamics~MD! results of
Heyes@18# and with the results obtained solely due to bina
contribution to f(t). A significant improvement is found
over binary contribution results, as can be noted from
Figs. 1~a,b!.

Fromf(t) obtained above, we have calculated the vel
ity autocorrelation functionc(t* ) for same densities an
temperatures and compared the results with simulation
sults of Heyes in Figs. 2~a,b!. The binary contribution to
c(t* ) is calculated by assuming thatf(t)'K(t) @9#, from
expressions~16! and~18!. The results are also given in Fig
2~a,b!. It can be seen from Fig. 2 that a significant improv
ment has resulted for both the thermodynamic states
clearly shows the importance of multiparticle correlation
fects, especially at high densities.

We have also calculated the self-diffusion coefficient fro
Eq. ~22! and compared our results with simulation resu
@13# and also with the results from BC only. In Fig. 3, w
plot D* n* (D* 5DAm/se) as a function of reduced densit
n* (5ns3) for four isotherms. Dotted line shows the resu
obtained using binary contribution only, atT* 52.51. It can
be seen that our results are much closer to MD results
compared to BC results over a wide range of temperatu
and densities. Hence, we have successfully added the m
particle contribution to the microscopically determined
nary contribution results of the force autocorrelation funct
f(t).

IV. SUMMARY AND CONCLUSION

In this paper, we have written the space-time mem
function as a sum of two parts: one associated with bin
contribution, descriptive of short-time behavior, and t
other associated with multiparticle dynamics, which becom
important at longer times. The results of microscopic cal
lations involving only binary contribution are alone sufficie
to explain the properties of system at low density. But
dense fluids, it is known that multiparticle effects are nec
sary to predict the dynamical and transport properties.
till now it was not possible to combine the microscopic c
culations of binary contribution with that of multiparticl
contribution. So, in our present work, we have taken a s
ahead in this direction and added the multiparticle contri
tion separately to the microscopically obtained binary con
bution to the force autocorrelation function~FACF!. We have
taken the multiparticle correlation function as a tw
parametric phenomenological function. The two parame
02120
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of multiparticle correlation function are exactly obtainab
from two exact conditions for FACF. As expected, one of t
parameters obtained has been found to be of the order o
three-body contribution to the fourth-sum rule using sup
position approximation.

We have also calculated the velocity autocorrelation fu
tion from the FACF. Self-diffusion coefficients have bee
obtained from the time evolution of the FACF at vario
densities and temperatures. Predicted results for the VA
and self-diffusion coefficients are compared with compu
simulation data and show a significant improvement o
binary contribution results. The improvements over the
sults of binary contribution calculations clearly demonstr
the role of multiparticle correlations. Further, our study su
gests that systematic inclusion of multiparticle contributi
is desirable to understand the dynamics of fluids in terms
interatomic potential.
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FIG. 3. Variation in the self-diffusion coefficient with reduce
density forT* 51.46, 2.51, 6.0, and 10.0. Our results are indica
by solid lines and those of molecular dynamics by symbols. Dot
line shows results due to binary contribution atT* 52.51.
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