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Spatially and temporally inhomogeneous evolution of one-dimensional vicious walkers with wall restriction

is studied. We show that its continuum version is equivalent with a noncolliding system of stochastic processes
called Brownian meanders. Here the Brownian meander is a temporally inhomogeneous process introduced by
Yor as a transform of the Bessel process that is the motion of radial coordinate of the three-dimensional
Brownian motion represented in spherical coordinates. It is proved that the spatial distribution of vicious
walkers with a wall at the origin can be described by the eigenvalue statistics of Gaussian ensembles of
Bogoliubov—de Gennes Hamiltonians of the mean-field theory of superconductivity, which have a particle-hole
symmetry. We report that a time evolution of the present stochastic process is fully characterized by the change
of symmetry classes from tygeto typeCl in the nonstandard classes of random matrix theory of Altland and
Zirnbauer. The relation between the noncolliding systems of the generalized meanders of Yor, which are
associated with the even-dimensional Bessel processes, and the chiral random matrix theory is also clarified.

DOI: 10.1103/PhysRevE.68.021112 PACS nunier05.40—~a, 02.50.Ey

I. INTRODUCTION periodt. If two of them collide, then both are annihilated
since all walkers are vicious persons. It should be noted that
Unbalance between short-ranged properties of interadghis noncolliding conditionseems to be very local and inci-
tions among elements and long-ranged cooperative effecgental, since any walker can enjoy free walking, while the
realized in macroscopic levels is a significant feature of systelative distances from the nearest-neighbor walkers are
tems far from equilibrium. Even in one dimension the con-greater than two units of lattice spacing. Fisf@rand Huse
tact process, a model of infection of a contagious diseas@nd Fisher8] derived the asymptotic formy(t,x)~t™
exhibits a continuous phase transition at a critical valyef N larget for finite x and determined the exponent as
the infection rate\, and in\ >\ infected and healthy indi-
viduals establish coexistence without detailed baldricz].
Boundary conditions locally imposed at the two edges in
one-dimensional lattice play an essential role in determining})\ . . . . . . .
the bulk properties in the asymmetric simple exclusion pro- n interesting and important fact is they, is n0|_’1l|_near InN
cess, which can be regarded as a model of traffic flows ir(\é);]prre]s.smg thel Iorflg—rangedl gﬁectfamong V'C'Olljs. wa}lkers,
highways[3—5]. The purpose of the present paper is to pro-W ich is a result of accumulation of contact repulsive inter-
. actions between nearest-neighbor walkers during the time in-
pose one theoretical treatment of such emergence of lon

N . _ Yrval [0t]. Moreover, Eq.(1) implies that the system pos-
range e_ff_ects in simplé.e., shor_t-range)(_jstochasnc mod_els sesses symmetry with respect to permutations of the walker
using vicious-walker models originally introduced by Fisher

) ) e o positions. This hidden symmetry was clarified as follows:
for wetting and melting transition$]. The key point is the  ,se and Fishef6,8] mapped the enumeration problem of

symmetry of higher-dimensional space, in which the nonyyaiks of the N particles from a set of positions;<- - -

Ny 1
= ZN(N-1). (1)

',bN:E 2

equilibrium many-body system is embedded. <Xy 10 y;<---<yy in time periodt onto the diffusion
ConsiderN identical and independent simple and sym-prghlem of a single particle in ths-dimensional space with
metric random walks with initial positionsq<x,<--- 3 set of wall restrictiongthe phase spagdrom a position
<Xy, wherex; are assumed to be even integers. One of thg— (x, ... x,) toy=(y;, ....yy) in time t. Assume that
fundamental quantities in the vicious-walk problgfifis the (¢ y[x) denotes the transition probability density of a one-
probability Ny(t,x), x=(xy, ... Xy), that all walkers retain  gimensional Brownian motion from to y in time't, that is,

the ordering of their positions up to time X;(S)<X»(S)
<...<Xy(s) for all 0=<s=<t. In other words, it is the prob-
ability that they never collide with each other for a time

p(t,y|x)=e~ 0 0%2 2721 then by exploiting the method
of images they derived thd-body Green function of vicious
walkers in the determinantal forf®]
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metric part(the Schur function multiplied by Gaussian ker- At
nels and the antisymmetric patthe product of differences

of variables, and NVy(t,x) is obtained as an integration of T *
Eq. (2) overy with restrictiony;<y,<---<yy.
Based on the above knowledge of the functigi(t,x),
let us next consider the evolution of vicious walkers in time
t, conditioned that they retain their orderifige., noncollid-
ing condition up to a given finite timeT. Katori and
Tanemurd 10] showed that this stochastic process was inho-
mogeneous both in space and time, and a transition in the
particle distribution was observed as titngoes on from O to
T. This transition is characterized by a symmetry change,
which can be described neither in the real one-dimensional -
o X

space nor in th&l-dimensional phase space, but in the space
of NXN Hermitian matrices. That is, the problem was ex-
actly mapped to the statistics &f real eigenvalues oN FIG. 1. Vicious walkers with a wall.

X N Hermitian random matrices in a time-dependent Gauss-

ian ensemble. Due to the Hermitian condition dix N ma-  tistics realize this stochastic process of vicious walkers with
trices with complex eIementij=Hij<+iH}k 'Ri: J=1.1 Zvv(\;ﬁllt,is:d clarify the hidden symmetry transition in the time
<Ik=N, N(N+1)/2 van'ables n setR—{H{»k '1S]_ =k The former problenti) was already solved by Krattentha-
=N} and N(N—1)/2 variables in setZ={Hj:1<j<k |or etal. [14], and the exponent governing the asymptotic
<N} are chosen as independent \(arlables. TH@%e{an.- ]Z?rm in larget, Ay (t,x)~t~ "N, was determined as

ables in total are assumed to be independently distribute

following the Gaussian distributions with zero means. The N2

variances of the variables iR andZ are proportional targ ¢N=?- 3
ando,, respectively, both of which are functionstofAs the

time t approaches the final tinig the variancer, decreases So in this paper, we will start from their result and take the
to zero and a transition from the ensemble of complex Hercontinuum limit of the model to solve the latter problin.
mitian matrices(the Gaussian unitary ensemble, GU&  In Sec. I, we construct a system of noncolliding Brownian
that of real symmetric matricéthe Gaussian orthogonal en- motions with a wall as a diffusion scaling limit of the corre-
semble, GOE occurs. By integrating over thd’=N2—N sponding vicious-walker model. An important result is that
variables other than th#l eigenvalues, a transition of the the N-body Green function of the obtained system is also in
eigenvalue statistics from the GUE class to the GOE class ithe determinantal form(2) for 0<x;<---<xy,0<y;
formulated[11], and it is indeed realized as the time evolu- <- - - <y, if we replacep(t,y|x) by

tion of positions of vicious walkergl0,12,13.

The above results suggest the possibility that vicious- - _
walker-type problems wittN walkers are generally mapped P(t.ylx)= V27t
to some solvable problems in the spaces with appropriately
higher dimension®l+N’, in which only the symmetries of This function becomes zero §s-0, representing the effect
the spaces should be considered and the interadtiesic-  of the absorbing wall a6. There are two distinct ways to
tions) among the original walkers are resulted from integrat-derive Eq.(4), given as follows.(a) Consider a Brownian
ing over the auxiliaryN’ variables. The symmetries of the motion starting from the origi® in a space with dimensions
higher-dimensional spaces govern the macroscopic behaviogs=2. We adopt thed-dimensional spherical coordinate
of the systems. The interacting particle systems far from=(r ¢,, ... ,64_,) to represent the motion. In particular,
equilibrium will be exactly solved, if we are able to find we can trace the radial coordinatthe modulus of the
relevant symmetries, which are generally hidden in the origiBrownian motion r=r(t) as shown in Fig. @) for d=3.
nal descriptions of the systems. Since the transition probability density ofis generally de-

Now we propose two kinds of problems of vicious walks, scribed using the Bessel function, such a stochastic process
which will be solved in the present paper in order to demon-of r js called the Bessel procefk5—17. If we multiply the
strate the above mentioned scheme for nonequilibrium sysransition probability density of the three-dimensional Bessel
tems. We assume that all walkers are located in the positivgrocess by/y, then Eq.(4) is obtained(b) For a real path
region of position as €x;<x,<---<Xxy and put an ab- of the Brownian motion fromx,0) to (y,t) in a spatiotem-
sorbing wall at the origiid (see Fig. 1. The problems aré)  poral plane, we consider an imaginary path fromx(0) to
to determine the probabilityvy(t,x) that all the walkers re- (y,t), wherex,y>0 [see Fig. 2)]. As an analogy of elec-
tain the ordering of their position@oncolliding condition  trostatic problem, we subtract the transition probability den-
by keeping apart from the wall up to tinteand (ii) to find  sity of the imaginary paths from that of the real paths to
out the time-dependent matrix model, whose eigenvalue stabtain Eq.(4) (the method of images

{ef(yfx)2/2t_ef(y+x)2/2t}. (4)
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\ ¢ y magnetic field22,23. They studied the Gaussian ensembles
of the BdG Hamiltonian in the form

w

0
) H:UT(O )

whereU is an appropriate unitary matrix. As we will give a
summary of their results in Sec. IV, Altland and Zirnbauer
discovered four new classes of eigenvalue statistics in addi-
o X tion to the previously known three classic Wigner-Dyson
X classegtwo of them are GUE and GOE, whose relation with
the vicious walks without a wall was reported in REE0])
(a) ®) and three chiral symmetry classéwo of them will be ar-

) ) gued in Sec. lll associated with the noncolliding systems of
~ FIG. 2. (a) Three-dimensional Bessel procegs) Method of  ganeralized meanders constructed from the even-dimensional
Images. Bessel processedn the four nonstandard symmetry classes,

denoted byC, Cl, D andDlll in Cartan’s notation 23], the
Yor studied a temporally inhomogeneous process calledlassesC and Cl are relevant in the present vicious-walk
the Brownian meanderwhich is obtained as a transform of problem. They have the probability density functions of non-
the three-dimensional Bessel process used in the above denegative eigenvalues in the form
vation (a) of Eq. (4). He also introduced thd-dimensional

U, w=dlagw1, ---1wN)1

Q
]
®
Y

. . . N
generalized meandemss the transform of thd-dimensional BAG, . 2 lol2202
Bessel processdd7]. In Sec. lll, we will give a general Paplw;0%)xe o2 K]H(SN | k= “’j|6€1:[1 lwel®,
theory of noncollidingN walkers constructed as a condi- (5)

tioned system ofl-dimensional generalized meanders. As a

special case, it provides a proof that the noncolliding SyStemvhere|w|2=E}\':le2 and the indicesr and 8 are specified
of Brownian particles in the presence of a wall is equivalentyg

with the noncolliding system of the Brownian meanders.

This is the complete generalization, to many-particle systems a=2, pB=2 forclassC,
with an arbitrary number of particled|, of the fact that the
single-particle Green functiof@) of a Brownian motion with a=1, pB=1 forclassCI.

wall restriction at the origin is proportional to the transition
probability density of a single three-dimensional Bessel proWe will show in Sec. IV that the transition of distribution of
cess. A key point of our proof for this result is the proper vicious-walker positions with a wall is described by the sym-
transform from theN-body Green functiori2) to the transi- metry change from class to classCl of the BAG Hamilto-
tion probability density by multiplying an appropriate ratio nians. This fact was already reported by Nagad|, but in
of Nyy's [see Eqs(8) and(20) below]. Moreover, our general this paper complementary results will be given. In an earlier
argument gives that, if we consider the probléin for the ~ Paper[13], the transition from GUE to GOE realized in the
d-dimensional Bessel processes and generalized meandersVi§ious walks without a wall was characterized by the
the case ofeven d it is solved using the Gaussian matrix 9raphical expansions with time-dependent coefficients for
theory with chiral symmetries, which is relevant for the the moments of walkers. In Sec. V, we will introduce the
physics of QCD at low energigd8—21. Since Brownian Mobius graph expansions for the moments of the vicious
meander is made from tftaree-dimensionaBessel process Walkers with a wall. Moreover, using exact results of dy-
as mentioned above, it is concluded that the present problefigmical correlations by Nagd@4], closed formulas for the
with Eq. (4) is not related with chiral symmetry of matrices moments will be given. Such graphical expansions will be
and that matrix models in the different symmetry classegePorted in detail in the present paper for the nonstandard
should be considered. symmetry classe€ and Cl of Altland and Zirnbauer. Con-
The latter derivatior(b) of Eq. (4) gave us a hint to find ~cluding remarks are given in Sec. VI.
out the true symmetries, which govern the distribution of
vicious walkers with a wall;particle-hole symmetryThe Il. VICIOUS WALK WITH A WALL AND ITS DIFFUSION
particle-hole symmetry is important in the BCS theory of SCALING LIMIT
superconductivity. In particular, its microscopic mean-field
treatment ignores any local interactions among particles and
holes, but considers this symmetry with the so-called First, we consider thdl independent, simple and symmet-
Bogoliubov—de GenneddG for shorf Hamiltonian. Aran- ric random walks on an integer lattic&={...,—2,
dom matrix theory of the BdG-type Hamiltonians was intro- —1,0,1,2 ...} starting from the sitegx;}, j=1,2,... N,
duced and developed by Altland and Zirnbauer in order teand denote the position of th¢th walker at timen
describe the energy-level statistics and transport properties i 0,1,2 . .. by x;(n). Assume that the initial positions are
a metallic quantum dot in contact with a superconductor in all distinct non-negative even integers and ordered as 0

A. Determinantal formula
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<X;<X<---<Xy. Then we impose the noncolliding condi- . fut=s,yX)N(T—ty)
tion up to a given timen=0, gn,T(S.Xty) = <
Mi(T=5,%)

®

X1(N)<Xp(n)<---<xn(n), Nn=1,2,...m. ) ) .
since the numerator is the probability that we have the non-

Such conditional walks are calledcious walks up to time m colliding (with each other and with a walBrownian paths
[6]. Here we impose further restriction on the walks as from x at timesto y at timet and these paths keep noncol-
. liding from timet up to timeT as well, and the denominator
xj(n=0, j=12,...N, n=12,...m is the probability that the Brownian paths are noncolliding all
during time interval s, T].

In other words, there is a wall at the origin and all the walk- It is useful to rewrite Eq(6) as

ers are conditionedhever to collide with each other or to
collide with the wall during the time intervél<n<m.

Let Ny(m,y|X), X=(Xq1, ... Xn), Y=(Y1,....Yn), be
the total number of the vicious walks with wall restriction, (xR ot
in which the N walkers start from the positions;, | xe Jl;[l (efi"—e ")
=1,2;--,N, and arrive at the positiong;, j=1,2;--,N, at
time m. Krattenthaleret al. gave the determinantal formula

fN(t.y|X):(ZWt)_N/ZSpg(y)(exllt, LN
N

to this number a§14] X 1<j1;[k<N {(eX/t—eXi /(e txdlt—1))
m N —N+1
Ny(m,y|x)= det M+ X; — Yk X{H e /t] , 9)
1<j,k=N 2 =1
m where £(y)=(£1(Y), - . - En(Y)) with &(Y)=yn—j+1— (N
— s de(Z§j+N—j+1_Z‘7(§j+N—j+1))
) L. ) Spg(zl, . ,ZN): l " ! " y

Suppose that all random walks start from given initial posi- def(zN 1T 1—z (N7i+D)
tions x. Since the total number of walks is"?, the prob-
ability that they are vicious walks with wall restriction and and|X|2:21N:1Xj2- Note that sp(zy, . . .,zy\) is the charac-
end up with positiony is Ny(m,y|x)/2™N, ter of the irreducible representation corresponding to a parti-

tion A of the symplectic Lie algebrésee, for example, Lec-

B. Diffusion scaling limit tures 6 and 24 in Ref25]). Since we know the formula

In order to take the continuum limit of the vicious walks -7 N g
to derive the system of noncolliding Brownian motions, we sp(L, ..., 0= 11 12 5. ﬁj
introduce a functiong, (x)=2[Lx/2] for L>0, xeR (the Ist<i=Nmy—m=1 7T

set of all real numbejswhere[z] denotes the largest integer
not greater tharg, and let ¢, (X) =(d (X1), - . . ,dL(XN))-
By Stirling’s formula, we can take the diffusion scaling limit
as

with €;=¢;+N—j+1, mj=N—j+1 [25], and the integral
((17.6.6 on p. 354 in Ref[26])

N

—1x|2 _

[ axet TTpe—sirTL e
= =1

i<j<N

L\M . .
im 5] 2 M OR0, du 1 001= P 0 .

L—soo :zaNerN(Nfl)H F(1+jy)ITaty(j—1)]
for X,y with 0=<x;<---<xy,0<y;<---<yy, where =1 I'(1+y) '
fu(tybo="det [p(t,yilx)] (6)  we have the asymptotic
1<j,k=N
. 1.
with Eq. (4). Let T>0 and consider a system NfBrownian Ny(t,%) = —hy(X/ VD[ 1+ O(X/ )] (10)
motions conditioned never to collide with each other or to Cn

collide with the wall atx=0 in[0,T]. Set ~ N2rN . . .
for |x|/\t—0, wherecy=(m/2) I;_,T(2))/T(j) with

- - the Gamma functiod’(z) and
Nu(t,x)= dyfn(ty|x), @)
0=y1<---<yy N
. -
Wheredy=HJN: 1dy; . Then the transition probability density hN(X)_lngng (X=X )61:[1 X (11)
from the state &x;<---<xy at times to the state &y,
<...<yy at timet(=s) of such a system is given by Substituting Egs(9) and(10) into Eq. (8), we find
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In 1(0,0:t,y) The essential difference between E@$4) and (15) is
L, .o found in the exponents of the factofg,(y)? such thatg
= TN 72~ NN+ D2g= M2 (\) A(T—1,y), =2 in Eq.(14) and 8=1 in Eq.(15). This factor expresses

(12) strong repulsive interactions among particles and between
the wall and each particle, in which the larger expongnt
gives stronger repulsion for short distances. At the very early
(8) and (12 define theN noncolliding Brownian motions stage of the proqe§$£T<1,_t_he rgpulspn may be strong,
with wall restrictionin time interval (0T] [27]. since th? noncolhdmg (.:O”d't'on will be |mpqsed for a long
time period up to timd in the future. As the timé goes on,

It should be noted that/y(t,x) is the noncolliding prob-  he repulsion strength decreases as does the remaining time
ability of Brownian motions with wall restriction and EQ. ntil T and attains its minimum at=T.

(10) gives the power-law behavioVy(t,x)~t~ YN in larget
for finite x with the critical exponent3).

whereENzlm}\LlF(j). The transition probability densities

D. Stochastic differential equations
C. Transition from class C to classCl As explained in Ref[10] in the case without wall restric-
- . . tion, the positionx(t) = (x4(t), . . . Xn(t)) of the N noncol-
anc'i:rsoim IIEq.(i%/?rlw t(:se T—¢ limit of Eq. (8) is determined liding Brownian motions solve the stochastic differential
Py 9 equations in a modified type of Dyson’s Brownian motion
An(y) model[26,28. In the present case with wall restriction, we
N A

E’N(O:X;taY)E lim QN,T(O:X;tay): ~ fN(t1y|X)1 have
T hn(X)

(13 dx;(t)=E[[x(t)]dt+dB;(t),

where we have set=0 and used Eq11). Moreover, we can
take thex— 0 limit of Eq. (13) to obtain for 0<x;<---<xy,0<t<T, where

~ — _ 2o
pN(O,O;t,y)=C'Nt N(2N+1)/2e Iyl /2thN(y)21 (14) A P A
El(x)= KInNN(T—t;x),
wherec’ = (2/m)V4/TI}L,T'(2j). That is, we have the iden- :

tity
and{B,—(t)}}\‘=1 are N independent standard Brownian mo-
Pn(0.0;t,y) = NI pSa(y;t) tions
BdG, . 2y -
for Osy;<---<yy, wherep;,(w;0°) is the probability B,(0)=0, (B,(1))=0,

density function(5) of non-negative eigenvalues of the BdG
Hamiltonian in clas€ (a«=8=2). On the other hand, if we

sett=T in Eq. (8), for Vy(0y)=1, we have ((Bj(t)—Bj(8))(By(t) — Bi(S))) =t — 5| 5k

- . A 4= N(N+1)/240—|y|2/2t{;
In,1(0.0;T,y) =yt N+ 12~ hn(y), (15 for anyt,s>0,j,k=1,2,... N. In particular, in the limitT

which implies the identity —oo, EQgs.(10) and(11) give the equations

gn.7(0,0;T,y) =NIpBiS(y;t). 1
In,( y) P11 (YD) dx;(t) = dB;(t) + 0 dt
“ i
That is, att=T, gy 7(0,0;T,y) is identified with the prob-
ability density function(5) of non-negative eigenvalues of + 1 + 1 dt
the BdG Hamiltonian in clas€! (a=pB=1). 1=kSR k=) [ XD =X (1) Xj(1) + X (1)

The above results mean the following facts. If we con-
sider theN noncolliding Brownian motions with wall restric-
tion up to a finite timel >0, in which all particles start from
the origin, as the ratia/T—0, the distribution of particle for 1<j=<N [27]. In the stochastic differential equation for
positions is asymptotically described by the eigenvalue stathe position of thejth particle, the drift termait/x;(t) and
tistics of the BAG Hamiltonian in clags. On the other hand, dt/(x;(t) —x(t)) represent repulsive forces from the wall at
at the final timeg =T, it can be identified with the eigenvalue the origin and that from théth particle, respectively. In
statistics of the BAdG Hamiltonian in clagd. There occurs, addition to these, there are terms of the fodt/(x;(t)
thus, a transition from the clagsdistribution to the clas€l +xi(1)), 1=k=N,k#], which can be interpreted as effec-
distribution as time goes on from 0 tdl in our stochastic tive repulsive forces from the mirror images of other par-
process. ticles located at-x,(t), 1<k=N, k#]j.

(16)
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I1l. NONCOLLIDING MEANDERS AND CHIRAL for x,y=0. This bias makes the process defined by (&8)
RANDOM MATRIX THEORY temporally inhomogeneous, and Yor called it generalized
meanderindexed {,«). In particular, whenv=1/2 and

A. Definitions of elementary processes )
yp =1, the process is called tH&rownian meandef17]. The

Consider a diffusion equation in dimenside=2, transformation from Eq(17) to p{"*)(s,x;t,y) by Eq.(19) is
1 ) a generalization of thk transform of Doolj29]. Note that if

iu(t,y|x)= -3 &_Zu(t,yb() we replaceT by uin Eq. (18), thenh{"*)(u,w)=w"*, since

ot =1 gy p"(0,zlw)=6(z—w). In the caser=1/2, k=1, ands

=0, Eg. (19 becomes, by this replacement,
with the initial condition u(O,y|x)=5(x—y). We use p(llz)(t,y|x)x/y' which is equal to Eq.(4) for 14(2)
the  spherical  coordinates X=(X,01,...,04-1),Y  =.2/(wz)sinte. This is the derivationa) of Eq. (4) men-
=(Y,e1, - - - ,¢4—1) and integrate over all the angular vari- tioned in Sec. I.
ables to obtain a differential equation for the radial coordi-

nate(the modulus B. Noncolliding systems and rectangular random matrices

2 Now we consider a system df generalized meanders

U(t yIx). conditioned that they never collide with each other for a time
interval (OT],T>0. Using the determinantal formula in Eq.
(2) and following the same way as Eg®) and (19), the
transition probability density is given by

1
2

ay> Yy dy

ﬁ_ —
Sultyho=

The unique solution of this equation satisfying the initial
conditionu(0,y|x)y *dy= 8(x—y)dy for x>0 is given as
FC (s, LN (T-1,y)

— 1 X (v,k) . _
u(t,y[x) = R y)’ gNT (s,Xty) = N T 50 (20
(xy)” t t
where v=(d—2)/2 andl () is the modified Bessel func- for 0=s<t<T,0<xy<---<xy,0<yy<--<yy, where
tion, for(sxty)= det [p9(s,x;ty0], (21
s 1<j,k=N
(2/2)2n+v
D=2 ST D and

If we setp((t,y|x)=u(t,y|x)y%" 1, then it is normalized as MU (T—t,%)= dyf((T—t,x,T,y).
TopM(t,y|x)dy=1 for anyx>0. We definep)(t,y|0) by O=yy=r<yn

imi (»)
thex—0 limit of p(t,y|x). Then we have Since f{(s,x;t,y) is temporally homogeneous and in-

dependent oT, we will write it asf{’(t—s,y|x). Moreover,

v+1
POt y[x) =" %e(xz+yz>’2‘|v(XTy . x>0y=0, note that
X
2041 U (s xity) =————f{(t=sylht"ty),
p(ty|0)= ———— e VZ  y=0. (17 h{"(s,x)
2T (v+ 1)t (22)
The d=2(v+1)-dimensional Bessel process is defined sowhere h{"<(t,x) =TI} ;h{"*)(t,x;), and thath{*(Tx)
that its transition probability density is given by EL.7) —HN 1X; . Then Eq (20) can be written as
[15-17.
For O<su<T,w=0, «€[0,2(v+1)), weconsider 1
g (s.xty)=

® MY (T—s,%)
h(T”'K)(u,W)zf dz f(T-u,zZlw)z *. (18 _
’ XHP(t=s YR I(T-ty) (@3

That is, we multiply a weight™ “ at the final timeT, so that,
as the arrival positiorz is nearer to the origin, the path is
more enhanced. Then the transition probability density from

X at times to y at timet with such bias at timd, 0<s<t /T/‘N”*K)(t,x)zf dyf Py [Ty~ (29
<T, is given by O=<y;<-<yn j=1

with

The important point is that we can confirm that E2@) with
P (t—s,y[x)h{(t,y) v=1/2 andx=1 is equal to the transition probability density
h{9(s,x) (8) of the noncolliding Brownian motions with a wall. In
(19 other words, we found the equivalence betwé®ss noncol-

p{r(s,x;t,y)=

021112-6
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liding Brownian motions with a walbnd the noncolliding N
Brownian meanderslf we setN=1 in Eq. (24) with » f(NV)(t'y|X)OC1<l;[k<N (sz—xﬁ)lj[l y
=1/2x=1, we haveM{¥>)(t,x)=1/x. Then Eq.(23) with st =

2v+1
I

s=0 is reduced to the equality(t,y|x)=pY2(t,y|x)x/y, » 2_ 2 [ duiue v
which is the statement given as the derivatianof Eq. (4) 1=]<k=N (Y7 =Yk m(Uy,Vy)
in Sec. I.

We then consider the lim|| — 0 to define the noncollid- 1 ;
ing generalized meanders, all starting from the orijat the ><exp< B Etr{(X—Y) (X=Y)}].

initial time s=0 for non-negative integers (i.e., evend).
Consider an arbitraryN; XN, complex matrices withN,
=N,. We denote byM(N;,N,:C) the space of all such Since t{(X—Y)"(X=Y)}—-try"Y=|y|* as|x| -0, we have
matrices. It is known [30] that any matrix A
e M(N4,N,;C) can be expressed by

f(ty1%)
—t
A=UTAV, (25 M=o (X =xp)
1<j<k=N
whereU andV are unitary matrices with sized; and N, N
respectively, and\ is the N;X N, matrix in the form ocH yj2V+1 H (yJZ_yﬁ)e—lyF/Zt. (27)
=1 1<j<k=N

A -
A:( 0) with A=diaga;,az, ... .an), (260  The above argument proves the following result. kete a
non-negative integer andOk<<2(v+1). The limit|x|—0
) ) ) of gf\,”{)(o,x,t,y) is given by

and wherea;=0,1<j<N,. The matrices|¢,V) parametrize ’
the coset space (N;) X U(N,)/[U(1)]N2, where[U(1)]N2
is the diagonal subgroup &¥(N,), and thus the y,A,V) () i N i1
can be regarded as “spherical coordinates” in the space 9n7 (00it.y)=ce Y Hl Yj
M(N1,N3;C). It should be noted thde,, . . . ,ay,} are not =

eigenvalues of\; they will be referred to as “radial coordi-

2 2\KNAV,K) (T _
nates.” The following integral formula proved in R¢R0] is XK]HKN (Y =YONO(T-ty),
useful. Let du(U,V) be the Haar measure ofJ(N;)
XU(N,)/[U(1)]N2.  For A,Be M(N;,Ny;C), set A (28)
=UJAAVa, B=U[AgVs, where U,,UgeU(Ny),
Va,Vee U(Np)/[U(1)]Nz, where ¢ is a normalization constant determined by
o=y < ... <y dya{7(0.0;t,y)=1. TheN noncolliding gen-
A Ag eralized meandemll starting from the origin0 at time Oare
Ap= . Ap= 0 defined by the transition probability densit®8).

C. Chiral Gaussian ensembles and transition of chiral

with A=diag(@a;, ... ay,), Ag=diagly, ... by,), aj cymmetics

=0b;=0,1<j=<N,. Then for an arbitrary constant,
For the spaceV(N;,N,;C) of all N; XN, complex ma-
1 trices, we introduce the integration measur (A)
_N N Rl _ . ;
f dM(UA,VA)EX[{——Ztr{(A—B)T(A—B)}) _HjilnkildAjdejk for A=(Aj) e M(N1,N;;C) with
20 Aj=Aj+iAji=\=1. The chiral GUE (chGUE for
a2+ b2 shory with variance o is the ensemble of matrices
exp( — I
207

Ny '
[1 (abp™™ ] (af—ad)(bf-b)
j=1 1<j<ks=N,

detisj,ksNz vl e M(N1,N,;C) with the probability measure

ajbk>

duv(A).

1
duCCURA: az)ocexp< -— trATA
20

Note that this integral formula can be regarded as a versiofior Ae M(Ny,N;;C) with the polar coordinate&25) and

of the Harish-Chandréltzykson-Zubey formula [31—33. (26)., we can show that the probability density function of the
Using this integral formula, Eq21) with a non-negative radial coordinatea=(a;, ... ay,) of Ae M(Ny,N;;C) in
integerv and «=0 is written as chGUE with variancer? is given as
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N2 tribution of particles in the present system can be regarded as
pehCUE g 6:2) o la%20° T | ajz(Nl_Nz)” a transition of the eigenvalue statistics of the BdG random
=1 Hamiltonian in the clas€ to classCl. The former statistics
are characterized by the exponght 2 of the repulsive fac-
Xl<']:I[<N (af—ap)?. tor hy(y)? and the latter by3=1. It does not imply, how-
sl ever, that the functional form of the distribution is main-
Next we setM(N;,N,:R) as the space of al; XN, real  tained in form(5) with =4 and only the exponeng
matrices forN;=N,. The chiral GOE(chGOB with vari-  changes continuously as the time passes. In this section, us-
anceo? is the ensemble of matric&&e M(Ny,N,:R) with ing a version of the H_arlsh—Chand(Etzykson—Zube) inte-
the probability measure gral formula over a unitary group, we show the fact that the

time evolution of the present process is describedviy-
matrix modelcoupling random matrices, one of which is
dv’(B), chosen from a Gaussian ensemble of the BdG Hamiltonian
matrices of clas< and the other of which is from that of
) , N Ny . ) classCl. There the time dependence of variances of these
with dv’(B)=II;Z,II, 2,dBj . The probability density 1y ensembles is different from each other.

1
duCOFB: o) exp( ——trB'B
20

function of the radial coordinatds= (b4, . . . ,sz) is given
in the form A. Hermitian and real symmetric matrices with particle-hole
N symmetry
_|hl2 2 — . . . .
pehCOf b; 0?) e~ P72 [ blNl > T]  |b2-bE. We consider the space of the Hermitian matrices specified
=1 1=i<ksN; by the following:
Then we consider the distribution of the sum of two rectan- a b
gular matricesC=A+ B, in which A andB are chosen from MPBIG2N:C)= [ H=| + +]: aisan NxN
chGUE and chGOE, respectively. The distribution function b’ —a

of C is the convolution of those of chGUE and chGOE.
Consider the ensemble of matric€&e= M(N1,N,;C), in
which the probability measure is given as

Hermitian matrix andb isan NXN

complex symmetric matr+<
ChGUE/GO%C;O’i, 2)

du o5
Since the dimension of the spaceafs N and that ofb is
— hGU _Rp-2 hGO .2
—JB i, py T (G B0 AN B ). N(N+1), the dimension of\1BIG(2N;C) is N(2N+1).
€ 1,N2;5 .
Define
We denote the probability density function of the radial co-
ordinatesc=(cq, ... ,CNZ) of matrix C in this ensemble by 0 Iy
pENGUEIGOR 2 (2N, N) C= “1y o) (29)
Comparing the above definitions and Eg8), we can
prove the following equality for non-negative integers wherel  is the Nx N unit matrix. ThenH e M BIG(2N: C)
{2 has the following symmetr{22,23:
g&”,’T””)(O,O;t,y)=N!pC“G“E’C’O{ yit| 1=z, FiN+wNJ,
H=—-CH'C ™ (30)

where Oy, <---<yy. It implies that, ifv=0,1,2 ..., the i i i . .
time evolution of the noncolliding generalized meanders in/ASSume that; is the 2N-dimensional eigenvector 6f with
dexed @, v+ 1) is represented by the transition of the eigen-an _eigenvalue w;; He;=w;¢;. Then by Eq. (30),

value statistics from the chGUE class to the chGOE class. __CHTC_l%: jej. Take the complex conjugate of both
sides and use the Hermiticity 6f and the factC "1=-(,

Y— _ 0 (Co*). Thi x i
IV. GAUSSIAN ENSEMBLES OF BOGOLIUBOV —DE we haveH(Cej) = —wj(Cey ). This means thafej is the

GENNES RANDOM MATRICES eigenvector ofH{ with the eigenyalue_— ;. Assume that
wi,wy, .. .,wy be the non-negative eigenvalues?f then
Since we have found that the noncolliding Brownian mo-other eigenvalues are given byw,, .. .,—wy. Therefore,

tion with a wall is equivalent with the noncolliding system of if we set
Brownian meanders with indices=1/2 andx=1, it does

not belong to the chiral symmetry classes discussed in the i
: . : 1 u, U,
preceding section. We have to consider the ensembles of =( ), U= (31
. . . . . T (Pl’ Y(PN ’ U* _ U* ]
Hermitian matrices in the form of the BdG Hamiltonian for U; 2 1

the mean-field theory of superconductivity.
As shown in Sec. Il C, the time evolution of spatial dis- then

021112-8
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whereC’(p’) is a function independent of the eigenvalues
. The important point is thal(¢) andJ(¢') are propor-

tional to |hy(w)|? and|hy(w)|, respectively.

o 0

HUT=UTA with Az( .
0 —w

We assume thdtl is unitary. Then we can see tht satis-
fies the relationC=(iU)"C(iU). The set of such ®Bx 2N B. Gaussian ensembles and eigenvalue distributions

unitary matrices is called the symplectic group S§(€) Altland and Zirnbauer introduced the Gaussian ensembles

. co L 2

[251%2' ;\&c\)/séecdc;?s?dnzlrzgc;ﬁ _iszguﬁmarized as follows: an)g)f the BAdG Hamiltonians in MP'%(2N;C) and i
. BdG, . . . .- .

He MB(2N:C) can be diagonalized as M E(2N;R), in which the probability measures are in the

form
A o 0 ] 1
UHU'=A= 0 -w/ iU e SF(ZN,C): MN(H;UZ)dH‘xeX[{ _ 47 trHZ) dH, (36)
g
whereo=diag(w,, . . . ,y), ©;=0,1<j<N. We then con- ) ) ) BdG .
sider the map with variance 2r°. For He M "“%(2N;C), we write the

complex variables asjy= af +iaj, b= bf} +ibj, with i
=V-1.af.aj.bf .bjeR, and choose the independent
variables  as {af} ,bf} ,bj :1<j<k<N}U{aj 1<j<k
wherep denotes the’ -dimensional vector, whose elements <N}. Since

are the independent variables@f We have the Jacobian of
this map ag23]

H(0,0)=[(0))12j=n.P=(P)1=pee]s (3D

N
=3 [1y2=23, (@) (o) (0}

Je)=d (aH IH JIH aH)
o)=|det —, ..., —,—, ... —
J Jd d d
[OF] wy JPq Pe +41<.2< {(aﬁ()z—'—(a}k)2+(bﬁ<)2+(b}k)2}r
N <j<k=N
_ 2 2 2\2
_C(p)jﬂl wilglﬂkg,\, (@] = )", (33 the probability measuré36) is rewritten as
N _(aRy2 2 _(nRy2 2 2 2
whereC(p) is a function independent of the eigenvalues =11 e (3))720" o= (b}))*20% @ (b};)7/20r
Next we consider the set m(Hio )_J-:1 2702 \2mo?  \2mo?
a b —@NH%e2 —(a)%e?
MBdG(ZN:R)Z[H=(b _ _1|: aandbareNxN « e~ (@7 e~ (@)
2 1=<j<k=N mo? N
R |
real symmetric matric%s " e~ (b0 o= (b))% 0? -
1=j<ksN  mwo? Tl

In this case, since the dimensions of the spacesavfdb are

both N(N+1)/2, the dimension ofM BIS(2N;R) is N(N  Wwith the integration measure

+1). We can see that arfy e M B46(2N;R) can be diago- N

nalized as dH=]] daRdbidb, [ daldaldbRdb!
jop o TR e LS | g | St |

o 0
U'HU’T=A=(O ) iU’ e SH2N:iR), (38)
—w

The probability measure (36) is given for H
where  w=diag(w,, . .. y), ®;=0,1<j<N.  Here eMP(2N;R) by setting all the imaginary par{gy ,bj}

Sp(2N;iR) is the symplectic group of X 2N matrices as zeros in Eqg37) and(38).
whose elements are purely imaginary. The map On the other hand, following the mag32) and(34), the

/ integration measures are transformed as
0]

H—(w,U ):[(wj)lsjsN-p :(pﬂ)ls,u,sf’]r (34 dHOCJ((p)ddeflﬁN(w)zdde (39)

with €’ =dimension of Sp(&;R)=N?, is considered. Here BAG HN[. ~ - _
p’ denotes thel’-dimensional vector with the elements of for He MPH(2N;C), 1U & Sp(N; C), and
the independent variables of . The Jacobian of this map is / TS /
dotormmed a€23] dHxJ(¢")dwdU' «|hy(w)|dwdU (40)
N for He MBI2N;R), iU’eSp(N;iR), respectively.
3=’ lojl IT  |o?-odl, @5 Since tﬂ‘l2=2|w|2=22_]!\‘:1w:2, integrating over the spaces
j=1 1<j<k=N Sp(2N;C) and Sp(N;iR) gives the distribution functions

021112-9



KATORI et al.

of the non-negative eigenvalues= (w4, .. .,oyN),®;=0, in
the form of Eq.(5) with the indicesa= =2 (classC) and
with = B8=1 (classCl), respectively.

C. Harish-Chandra integral formula

The transition probability densit{l2) from the stated to
the statey in timet is written as follows using Ed7), where

the proportional constants are independent of the stochastic

variablesy,

gn 1(0.0;t,y)ce” M 2R () f dzF\(T—t,2y)

0=z1<...<zy

“hu(y) [ dzsatfna)]

% det [e—ijIZt—(yj—zk)zlz(T—t)
1<j,k=N

— e V- +29%12(T-1)]

= ﬁN(y)J dzsgr hy(z)]e 12727

< et Lot~ 1)
et {exg—s=——|Yyi— =2
e 20(T—t) | Vi 7%

|

regard o’

t 2
Yj+f2k)

[{ T
e B vYE g,

Then we set w,=tz/T,1<k<N,
=(wq, --
Hamiltonian ' = (1) e M ®%(2N;R). By Eq. (40), dz
wdw’cdH'/|hy(w')], and we have

and

~ R 1 ,
gN,T(O,O;t.Y)“hN(y)f dH/#e_T‘w ‘2/2t2
hn(e”)

X det
1<j k=N

s e
—eX] _m(yj+wk) .

The result recently reported by Nagg@4] will give a ver-
sion of the Harish-Chandrétzykson-Zubey integral for-
mula in the present case,

- mg b’
ex _m(yj_wk)

(41)

1
f dUexp — — tr(UTHU—H")?
4¢°

x ; det [e (@i~ @i)?20” _ g~ (wjtw)®l20%]
hy(@)hn(o’)1<j k=N

where the integral is taken over the unitary matricesuch
thatiU e Sp(2N;C), and’H andH’ are Hermitian matrices
in MBI2N;C) and MBIS2N;R) having the non-

. ,wy) as the non-negative eigenvalues of the BdG

PHYSICAL REVIEW E 68, 021112 (2003

negative  eigenvalues w=(wq,...,wy) and o'
=(w1, ...,wy), respectively. Application of this identity to
Eq. (41) gives

Gn1(005t,y) A (y)? f du f A

1 2
X ex _2(0’)2tr(H)

1
Xex;{ - tr(UTYU—H’)Z) ,

20
with  o?=t(1-t/T) and (0')?>=t%T, where Y
:dlag(ylv coYNS T Y 1_yN)1 yj>011$J$N This

can be regarded as a BdG version of the two-matrix model
studied in[10] for the vicious-walker model without a wall.
Since it is a convolution of two Gaussian distributions, we
will arrive at the equality

In.1(00;t,y) <Ay (y)? f dUuy(t,UTYU), (42

where, forH e M BI¢(2N;C),

e—(aﬁ)zlza§ ef(bﬁ)z/zog e(b}j)z/zaf]

N
i, 7(t,H) =
#r(t 7 Jljl‘ \2mog  \2mog  \2mol

x 11 |
1<=j<k=N

e—(aﬁ)z/(ré e—(a}k)zml2
\/’770'% \/7TO'|2
e~ 00k o= (b))%l

Vmog  Nmof

X

} (43

1<j<k<N ‘

with

t
o&q=0?+(0')%=t, 0'|2=0'2=t< 1- f)

Now the transition from clas€ to classCl is explicitly
represented. The varianes increases linearly i, but o2
increases in time only up to time=T/2 and then decreases
in time. Ast—T, o'|2—>0 making the imaginary parts of ma-
trix elements zeros with probability one, and the symmetry
class is changed.

V. MOMENTS OF VICIOUS WALKERS WITH A WALL

In this section, we study the moments of positions of vi-
cious walkers with a wall in order to characterize the transi-
tion of distribution, as reported in Ref13] for the vicious
walkers without a wall. Theth moment of the positions of
walkers is defined as
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mN,T(t,n)=< 21 x]”>
t

i=
N

:f dx > x'gy r(0,0;t,x)
0=x;<...<xy J=1

for n=1,2,..., wherex; denotes the position of thgth
walker.

A. Wick’s formula
By Eq. (39 and equality (42), if n=2k is even, k

=1,2,..., wehave the equality

1 2k
mN’T(t,Zk)=§<trH ), (44)
where
(trH 2y = f trH 2K 1(t, H) dH.
Note that

tr(H?)= > H . H

TP P 'szk—ljzkszkjl’

where the sum is taken over &I combinations of indices over allN?¢ combinations of indiceg, ,j,, . . .

j11j2! L 1j2k'

PHYSICAL REVIEW E 68, 021112(2003

t(2T-1) t

2 =—
SR A ) pure

Define

ON(J, € m,N) = 8;n Opm— 654N mSeinn— Oj—NmOe—Nn
+ i Nmle-Nnt S-NmOe+Nn- (45)

Then we have the variance of the BdG-type Hamiltonian in
our time-dependent ensemble as

C2
(HjHmnd = 5 {00, Gmn) +ydn(j, :n,m)} - (46)

for 1<j,¢,m,n<2N. The Wick formula for Eq(44) is thus

1
my r(t, 2K) = > >

jl,jz ..... j2k WESZKZR

X(H

Iyl )+ 1Hi a(2) m(2)+ 1>

X(H, =(3)l ﬂ(3)+1Hj7r(4)iw(4)+1> e

X <HJ m(2k—1)) m(2k—1)+ 1Hj m(2k)) m(2K) + 1> ’

(47)

with the identification ., 1 =J 1, where the first sum is taken
Jok, and the
second one over the set of permutati®gof {1,2, . ..,%k}

Since Eq.(43) is a product of independent Gaussian inte-with the restriction

gration kernels, we can apply the Wick formula with the

variances
2 2

<(aF€)2>:%(1+5j€)’ ((a}€)2>=%(1—5j€),

2 2
(O =1+ 50), {(b})D) = (1+8y)

for 1<sj<{<N, wheredj, is Kronecker’s delta. These rela-

tions are rewritten as

2
C
<aj€amn>: <aj€(aT)nm>: E( 5jn5€m+ 7’5jm5€n)a

2
Cc
<bj€bmn>: E'}’( 5jn5€m+ 5jm5€n)-

CZ
<bj€(bT)mn>: E(éjn5(m+ 5jm5€n)

for 1=<j,£,m,n<N, where

Rim(1)<m(3)<---<m(2k—1),7m(2j —1)<m7(2]),

lsj=<k.

The total number of the terms in the second summation is
(2k—=1)!1.

B. Mobius graph expansion

There are ten terms in varian¢é6) with Eg. (45). We
will represent each of them by a pair of lines as shown in
Fig. 3 by expressing Kronecker's del, by a line without
an arrow connectingandn, &,y m by a line with an arrow
in the direction fromj to m, and ; _ , by a line with an
arrow in the direction fromm to j. The weights, which
should be multiplied to the factar?/2, are also listed. We
regard these pairs of lines as the hems of ribbons. As shown
in Fig. 3, in ten kinds of ribbons, half of them are twisted and
others are untwisted. Two kinds of ribbons do not have any
arrows on hems and other eight kinds of ribbons have arrows
on hems. We will call the ribbons having arrows in the same
direction current ribbons(c ribbons for shoi, the ribbons
having arrows in the opposite directioaschange ribbonge
ribbong, and those not having any arrowsrmal ribbons(n
ribbong.
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1 Y
J > n Jﬁ(ﬂ
I > m Z_¥1 m
'Y -

J < A > <l
l < m | —& m
'Y -1
j ) n JﬂCn
/ <« m | —& m
y 1
d <0 TS
/ > m l—?"l m

Y

FIG. 4. An example of allowed ways of putting arrows on rib-
FIG. 3. Ten kinds of ribbons with and without arrows. Weights bons. The 0 verticespare marked by c?/rclesp g

are also listed.

Inserting Eq.(46) into Eq. (47) gives a sum of the¢  the combinatorial expression for the moments as

=(2k—1)!1x10¢ terms in the form my 1(t,2k)=(1/ 1/c2\k

2)(P2MF 1Ly with L= Le(iz, - jad. As My 7(t, 2K) = 5(;) > |[2Ye®NVD)
explained in Ref[13], each termL,(j, ...,jox) IS repre- I'egG(k)

sented by a graph which consists of le-@on with its edges X (= 1)ke(D) yk—kn(T) = o(1) +2n(T)
j1i2,02i3s - - -2 2k) 1 cONNected by ribbons to makek pairs

In Ref. [13] the collectionG of topologically distinct
Mobius graphs, which consist ofk2Zgons anck normal rib-
bons, was introduced and the fact was used that each graph

and among themp, n ribbons, ¢, ¢ ribbons, ande, e F_eg having only untyvisted ribbon_éhaving some twisted
ribbons are twisted, the weight OF (ji, ..., IS ribbong defines an .orlentablé?ononentablbes_urfaceSr by
y#n(— y)Ke™ #o(— 1)Perpke fe= (— 1)keyk—kn= 9+ 2¢n ‘Where amap[34,§33 to Qenve the 1N _(1/N) expansion. 'I_'he num-
k=k,+k.+ke and o=@, + @+ ¢, (the total number of ber of .dIStInCt orlentablmonorlentablbesurfgces Wlth genus
twisted ribbong For each vertey,, 1<s<2k, we take the 9 obtained from the graphs without any twisted rllzb(mﬂh
summation of the index overj <2N to calculateL , from  mtwisted ribbongin G was denoted by 4(k) [36] (g4 m(K)

{L¢(j1s -+ - J20)}- Since each ribbon represents a product of13]). We notice that the Moius graphs inG(k) introduced
two Kronecker’ss's in Eq. (45), any pair of indicegs andj;  here are obtained by putting arrows on hems of some of the
connected by a linéa hem of ribbonshould be identified, or  normal ribbons inl" e G(k). The only allowed ways to put
identified in modulus=N, and the free indices remaining them are such that there are no pairs of lines with inward and
after this “identification” of indices giveN dependence t0 oytward arrows connected to a vertesee Fig. 4 We now

L¢. We will find the following rules for theN dependence, introduce the following multiplicative factors tey(k) and
where it should be noted that each vertex is the end point of

two lines(two hems of two ribbonswith or without arrows. 2g.m(K), AgO'Kn*Kc(k)z th(_a numbt_er of"allowed Ways. to put
(i) If both of the lines connected to a vertex have no arrows@Tows on the hems of ribbons in a bias graph without
then we will call such a vertex @ vertex The summation twisted ribbons, which is mapped to a surface with gegus
over a free index on a 0 vertex givedl2(ii) If at least one SO that the graph hag, n ribbons, . ¢ ribbons, and), free
of the two lines connected to a vertex has an arrow and theindices on 0 vertices, anelggf‘,(nmc’mn(k)z the number of
are not a pair of lines with inward and outward arrows, theng|lowed ways to put arrows on the hems of ribbons in a
the summation over a free index on such a vertex gNes  \gbius graph withm twisted ribbons, which is mapped to a
(iii) Otherwise, the sum over free index becomes zero. Congyrface with genug, so that the graph becomes to hayen
sider the equivalence classes of thetils graphs with, ¢, ribbons in whichm, are twisted,« ¢ ribbons, andv, free
and e ribbons. If a class is expressed by a representativindices on 0 vertices. Here note that the total number of
graph, sayl’, the number of elements of the cldssi.e., the  riphons is fixed to be, the number of ribbons should be
number of graphs topologically equivalent wiff) is de-  k—x — ., and that the total number of free verticegl")
noted by|I'|. LetV(I') be the total number of free indices of is determined by andg through the relations with the Euler
I andV,(I') be the number of free indices on 0 vertices. Setcharacteristicsy=V—k+1 as y=2—2g for m=0 and y

G(k) as the collection of all such graphE}, then we have =2-—g for m=1, respectively. Then we have the following

(Wick pairg. Such graphs may be calledobius graphs
having ribbons with and without arrowslf we assume
that there arek, n ribbons, k. c ribbons andk, e ribbons,
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1/N expansion formula for the moments: C. Calculation by density function
2\ [k/2] g kiil-2g k From Eq.(12) with Egs.(7) and(11), it is easy to see that
my 7(t,2k) = _( ) Nk+12 g(k)( ) > > gn7(0,0;t,x) is symmetric inxy, . .. Xy. Then we can de-
’ 2 vo=0 ;=0 fine the density function as
k— 1 o N
X; ( 1) c2 OAUO Kq Kc(k)7 n ﬁ(t,X)Z_—|f H deéN’T(O,O;t,X)
c (N=D)!Jo j=2
1) ey (1S d th (44) lculated b
) NKte — = and the even moment{d4) are calculated by it as
+5 ) N 2 (N) mZ:lsg,m(k)
k+i-g my 1(t,2k) = fmxz“;)(t,x)dx. (50)
x 2 2% E > Z ' 0
vp=0 kp=0 Kk, m,=0

T Let L{¥(z) be the Laguerre polynomials with parameser
X (=1 AT ()Y (48)  gefined as

Here we may prove thad" . (k)=0 for k—x,—m L(a)(z)— ,-a d_J( .
+2m,<0, and Eq{(48) will give a series with non-negative i d
powers ofy.
As an example, we consider the fourth moment. Kor Using them witha=1/2, we can define the monic polyno-
=2, we found[13] mials C;(z) = (—1)’j IL‘”Z)(z) which satisfy the orthogo-
5 5 nality [5zY% *C; (Z)C{;(z)dz hjdj with h;=TI(j
e0o(2)=2, 1(2)=1, £12(2)=4, &142)=1, +3/2)j!. Quite recently Nagao gave the general expressions

of dynamical correlations for the present system using)
[24]. From his result, we can read the density funciigt x)
As we can confirm easily that the facto@éoykn «(2) and as

€21(2)=2, €,42)=2.

AgOmKn g, (2) have nonzero values only in the following _ 2 7()(/6) 2 e ((x/c)2)2
cases: p(t,x)= Th
Agv2,0(2)=1, A%,2,0(2)=1, 2%2 w N-1 ¢
1 1 +—e (xfe) E > > Bjeem
Ao11(2)=4, Ajod2)=2, c =N =0 m=0
C.((x/c)®)C((x/c)?)
110&2) 2, 22012) 1, 001&2) 4, X —2 m j—m

7 ]
h;

2202(2) 1, 011&2) 2, 12012) 1, where
Ab1d2)=2, Ajiod2)=2, Ajbod2)=2,

ASiod2)=4, Al7o42)=1.

Then Eq.(48) gives

(2))! T(2j—€+1/2)
_ 4
je=(~1) Jr @0

2j+1)!
a2j+1€:(—1)€%(

8 (DI -20-12) !
+(1+2y+5y)N}. (49) PO o m (200 2o

1)F(2j—€—1/2)

4/ (2j—e+1)er
4

Cc
my 1(t,4) = —{8N3+(6+ 8y+2y%)N?

By definition we will seeAU P (k)= 5”0 kﬂéKnk&KCO, Bj2e+1

and thus the leading term in EQ48) for largeN is (- 1) [(i—2¢-1)/2]

_ j! I'(j—2¢—2m-3/2)
Coor (20D & (j-26-2m-1)!

k
(2N)*" g (k) + O(NY).

1/c?
mN’T(t,Zk):E E
Let Hj(z) be the jth Hermite polynomial, H;(2)

Sinceeq(K) is the Catalan number, Wigner’s semicircle law = (—1)/e? 2(d/dz)Je 2 |f we use the following equalltles
will hold in N— also in the BAG random matrices. [37,38:
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L N(@2)=LP(2)-L{(2),

L{~*2(2)= ( | Z,M)
zL{*"Y(z)

=(j+a+t DLP @)~ (j+ DL(2), j
ﬁL}l’z’(z)=;—l)sz+1( Jz) for z=0,

j 2j+1;
- (a) ]'
2 F(m+a+1)(L (2))*
_ (J+1)! {L(a)(z)Lj(a”)(z)—L}i)l(Z)Lfa*il)(z)} we will have the following expression for the density func-
I'(j+a+1) - ’ tion,
|
p(t,X)= N ! e 9% [H,\_,(x/c)]3— MCH (XIC)Hop_3(X/C)
pLL, 2N"3(N—1)IT(N+1/2) c 2N-1 N 2N 2N-3
N—-1c
_W;HZN(X/C)HZN—l(X/C)
1 o N-1 ¢ 1
P _ 2
t3 2 Z’o mE:O Bjeaimy mme O H o 4 1 (XIC)H g 1(X/C). (51)

Substituting Eq(51) into Eq.(50) and using the integral formulas of Hermite polynomials used in R&j and the relation
30— mBre@em= Snm for n=m [24], we will arrive at the expression
k—j

k) (k—l) k—j—1 N—1
i) 700 2c i D T 2Nk
k=j—1 m—¢+N

k
C2

k
mN'T(t,Zk)=(§> N(2k—1)!!12,0

2N-1)

(2k)!(2N—2€—1)!2m‘i+1

T T2N—20rm—K) I (k—]—m—D)1 (k—j+m+ D" (52)

As a matter of course, when we det 2, Eq.(52) gives the ticles, since we have considered themvésous walkers
fourth moment(49). The largeN behavior discussed below This condition introduces the effective long-ranged repulsive
Eq. (49) is obtained also from E(52). interactions among particles and it may make the models
nontrivial many-particle systems. Our strategy to analyze the
models is to map these interacting particle systems to multi-
matrix models defined in the appropriate matrix spaces,
In the present paper we have considered the solvability ovhich have in general higher dimensions than the original
one-dimensional vicious-walker models, which are generaliphase spaces of particle systems. The particle positions are
zations of the model studied in earlier papgi8,12. We are  expressed by the statistics of eigenval{@8] or the radial
interested in these systems as the nonequilibrium statisticabordinateg18—-21,3Q of random matrices.
models, since they provide in general spatially and tempo- We have proved the following equivalences in probability
rally inhomogeneous systems. The temporally inhomogedistributions.
neous one-particle systems have been extensively studied by (i) The noncolliding system of Brownian motions with a
Yor by constructing them from Brownian motions and Bessewall, defined as the continuum limit of the vicious-walker
processeg17]. Our present work may be regarded as anmodel with a wall, and the noncolliding system of Brownian
attempt to construct many-particle systems in one dimensiomeanders, which are constructed from the three-dimensional
using such temporally inhomogeneous processes as elemddessel process.
tary processes, so that we can also discuss the spatial inho- (ii) The noncollidingN generalized meanders constructed
mogeneity. from the d-dimensional Bessel processes wits2,4,6 . . .
We have imposed the noncolliding condition between parand the radial coordinate of tHiN+(d—2)/2} XN rectan-

VI. CONCLUDING REMARKS
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gular random matrices in the Gaussian ensemble with timesalculation of the moments of the positions of vicious walk-
dependent variancda two-matrix model of the chiral GUE ers is related with an enumeration problem of orientable and
and chiral GORE nonorientable surfaces with a fixed number of genus, which

(iii ) The noncollidingN Brownian meanders and the non- are obtained from the Mmus graphs with a fixed number of
negative eigenvalues ofN2x 2N BdG-type random Hamil- twisted ribbons bymap [34,35. In the present paper, we
tonians in the Gaussian ensemble with time-dependent varshowed that a graphical problem arises from the vicious-
anceda two-matrix model of the BdG-type random matriceswalker model with wall restriction; an enumeration problem
in classe<C andCl of Altland and Zirnbauer of the ways of assigning arrows on the ribbons of bl

We have discussed the noncolliding system of generalizedraphs following some rules. It should be noted that, roughly
meanders made from the general odd-dimensional Bessepeaking, there were two kinds of ribbons in our expansion
processes. So a natural question is what is the correspondifigrmula: with and without arrows. These ribbons are thinned
random matrix theory for the noncolliding system of gener-into lines and they are drawn on surfaces. Then this enu-
alized meanders associated with tielimensional Bessel meration problem may provide, if we consider the lines as
processes withd=5,7,9 .... As far as weknow, it is an  “world lines” of particles, the statistical mechanics of com-
open problem. posite particles on random surfaces.

We have claimed that the above equivalence between the Recently, a variety of problems associated with the con-
interacting particle systems and the Gaussian multimatrixiitional random walks/Brownian motions have been pro-
models implies the solvability of the systems. This statemenposed and intensively studied in statistical physics, e.g., first
may be true, but to obtain exact expressions of general copassage problerf43], “lion-lamb” problem [44,45, diffu-
relation functions for the multimatrix mode[89,4Q is far ~ sion particle systems with mobile trap46], families of vi-
from trivial and one has to use a series of techniques devekious walkerq 7], leader and laggard problepd7], system
oped in the random matrix theory. Exact expressions of genef stochastic Loewner evolutiorid8], friendly walker mod-
eral dynamical correlation functions enable us to discuss thels[49-53, and so on. Solvability and unsolvability of these
infinite particle limitN—c of the nonequilibrium system as models will be important topics in statistical physics far from
reported in Refs[12,41] for the vicious-walker modelnon-  equilibrium.
colliding Brownian motionswithout a wall, and in Ref{24]
f_orlthe system V\_/ith a wall. We expect that the infir_lite particle ACKNOWLEDGMENTS
limits of dynamical correlations for the noncolliding gener-
alized meanders can be generally evaluated by following the M.K. thanks J. Cardy, P. J. Forrester, and T. Fukui for
strategy employed in Ref§24,42. useful comments at the very beginning of the present work.

As the simplest case of the correlation functions, the denM.K. and H.T. acknowledge the valuable communication
sity function can be determined. As reported in Réf3],  with M. Yor.
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