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Binary and multiparticle contributions to the velocity autocorrelation function
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A method for including the contribution of many-body correlation effects to the microscopically obtained
results of the two-body contribution to the velocity autocorrelation has been proposed. A significant improve-
ment over the results obtained through only binary contribution has been found, as can be judged by comparing
the results for force and velocity autocorrelation functions of Lennard Jones fluids with that of molecular
dynamic simulations. The agreement of results of self-diffusion coefficient is also quite good with simulation
data over a wide range of densities and temperatures.
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[. INTRODUCTION ond is generally thought of as due to the correlated multipar-
ticle collisions which are important at longer times and at

Considerable progress in our theoretical understanding diigh density. In the space-time description, it has been re-
atomic dynamics at wavelengths and frequencies on the m@ently possibl§9—12] to evaluate binary contributio(BC)
lecular scale of liquids and dense gases has been made dtw-a system of particles interacting via continuous potential.
ing the last three decadg$—3]. Time autocorrelation func- In these calculations, only two-particle contributions have
tions, such as the ones associated with velocity and densitpeen included. The results of such microscopic calculations
contain information about the dynamics of atomic motions ofare sufficient to explain the properties of a system at low
a system. Computer simulation techniques and neutron scadensities. On the other hand, for dense systems, it is known
tering experiments have given an invaluable informationthat multiparticle effects are necessary to predict the dynami-
about the various time correlation functioiBCF9. Theo-  cal and transport properties. But it has not been possible fill
retically, Mori’s memory functior(MF) technique has played now to combine the microscopic calculation of binary con-
a key role in the calculations of these time correlation func4ribution with that of multiparticle contribution. This, in fact,
tions. is one of the motivation behind the present work.

The microscopic calculations of the memory function ina  In this paper, first of all, we have numerically calculated
specific problem can be initiated in two different ways. Onethe binary contribution to the force autocorrelation function
of the approaches is based on the investigations of a genegg(t). The force autocorrelation functiof(t) is the auto-
alized phase-space kinetic equation for arbitrary frequencgorrelation function of the forces at two different times act-
and wavelength. The use of phase-space coordinates enableg on a tagged particle, and is directly related to the calcu-
one to analyze the microscopic details of molecular colli-lation of velocity autocorrelation function. The expression
sions and thus to perform a direct calculation of the timefor ¢g(t) involves the six-dimensional integral over function
correlation function in terms of a given potential function of potential, pair distribution function, and the time depen-
and equilibrium distribution function. Due to mathematical dent position and momentum. We have used Monte Carlo
complexity of solving the kinetic equation for continuous method to evaluate multiple integrals involved in the expres-
potentials, these equations have been applied mostly to hagion of ¢g(t) for Lennard JonegLJ) fluids over various
sphere fluidg[4]. The difficulty of extending hard sphere densities and temperatures. Having the microscopic informa-
kinetic theory to continuous potential systems lies in the faction about the binary contribution, we propose here a method
that the collisions are no longer instantaneous and manyfor combining it with many-body correlation contribution.
particle dynamics cannot be decomposed into sequences bfany-body correlation effects are included in the present
two-particle collisions. There is yet no tractable kinetic equawork by using a phenomenological function. The two param-
tion which can be readily solved to predict time correlationeters of the many-body correlation function are so obtained
functions and transport coefficients of fluids, particles ofto satisfy two exact conditions fap(t). One of the param-
which are interacting via continuous potential. eters obtained has a value which is of the order of the three-

The alternative theoretical approach for the study of timebody contribution to the fourth-sum rule obtained using the
correlation functions is based on the space-time memorguperposition approximation.
functions. The memory function appearing in the Mori- The velocity autocorrelation functioV/ACF) has been
Zwanzig continued fraction repesentation of the time correcalculated from the knowledge of the force autocorrelation
lation function can be so chosen that they preserve a numbéunction ¢(t). The results thus obtained are compared with
of properties of the TCFs, regardless of the explicit form ofsimulation results at few temperatures and densities, and one
the MF[1,5]. The MF can be written as a sum of two terms observes a significant improvement over binary contribution
[6—8], one reflecting two-particle dynamics, while the sec-results. We have also calculated self-diffusion coefficients
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from the time evolution of the force autocorrelation function one, 9£Q, which appears in Eq5). A simple way of doing
¢(t). Our results for the self-diffusion coefficient are much this is by applying the identity
closer to the simulation results of Heyfs3] and also show

a significant improvement over the binary contribution’s re- o 1 L -
sults. Thus, we are able to add multiparticle contribution and f—w + L—w @
estimate separately the many-body correlation effects to the
microscopically obtained binary contribution to the force au-to the Fourier-Laplace transform gf(t), given by
tocorrelation functionp(t). .
The layout of the paper is as follows. In Sec. I, we have Z’f(w):if dtel“ty(t)
presented the proposed theory. Results and discussion are 0
given in Sec. Ill. Conclusion is given in Sec. IV.
=(v 0)‘—0 0)>, 8
Il. THEORY < w0 =g |vad
The normalized velocity autocorrelation function twice. This yields
(1) =(0 10 1(1)/{v5(0)), (D W?P(0)=P(O)[~ 0+ d(w)], ©)

is related to the self-diffusion coefficient through the Greenwhere
Kubo expressionil,2], given as

~ 1

kBT - ¢(w): <£U1x(0)‘£__w‘ ﬁle(0)> /<U§X(O)> (10)

D= ?J P(t)dt, 2
0 is the Fourier-Laplace transform of the force autocorrelation

function. The comparison of Eq$4) and (9) gives the fol-

wher is thex-component of the velocity of particle 1 ; .
erev ,(t) is thex-component of the velocity of particle lowing relation:

at timet. kg, T, andm are the Boltzmann constant, tempera-
ture, and atomic mass of the particle, respectively. Using

Mori's projection operator procedure, the time evolution of K(w)= L(w) (12)
the y(t) (VACF) can be written as w—d(w)
di(t) t Writing
T:_J K(t—7)y(7)dr. (3 5 _
° b(w)=¢'(0)+i¢"(w), (12)
Taking Fourier-Laplace transform of E(B), we get where ¢’ (w) and ¢"(w) are the real and imaginary parts,
#(0) respectively, of(w), we obtain expression for the real and
Ho)=———"0, (4)  imaginary parts ok(w), respectively, given by
0+ K(w)
: , o , 0’ ¢’ (0)— w(d*(0)+ ¢"*(w))
where the expression for the first-order memory function is K'(w)= — 22 , (13
: [w— ¢ (0)]*+ ¢" (o)
given by
1 and
T j— — 2 n
K(w)= < Qz:le(m‘ 5 Lg_w‘ chlx(0>> / (v5(0)). e W) »
©) [o—¢ (o) +¢" ()
In the above equatiory; is the Liouville operator defined by Defining the frequency spectrufifw) of the VACF as
L=Lo+ >, L1(jK) f(w)=2df”(w)=2fo coq wt) (t)dt, (15
<k
=—iz &' i—iE Fr i_i ’ ® where /' (w) is the imaginary part ofi(), given by
j m ar] 1<k (?pj Pk IC”(&))
P'(w)= ; 7 , (16)
whereF;,=— du(r;,)/dr; is the force,p is momentum, and [0+ (@) +[K"(0)]?

rix=Irj—ry. @Q=1—"Pis an operator orthogonal to projec-
tion operator P=(v%,(0)) Y v14(0))(v14(0)|]. The time
evolution of ¢(t) can be expressed in terms of a conven- K(w0)=K'(0)+iK" (). 17)
tional correlation function whose time evolution is governed

by the original Liouville operatof rather than the projected Therefore, the time evolution af(t) can be obtained from

where

021202-2



BINARY AND MULTIPARTICLE CONTRIBUTIONS TO. .. PHYSICAL REVIEW E68, 021202 (2003

In order to include the multiparticle contribution t(t),

1 ©
P(t)= ;Jo cogwt)f(w)dw. (18 we examine its short-time expansion, which is given as
2 4
The expression for the self-diffusion coefficient obtained ¢(t)=V2—V4t—+V6t—+-~-, (25)
from Egs.(2) and(15) is given as 2! 4!
keT f(0)  kgT where
D=—_ ) = '?, _ (19
m 2 mK"(0) d" "
_ _ _ - Vzn:<wv(t)ﬁv(t)> /(kBT/m) (26)
This expression for the calculation of self-diffusion has been

used frequently. However, it has been rarely used by expres

) ) . . Are essentially &th sum rules of the velocity autocorrelation
ing K"(0) in terms of the force autocorrelation function. In y y

the present work, we use E(.4) to evaluatelC"(0). Wefirst
note thate(t) satisfies two exact relations given as

F¢>(t)dt:o and Jmtq’)(t)dt:—l. (20)
0 0

Using these relations and E@L4) in o—0 limit, we find
that

w2

lim K"( )= lim (22)

wHO(ﬁ”(w) *

)

This provide us with another relation for the diffusion coef-
ficient, given as

w—0

dte(t)t?

KeT (=
D=-— %fo S(Dt2dt. (22)

This is still an exact result. To calculate self-diffusion from

function. The expressions for these sum rules are already
known [15] up to sixth order. Here, it is important to note
that V,, V4, and Vg involve static correlation upto two,
three, and four particles respectively. On the other hand, bi-
nary part¢g(t) involves only two-particle correlations and
has a short-time expansion given as

t? t4
¢B(t):V2_V4ZE+VGZE+ cee (27)
where V,,, represents1-body contribution to themth sum
rule. From the two expansior{&5) and(27), one finds that

t)= gt t2V 1 Yes* Ves v +
¢( )_ ¢B( ) 2 43 6V43 21 e
~ ¢a(t) — AtPFy(BUY), (28)
whereF(x) is a multiparticle correlation function even i)
andA andB are two parameters. In the present work, we take

F(x) as hyperbolic secant form. Paramet@randB can be
calculated exactly using two exact relations given by Eq.

this expression, we need to know time evolution of the forcg () and the expressions for these parameters are obtained to

autocorrelation functiorp(t).

The exact calculation of(t) for a fluid consisting of
interacting particles is not yet possible. However, Liouville
operator appearing in E@6) can be expanded using cluster
expansion methofll4]. Using this technique, the expression
for binary contribution top(t) has been obtained by Pathak,
Ranganathan, and Johns@]. The expression obtained for
binary contribution tog(t) is given[9] by

n ag(r)
vett)=——=| [ drane| | = —F a0,
m2\/§ X

(23

P
P

where g(r) and G(p)=(1/27p2)3% P20 with p,
=(mkgT)*? are, respectively, the static pair correlation
function and the Maxwellian momentum distribution. The
position vectorr (t) and the momentum vectg(t) of a par-
ticle moving in a central potential field(r) obey Newton’s
equation of motion given by

au(r)
ox -’

1dp, md* B
2dt 2a8 =

(24

wherex, py, andr are the initial values of these quantities at
time t=0.

Com
< %8(0) B3
B=—-——— and A=—gg(0), (29)
1+ ¢4(0) Cq
where  $g(0)=[5¢a(t)dt,  $1(0)=[Gteg(t)dt, C;

= [5x?sechk)dx= 718, and

=11.8673.

C,=[x3sechk)dx

III. RESULTS AND DISCUSSION

The expression for binary contribution to the force auto-
correlation function, i.e.¢g(t) given by Eqg.(23) involves
six-dimensional integral over function of potential, pair dis-
tribution function, and the time dependence of position and
momentum. We have used Monte Carlo method of multiple
integration to evaluate this six-dimensional integral. We per-
form Monte Carlo integration by a user-supplidd6]
6-dimensional function over a rectangular volume specified
by the region of 12-dimensional vector consisting of
6-dimensional “lower left” coordinates of the region, fol-
lowed by 6-dimensional “upper right” coordinates. The vari-
ous appropriate inputs used for this integration &g
=0.0050, with each iteration approximately with 5000 calls
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FIG. 1. Comparison of our results for the normalized force au-
tocorrelation functiong(t*)/¢(0) (solid line) with those of mo-
lecular dynamicgsolid circles and binary contributioifdotted line
to it, for (8) n*=0.6 andT*=4.53 and(b) n*=0.84 andT*

=0.73.

mized grid over about 15 iterations. A Verlet algorithitv]

0.6

FIG. 2. Comparison of our results for the normalized velocity
autocorrelation functions(t*) (solid line) with those of molecular
dynamics(solid circleg and binary contributiorfdotted ling to it,
for (@) n* =0.6 andT* =4.53 and(b) n* =0.84 andT* =0.73.

multiparticle contribution togg(t) obtained above. Param-
to the function to do high accuracy integration on the opti-etersA andB are determined from Ed29). It is found that

parameterA thus obtained is of the order of the three-body

is used to determine time dependent position and momentuontribution to the fourth-sum ruléV(;;) obtained by using

coordinates. The dimensionless time variable used*is
=t/r, with 7=mo?/e (Whereo and e are two parameters
of LJ fluidg), and ¢g(t*) is evaluated for &t*=<1.0. For
t*=1, ¢g(t*) almost approaches 0, as expected.

We calculatep(t) from Eq.(28) by separately adding the

superposition approximation. It may be noted that like many-
body correlation effectsh andB also increase with increase
in density. The results obtained fei(t*) are plotted in Figs.

1(a,b for two different densities and temperaturegatn*
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where n*=no® and T* =kgT/e are, respectively, the re- 1.0 T T T T T T T T
duced density and the reduced temperature. We have corn
pared our results with molecular dynami@dD) results of
Heyes[ 18] and with the results obtained solely due to binary
contribution to ¢(t). A significant improvement is found
over binary contribution results, as can be noted from the

Figs. 1a,b. |
From ¢(t) obtained above, we have calculated the veloc- 06 k \ i

ity autocorrelation function/(t*) for same densities and T'=10.0 .
temperatures and compared the results with simulation re‘c -

sults of Heyes in Figs. (3,b. The binary contribution to 'n
(1*) is calculated by assuming that(t) ~K(t) [9], from 04k T=60 i
expression$16) and(18). The results are also given in Figs.
2(a,b. It can be seen from Fig. 2 that a significant improve- 4
ment has resulted for both the thermodynamic states ant
clearly shows the importance of multiparticle correlation ef- 02
fects, especially at high densities.

We have also calculated the self-diffusion coefficient from

Eq. (22) and compared our results with simulation results

[13] and also with the results from BC only. In Fig. 3, we 0-002
plot D*n*(D* =Dym/oe€) as a function of reduced density ' .
n* (=nc?) for four isotherms. Dotted line shows the results n

obtained using binary contribution only, &t =2.51. It can

be seen that our results are much closer to MD results, at?ensity forT* =1.46, 2.51, 6.0, and 10.0. Our results are indicated

compareq .to BC results over a wide range of temperaturegy solid lines and those of molecular dynamics by symbols. Dotted
and densities. Hence, we have successfully added the mulijf,e shows results due to binary contributionTat=2.51.

particle contribution to the microscopically determined bi-
nary contribution results of the force autocorrelation function

FIG. 3. Variation in the self-diffusion coefficient with reduced

(1) of multiparticle correlation function are exactly obtainable
' from two exact conditions for FACF. As expected, one of the
parameters obtained has been found to be of the order of the
IV. SUMMARY AND CONCLUSION three-body contribution to the fourth-sum rule using super-
position approximation.

In this paper, we have written the space-time memory e have also calculated the velocity autocorrelation func-
function as a sum of two parts: one associated with binarfion from the FACF. Self-diffusion coefficients have been
contribution, descriptive of short-time behavior, and thegptained from the time evolution of the FACE at various
other associated with multiparticle dynamics, which becomegjensities and temperatures. Predicted results for the VACF
important at longer times. The results of microscopic calcuang self-diffusion coefficients are compared with computer
lations involving only binary contribution are alone sufficient sjmylation data and show a significant improvement over
to explain the properties of system at low density. But forpinary contribution results. The improvements over the re-
dense fluids, it is known that multiparticle effects are necessy|ts of binary contribution calculations clearly demonstrate
sary to predict the dynamical and transport properties. Buthe role of multiparticle correlations. Further, our study sug-
till now it was not possible to combine the microscopic cal-gests that systematic inclusion of multiparticle contribution

culations of binary contribution with that of multiparticle is desirable to understand the dynamics of fluids in terms of
contribution. So, in our present work, we have taken a stefhteratomic potential.

ahead in this direction and added the multiparticle contribu-

tion separately to the microscopically obtained binary contri-

bution to the forqe au'tocorrelatlon_functl()IFACF). We have ACKNOWLEDGMENT

taken the multiparticle correlation function as a two-

parametric phenomenological function. The two parameters One of us(P.S) thanks CSIR, New Delhi for support.

[1] J.P. Boon and S. YipMolecular Hydrodynamic§McGraw- [4] G.F. Mazenko, T.Y.C. Wei, and S. Yip, Phys. Rev6A1981

Hill, New York, 1980. (1972.

[2] J.P. Hansen and I.R. McDonaldheory of Simple Liquids [5] J.R.D. Copley and S.W. Lovesey, Rep. Prog. PI8&.461
(Academic Press, New York, 1986 (1975.

[3] P.A. Egelstaff,An Introduction to Liquid State2nd ed.(Clar- [6] L. Sjogren and A. Sjolander, J. Phys.12, 4369(1979.
endon Press, Oxford, 1992 [7] G. Mazenko, Phys. Rev. & 209(1973.

021202-5



SHARMA et al. PHYSICAL REVIEW E 68, 021202 (2003

[8] W. Gatze, inLiquids, Freezing and Glass Transitioedited by ~ [13] D.M. Heyes, Phys. Rev. B7, 5677(1988.
J.P. Hansen, D. Levesque, and J. Zinn-Jutiarth-Holland,  [14] R. Zwanzig, Phys. Re\l29, 486 (1963.

Amsterdam, 1991 [15] K. Tankeshwar, K.N. Pathak, and S. Ranganathan, J. Phys. C
[9] K.N. Pathak, S. Ranganathan, and R.E. Johnson, Phys. Rev. E 20, 5749(1987; R. Bansal and K.N. Pathak, Phys. RevoA
50, 1135(1994. 2773(1974).
[10] Rajneesh K. Sharma, K. Tankeshwar, K.N. Pathak, and S. Rarj16] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetter-
ganathan, J. Chem. PhyE08 2919(1998. ling, Numerical RecipesCambridge University Press, New
[11] Rajneesh K. Sharma, K. Tankeshwar, K.N. Pathak, S. Ranga-  York, 1992.
nathan, and R.E. Johnson, Phys. Re%63-1550(1997). [17] L. Verlet, Phys. Revl59, 98 (1967).
[12] Rajneesh K. Sharma, K. Tankeshwar, K.N. Pathak, and S. Rarj418] D.M. Heyes, J. Chem. Soc., Faraday Trans72l, 1741
ganathan, Phys. Rev. &7, 6195(1998. (1983.

021202-6



