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Superoperator representation of nonlinear response: Unifying quantum field
and mode coupling theories
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Computing response functions by following the time evolution of superoperators in Liouville space~whose
vectors are ordinary Hilbert space operators! offers an attractive alternative to the diagrammatic perturbative
expansion of many-body equilibrium and nonequilibrium Green’s functions. The bookkeeping of time ordering
is naturally maintained in real~physical! time, allowing the formulation of Wick’s theorem for superoperators,
giving a factorization of higher order response functions in terms of two fundamental Green’s functions.
Backward propagations and analytic continuations using artificial times~Keldysh loops and Matsubara con-
tours! are avoided. A generating functional for nonlinear response functions unifies quantum field theory and
the classical mode coupling formalism of nonlinear hydrodynamics and may be used for semiclassical expan-
sions. Classical response functions are obtained without the explicit computation of stability matrices.
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I. INTRODUCTION

An important ingredient in many-body theories is the ab
ity to factorize averages of products of a large number
operators into products of averages of pairs. This Wick th
rem is common to the broad arsenal of techniques used
the treatment of quantum and classical systems alike. Q
tized fields are used, e.g., in Green’s function perturba
theory of many identical bosons or fermions@1–7#; time de-
pendent Hartree-Fock and time dependent density functi
equations of motion of many-electron systems@8#; and the
Hartree-Fock Bogoliubov equations for superconductors
Bose-Einstein condensates@9#. Classical fields are consid
ered in mode coupling theories of nonlinear hydrodynam
of fluids and glasses@10,11#; cumulant (1/N) expansions for
short range interactions in fluids; and Gaussian models
spin Hamiltonians@12–18#.

Green’s function perturbation theory forms the basis
the powerful Feynman diagrammatic techniques widely u
in the description of many-particle systems@1–9#. This for-
malism is based on expressing quantities of interest astime-
ordered expansions. Equilibrium and nonequilibrium Green’
function techniques@5,7,19# employ various types of con
tours which, in effect, transform the computation to a tim
ordered form in some artificial~unphysical! time variable
along the contour@20–22#.

The primary goal of this article is to demonstrate that
description is greatly simplified by employing superopera
algebra and computing response functions using the den
matrix in Liouville space@23–26#. One of the rewards o
working in the higher dimensional Liouville space is that w
need consider only time-ordered quantities in real~physical!
time, and Wick’s theorem therefore assumes a particul
compact form; no special contours or analytic continuatio
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are necessary. The Hilbert space description requires a
quence of forward and backward propagations as oppose
the all-forward representation of response functions in Lio
ville space@27–31#. The superoperator approach provides
unifying framework applicable to quantum and classical s
tems, with and without second quantization. It thus conne
field theories with classical mode coupling theories of flu
tuating hydrodynamics. Semiclassical approximations
developed directly for nonlinear response functions~i.e., spe-
cific combinations of correlation functions! rather than for
individual correlation functions, which do not have a natu
classical limit and their semiclassical approximations
thus ill defined. Recent interest in multidimensional Ram
techniques generated considerable activity in modeling m
titime correlation functions@32–40#. The mode coupling
simulation of correlation functions using Langevin equatio
poses many problems@13,33#. These difficulties disappear b
modeling the entire response where the classical limit
uniquely and unambiguously recovered. The present form
ism shows how nonlinear response functions may be
pressed in terms of the lower order response of collec
variables@25,26,41#.

In Sec. II we discuss two strategies for simulating r
sponse functions. The first, based on the wave function
Hilbert space, does not maintain a full bookkeeping of tim
ordering whereas the second, based on the density matr
Liouville space, does@42–44#. A detailed comparison is
made of the physical insight and the numerical effort
quired in both pictures. These results form the basis for
veloping the many-body Green’s function perturbati
theory in Sec. III. Using a generalized superoperator gen
ating functional, we obtain a time-ordered perturbati
theory of elementary Liouville space operators, and der
Wick’s theorem for boson field superoperators in Sec.
These results are used in Sec. V to derive a semiclass
expansion for response functions which in the classical li
recovers mode coupling theory. The extension to ferm
fields is made in Sec. VI, and our results are summarized
discussed in Sec. VII.

Wick’s theorem is based on a perturbative expans

f
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around a quadratic Hamiltonian and is thus limited to phy
cal situations when this is a good reference for the ac
dynamics. It is given for boson fields in Sec. IV using
closed expression for the generating functional, and for
mion fields in Sec. VI. In Sec. V we explore it in coordina
space without using second quantization. Section II int
duces the notation and reviews previous results. The su
operator algebra of Sec. III was used earlier for specific
plications ~time dependent Hartree-Fock, fifth Rama
spectroscopy! @24–26,45#. This section recasts these earli
results in a more general and compact notation that sets
stage for the subsequent sections.

II. LIOUVILLE VS HILBERT SPACE DESCRIPTION
OF QUANTUM NONLINEAR RESPONSE

A. Partially time-ordered, wave function based expansion
of response functions

We consider a material system with HamiltonianH,
coupled to an external driving fieldE(t) by the interaction

Hint~t!52AE~t!, ~1!

whereA is a general dynamical variable. For clarity we a
sume a scalar field; extension to vector fields is straight
ward by introducing tensor notation. The total Hamiltoni
HT(t) is given by

HT~t!5H1Hint~t!. ~2!

We shall be interested in the expectation value of an
erator B of the driven system at timet. For a system de-
scribed by a wave functionuc j (t)& this is given byS(t)
[^c j (t)uBuc j (t)&. A perturbative calculation ofuc j (t)& then
gives tonth order in the field
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Sj
(n)~ t !5 (

m50

n

^c j
(m)~ t !uBuc j

(n2m)~ t !&. ~3!

Hereuc j
(m)& denotes the wave function tomth order inHint .

If the system is initially in a mixed state~e.g., a canonical
distribution! where the stateu j & is occupied with probability
Pj , we need to average Eq.~3! over that ensemble:

S(n)~ t !5(
j

PjSj
(n)~ t !. ~4!

Time dependent perturbation theory gives for the line
response@23#

Sj
(1)~ t !5

i

\E2`

t

dt1^c j uU†~ t2t1!BU~ t2t1!Auc j&E~t!

1c.c. ~5!

Here uc j&[uc j (0)& and U(t) is the retardedevolution op-
erator in Hilbert space which propagates the wave funct
forward in time:

U~t!5u~t!expS 2
i

\
Ht D , ~6!

whereas theadvancedGreen’s function

U†~t!5u~t!expS i

\
Ht D ~7!

is responsible for backward propagation.u(t) denotes the
Heaviside function~0 for t,0, 1 for t.0).

For the third order response, which describes many of
most common nonlinear spectroscopies@23#, we obtain
Sj
(3)~ t !5S i

\ D 3E
2`

t

dt1E
2`

t

dt2E
2`

t2
dt3Ra~ t,t3 ,t2 ,t1!E~t1!E~t2!E~t3!

1S i

\ D 3E
2`

t

dt1E
2`

t1
dt2E

2`

t2
dt3Rb~ t,t3 ,t2 ,t1!E~t1!E~t2!E~t3!1c.c., ~8!
ons
a-
where

Ra~t4 ,t3 ,t2 ,t1!

5^c j uU†~t31!AU†~t23!AU†~t42!BU~t41!Auc j&,

Rb~t4 ,t3 ,t2 ,t1!

5^c j uU†~t41!BU~t43!AU~t32!AU~t21!Auc j&,

~9!
and we have definedt4[t andt i j [t i2t j . These equations
represent a time loop of forward and backward propagati
@46#. Equation~9! may alternatively be recast using correl
tion functions:

Ra~t4 ,t3 ,t2 ,t1!5^c j uÂ~t3!Â~t2!B̂~t4!Â~t1!uc j&,

Rb~t4 ,t3 ,t2 ,t1!5^c j uB̂~t4!Â~t3!Â~t2!Â~t1!uc j&,
~10!
1-2
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SUPEROPERATOR REPRESENTATION OF NONLINEAR . . . PHYSICAL REVIEW E68, 021111 ~2003!
where we denote operators in the Heisenberg picture b
caret,

Â~t![U†~t!AU~t!. ~11!

The time variables ofRc in Eq. ~8! are fully ordered (t1
<t2<t3<t). However, this is not the case forRa andRb .
By breaking the integrations into various segments we
maintain full time ordering, and recast Eq.~8! using a re-
sponse function. This will be done next through the dens
matrix expansion.

B. Time-ordered expansion: Response functions

Rather than using a wave function, the state of the sys
can be described by its density matrix, defined as

r~ t !5(
j

uc j~ t !&Pj^c j~ t !u. ~12!

Equations~3! and~4! can alternatively be recast in the for

S(n)~ t !5Tr@Br (n)~ t !#, ~13!

where

r (n)~ t !5(
j

(
m50

n

Pj uc j
(m)~ t !&^c j

(n2m)~ t !u ~14!

is the density matrix expanded to thenth order inHint . The
expectation value ofB to nth order in the field is obtained b
computing the density matrix to the same order. This gi
@23#

S(n)~ t !5E
2`

t

dtnE
2`

tn
dtn21•••E

2`

t2
dt1

3R(n)~ t,tn ,tn21 , . . . ,t1!E~t1!E~t2!•••E~tn!.

~15!

HereR(n) is thenth order response function

R(n)~tn11 , . . . ,t1!5S i

\ D n

Tr$@ . . . ,†@B̂~tn11!,Â~tn!#,

Â~tn21!‡, . . . ,Â~t1!]req%, ~16!

which can alternatively be recast as

R(n)~tn11 , . . . ,t1!

5S i

\ D n

Tr$B̂~tn11!

3@Â~tn!, . . . ,†Â~t2!,@Â~t1!,req#‡, . . . #%.

~17!

Note that the time variablest j in Eq. ~8! are not ordered. In
contrast, the complete time ordering in Eq.~15! makes the
density matrix description most intuitive and directly co
nected to experiment@23#.
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a

n

y

m

s

In the density matrix formulation we maintain a simult
neous bookkeeping of the interactions with the ket and w
the bra. This is why Eq.~17! has 2n terms, each constituting
a distinctLiouville space pathway. The wave function calcu-
lation, in contrast, focuses on amplitudes and the vari
time orderings of the ket and the bra interactions are lum
together. Equation~3! thus has onlyn11 terms. The differ-
ent terms in this case simply reflect the order of the inter
tions within the bra and within the ket~but not the relative
time ordering of bra and ket interactions!. When the system
interacts with a thermal bath, the 2n terms in Eq.~17! repre-
sent distinct physical processes and their separate treat
is absolutely crucial. The density matrix separates th
terms directly and naturally without the need for any chan
of time variables.

The quantum nonlinear response functionR(n) is given by
a combination of (n11) order correlation functions. Re
sponse functions provide a natural link between theory
experiment@47#. R(n) is a purely material quantity which
contains all the necessary information for describing thenth
order response. It is independent of the details of a partic
measurement,~e.g., the temporal sequences of pulses as w
as their frequencies and wave vectors!. The field envelopes
enter through the multitime convolutions in Eq.~15!. When
S(n) is calculated in terms of the wave function without usi
response functions@Eq. ~4!#, we need to repeat the calcula
tion for every new realization of the field.R(n) is therefore a
compact and economical way for clarifying the fundamen
relationships among various techniques and their informa
content. Since the nonlinear response functions are suc
sively probing higher order correlation functions, they ne
essarily carry additional information as the ordern is in-
creased.

C. ForwardÕbackward vs all-forward representation
of response functions

The expression for the response obtained by expand
the density matrix in powers of the external field@Eq. ~16!#
separates naturally into several contributions, each repres
ing a distinct time ordering of the various interactions. T
time variables appearing in Eq.~15! are chronologically or-
dered and represent successive interactions with the field
contrast, the time variables in the wave function descript
are not fully ordered and consequently have a much
transparent physical interpretation.R(n) has 2n terms~Liou-
ville space pathways! in the density matrix description@Eq.
~16!# but onlyn11 terms using wave functions@Eq. ~8!#. In
practice, we need compute only half of the terms since t
come in complex conjugate pairs.

For the linear response Eq.~16! gives

R(1)~t2 ,t1!5
i

\ (
j

Pj^c j uU†~t21!BU~t21!Auc j&1c.c.

~18!

The third order response is similarly given by
1-3
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R(3)~t4 ,t3 ,t2 ,t1!5S i

\ D 3

(
s51

4

Rs
(3)~t4 ,t3 ,t2 ,t1!1c.c.,

~19!

R1
(3)~t4 ,t3 ,t2 ,t1!

5(
j

Pj^c j uU†~t21!AU†~t32!AU†~t43!BU~t41!Auc j&,

R2
(3)~t4 ,t3 ,t2 ,t1!

5(
j

Pj^c j uU~t21!AU†~t31!AU†~t43!BU~t42!Auc j&,

R3
(3)~t4 ,t3 ,t2 ,t1!

5(
j

Pj^c j uU~t31!AU†~t21!AU†~t42!BU~t43!Auc j&,

R4
(3)~t4 ,t3 ,t2 ,t1!

5(
j

Pj^c j uU†~t41!BU~t43!AU~t32!AU~t21!Auc j&.

~20!

Unlike Eq. ~8!, Eq. ~15! allows us to define a response fun
tion since it is fully time ordered. Note thatR45Rb , andRa
corresponds toR11R21R3.

Equations~18! and ~19! can be calculated by either ex
panding the correlation functions in eigenstates or us
wave packets in the coordinate representation. Semicla
cally, it is possible to expanduc j (t)& in coherent states
uc j (t)&5**dpdqupq&^pquc j (t)&. Each Rj may thus be
computed as an average given by a sum over trajecto
moving forward and backward in time as given by the va
ous U and U† factors, respectively. Coherent states prov
an overcomplete basis set@48#. Powerful semiclassical ap
proximations were developed for carrying out this propa
tion @27–31,49#.

In Eqs.~19! and~20! we used the density matrix to deriv
formal expressions for the response functions, but for
actual calculation we went back to the wave function in H
bert space. Since quantum mechanics is usually describe
terms of wave functions, wave packet and semiclassical
scriptions are normally developed for wave functions. It
possible, however, to construct an alternative forward pro
gating wave packet picture by staying with the density m
trix in Liouville space all the way. To that end we represe
the time dependent density matrix as

r~ t !5U~ t !r~0!U†~ t ![G~ t !r~0!. ~21!

The first equality is the common representation where
treat r(t) as anoperator in Hilbert space. In the second
equation we considerr(t) as avector in Liouville space. We
further introduce the Liouville space evolution operator

G~ t !5u~ t !expS 2
i

\
Lt D , ~22!
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whereLA[@H,A# is the Liouville operator.
We shall denote superoperators by the subscriptn5L,R

where the operatorsAL andAR act on the ket~left! and bra
~right! of the density matrix (ALB[AB andARB[BA) @50#.
We further define the equilibrium distribution function

req5(
j

Pj uc j~0!&^c j~0!u. ~23!

Adopting this notation for Eq.~17! yields for the linear re-
sponse

R(1)~t2 ,t1!5 Tr@BLG~t21!ALreq#1c.c. ~24!

and for the third order response

R1
(3)~t4 ,t3 ,t2 ,t1!

5Tr@BLG~t43!ARG~t32!ARG~t21!ALreq#,

R2
(3)~t4 ,t3 ,t2 ,t1!

5Tr@BLG~t43!ARG~t32!ALG~t21!ARreq#,

R3
(3)~t4 ,t3 ,t2 ,t1!

5Tr@BLG~t43!ALG~t32!ARG~t21!ARreq#,

R4
(3)~t4 ,t3 ,t2 ,t1!

5Tr@BLG~t43!ALG~t32!ALG~t21!ALreq#. ~25!

Note that since the density matrix needs only to be pro
gated forward, Eqs.~25! contain only the forward propagato
G(t) and not its Hermitian conjugateG †(t), which describes
backward propagation. This is in contrast with the Hilbe
space expression@Eq. ~20!#, which contains bothU(t) and
U†(t).

As in the wave function picture, the response functio
may be computed by sums over states or by semiclass
wave packets:

r j
(n)~ t !5E E dpdqdp8dq8up8q8&^p8q8ur j

(n)~ t !upq&^pqu.

~26!

Each term(Liouville space path)in Eq. ~25! can be recast
in the form @23,51#

Rj
(3)~t4 ,t3 ,t2 ,t1!5Tr@BLr j

(n)~ t !#, ~27!

wherer j
(n)(t) is the density matrix generating function fo

path j, which can be computed using two forward movin
trajectories representing the simultaneous evolution of
ket and the bra@28,45#. In the wave function representatio
we act on the ket only. Propagating the bra forward
equivalent to propagating the ket backward. By keep
track of both bra and ket simultaneously we can enjoy
physically appealing all-forward evolution. Since the vario
Liouville space pathways are complex quantities, they in
fere when added. This interference may result in dram
effects.
1-4
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A systematic approach for computing the response fu
tions will be developed in the next section.

III. SUPEROPERATOR ALGEBRA
AND THE TIME-ORDERED PERTURBATIVE

EXPANSION OF RESPONSE FUNCTIONS

In Eqs.~24! and~25! we introduced the indicesL andR to
denote the action of a superoperator from the left or the rig
In the following manipulations, in particular for the sake
developing a semiclassical picture, it will be useful to defi
their symmetric (n51) and antisymmetric (n52) combi-
nations@24#

A2[AL2AR ; A1[
1

2
~AL1AR!. ~28!

Recasting these definitions in Hilbert space using ordin
operators, we getA1X[ 1

2 (AX1XA), A2X[AX2XA, X
being an arbitrary operator. Hereafter we shall use Gr
indices to denote superoperatorsAn with either n5L,R or
n51,2.

We consider operators that depend parametrically on ti
This time dependence can be either in the Heisenberg pic
Ân(t) @Eq. ~30!# or in the interaction pictureÃn(t) @Eq.
~40!#. By introducing a time ordering operatorT for super-
operators in Liouville space, we can freely commute vario
operators without worrying about commutations.T takes any
product of superoperators and reorders them in ascen
times from right to left. More precisely, we define

TAn~t1!Bm~t2!

5H An~t1!Bm~t2!, t2,t1 ,

Bm~t2!An~t1!, t1,t2 ,

1

2
@An~t1!Bm~t1!1Bm~t1!An~t1!#, t25t1 ,

~29!

whereAn(t) is eitherÂn(t) or Ãn(t). T orders all superop-
erators such that time decreases from left to right: The la
operator appears in the far left, and so forth. This is
natural time ordering which follows chronologically the va
ous interactions with the density matrix@34#. The precise
order in which superoperators appear next to aT operator is
immaterial since at the end the order will be fixed anyhow
T. For example,T before an exponent means that each te
in the Taylor expansion of this exponent should be time
dered.

We next introduce the Heisenberg picture for superope
tors, whose time evolution is governed by the Liouville o
erator

Ân~t![Ĝ†~t,0!AnĜ~t,0! ~30!

with
02111
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Ĝ~t2 ,t1!5u~t22t1!expF2
i

\
L~t22t1!G . ~31!

Equation~30! is the Liouville space analog of Eq.~11!. The
expectation value ofB,

S~ t !5Tr@Br~ t !#, ~32!

may now be represented in the form

S~ t !5K TB̂1~ t !expF i

\E2`

t

dtE~t!Â2~t!G L . ~33!

The operatorB̂1(t) corresponds to the observation tim
whereasÂ2(t j ) represent various interactions with the e
ternal field at timet, and^•••& denotes averaging with re
spect to the equilibrium density matrixreq :

^F&[Tr@Freq#. ~34!

By expanding the exponent in the right hand side~RHS!
of Eq. ~33! in powers ofE(t), we obtain for the respons
functions

R(n)~tn11•••t1![S i

\ D n

^B̂1~tn11!Â2~tn!•••Â2~t1!&.

~35!

Equation~35! is merely a compact notation for Eq.~17!. It
should be emphasized that all time arguments are fully
dered,t1<t2<•••<tn11. The Liouville space correlation
function in the RHS represents a combination of ordina
~Hilbert space! correlation functions.

Equation~35! may be evaluated directly only for simpl
models. To convert it into a general computational tool
need to develop a perturbation theory for response funct
based on time-ordered superoperators. To that end we p
tion the Hamiltonian into a simple, solvable~usually qua-
dratic! part H0 and a perturbationV:

H5H01V, ~36!

and introduce the Heisenberg and interaction pictures.
define the Liouville operatorsL5L01V2 corresponding to
Eq. ~36! where L0[(H0)2 , i.e., L0X[H0X2XH0. The
time evolution operator with respect toL0 is

G0~t2 ,t1!5u~t22t1!expF2
i

\
L0~t22t1!G . ~37!

The total~Heisenberg! time evolution operator with respec
to L will be denotedĜ(t2 ,t1). We can then write

Ĝ~t2 ,t1!5G0~t2 ,t1!G̃~t2 ,t1!, ~38!

whereG̃ is the time evolution operator in the interaction pi
ture:

G̃~t2 ,t1!5T expF2
i

\Et1

t2
dt2Ṽ2~t!G . ~39!

Throughout this paper we use a caret to denote opera
in the Heisenberg picture@Eq. ~30!# and a tilde for operators
in the interaction picture, i.e.,
1-5
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Ãn~t![G 0
†~t,0!,AnG0~t,0!, ~40!

n51,2 or L,R.

The equilibrium density matrix of the interacting syste
can be generated from the density matrix of the noninter
ing system (r0) by an adiabatic switching of the couplingV,
resulting in

req5G̃~0,2`!r0 . ~41!

For an isolated system at zero temperature, Eq.~41! gen-
erates the ground state density matrix of the interacting
tem, starting with the noninteracting ground state. This is
procedure of Gell-Mann and Low@52#. At zero temperature
the zero order ground state evolves into the actual norm
ized ground state and hence Eq.~41! need not have a de
nominator. Note that in the wave function~Gell-Mann–Low!
formulation of adiabatic switching, the wave function a
quires a singular phase which must be canceled by a den
nator given by the closed loopS matrix; the Liouville space
expression is simpler since the phase never shows up. A
markable point is that Eq.~41! holds as well at finite tem-
peratures provided the system is coupled to a bath at con
temperature. This is a thermodynamic adiabatic switch
where the populations of adiabatic states change and eq
brate with the bath at all times@53–55#. It is distinct from the
adiabatic switching of an isolated quantum system where
populations of adiabatic states do not change@56#.

At finite temperatures we start with the grand canoni
distribution

r05
exp@2b~H02mN!#

Tr exp@2b~H02mN!#
, ~42!

whereb5(kBT)21 (kB is the Boltzmann constant!, m is the
chemical potential,N is the number operator of particles, an
Eq. ~41! generates the distribution

req5
exp@2b~H2mN!#

Tr exp@2b~H2mN!#
. ~43!

We now have all the ingredients required for computing
response. Let us start with the linear response function

R(1)~t2 ,t1!5
i

\
^B̂1~t2!Â2~t1!&. ~44!

Using Eqs.~30! and ~38! we obtain

R(1)~t2 ,t1!5
i

\
Tr@ G̃†~t2,0!B̃1~t2!G̃~t2,0!G̃†~t1,0!

3Ã2~t1!G̃~t1,0!G̃~0,2`!r0#. ~45!

The lastG̃†(t2,0) can be neglected since it does not affect
trace. Also

G̃~t2,0!G̃†~t1,0!5G̃~t2 ,t1!, ~46!

which gives
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R(1)~t2 ,t1!5
i

\
Tr@B̃1~t2!G̃~t2 ,t1!Ã2~t1!G̃~t1 ,2`!r0#.

~47!

The time-ordering operator allows us to express Eq.~47!
in the compact form

R(1)~t2 ,t1!5
i

\ K TB̃1~t2!Ã2~t1!

3expF2
i

\E2`

t2
dtṼ2~t!G L

0

, ~48!

where we define averaging with respect to the density ma
r0 of the noninteracting system

^F&0[ Tr@Fr0#. ~49!

Equation ~48! can be immediately generalized for the r
sponse to arbitrary order:

S~ t !5K TB̃1~ t !expF2
i

\E2`

t

dtṼ2~t!G
3expF i

\E2`

t

dtE~t!Ã2~t!G L
0

. ~50!

Expanding Eq.~50! to nth order in the external field give

R(n)~tn11•••t1!5S i

\ D nK TB̃1~tn11!Ã2~tn!•••Ã2~t1!

3expF2
i

\E2`

tn11
dtṼ2~t!G L

0

, ~51!

where we recall that

X̃~t!5expS i

\
L0t DX expS 2

i

\
L0t D , ~52!

X5A1 ,A2 ,V2 .

The Taylor expansion of the exponent in the RHS of Eq.~51!
finally gives

R(n)~tn11•••t1!

5 (
m50

`
~21!m

m! S i

\ D m1n

3E
2`

tn11
dt18 . . . E

2`

tn11
dtm8 ^TB̃1~tn11!

3Ã2~tn!•••Ã2~t1!Ṽ2~tm8 !•••Ṽ2~t18!&0 . ~53!

Equation~53! constitutes the interaction-picture represe
tation of the correlation function Eq.~35! @24,41#. All super-
operators in this expression should be time ordered chro
logically from right ~early time! to left ~late time!. This
1-6



ck

a
is
on
ut
er

ash-

ft

SUPEROPERATOR REPRESENTATION OF NONLINEAR . . . PHYSICAL REVIEW E68, 021111 ~2003!
forms the basis for formulating the field theory and Wi
theorem in Liouville space in the next section.

Note that simple time ordering in Liouville space is
more complex operation when recast in Hilbert space. Th
why superoperators simplify the bookkeeping. To dem
strate that, let us takeR(2) ~we use the Heisenberg picture b
the argument holds as well in the interaction picture, wh
we should simply replace all carets by tildes!:
n-
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R(2)~t3 ,t2 ,t1!5S i

\ D 2

^TB̂1~t3!Â2~t2!Â2~t1!&0 .

~54!

We need to apply the superoperators in a time-ordered f
ion ~in Liouville space!, i.e., firstÂ2(t1), thenÂ2(t2), and
finally B̂1(t3). Separating all possible actions for the le
and the right we get
2 Tr@TB̂1~t3!Â2~t2!Â2~t1!req#5 Tr@B̂~t3!Â~t2!Â~t1!req#1Tr@Â~t2!Â~t1!reqB̂~t3!#2Tr@B̂~t3!Â~t2!reqÂ~t1!#

2Tr@Â~t2!reqÂ~t1!B̂~t3!#2Tr@B̂~t3!Â~t1!reqÂ~t2!#2Tr@Â~t1!reqÂ~t2!B̂~t3!#

1Tr@B̂~t3!reqÂ~t1!Â~t2!#1Tr@reqÂ~t1!Â~t2!B̂~t3!#. ~55!
op-

u-

ler
n

re-

any
In Hilbert space@the RHS of Eq.~55!# all operators that
act onreq from the left are time ordered and the time i
creases as we go to the left, starting withreq . All right
operators are ordered in the opposite way: Time increase
we go to the right, starting withreq . This mixture of positive
and negative time ordering coming from the evolution of t
ket ~left! and the bra~right!, respectively, is what compli
cates the bookkeeping of ordinary operators in Hilbert spa
This is in marked contrast with Liouville space@the LHS of
Eq. ~55!#, where we keep track of the left and right labels
the various interactions. Consequently, all superoperators
always positively time ordered in real, physical time, whi
makes the formulation of a Wick theorem possible.

IV. THE CUMULANT EXPANSION AND WICK’S
THEOREM FOR BOSON SUPEROPERATORS

So far we have considered four types of operators
enter Eq.~51!: the reference HamiltonianH02mN; A, rep-
resenting the coupling to the external field;V, representing
the part of the Hamiltonian to be treated perturbatively; a
the desired observableB. To proceed further we introduc
the concept ofelementary operators. Any dynamical system
can ultimately be described by a basic set of operators wh
commutators~or anticommutators! arec numbers. Examples
of elementary operators with commuting algebra~ECA! are
the canonical variables@Qa ,Pb#5 i\dab and the boson op
erators@aa ,ab

† #5dab used to describe systems of identic
bosons in second quantization. Second quantized ferm
are described by elementary operators with anticommu
algebra$ca ,cb

†%5dab . The operatorsX5A, B, V, H0, and
N are some functions of these elementary operators.

We choose our reference to be a quadratic Hamilton
given by the bilinear combination of elementary field ope
tors

H05E dxT~x!c†~x!c~x!, ~56!
as

e.

f
re

at

d

se

l
ns
g

n
-

or using creation and annihilation operators

H05(
r ,s

Trsar
†as , ~57!

where

c~x!5(
s

ws~x!as ~58!

andws is the single particle basis set. For bosons, these
erators satisfy the commutation relations

@as ,ar
†#5d rs ~59!

and

@c~x!,c†~x8!#5d~x2x8!. ~60!

For fermions, Eq.~59! should be replaced by an anticomm
tator. Our elementary set of operators is thus the setas ,as

† or
the field operatorsc(x),c†(x). The following arguments
hold for fermions as well; however, the derivation is simp
for boson fields with ECA. We shall therefore focus o
bosons first, and the extension to fermion fields will be p
sented in Sec. VI.

We will denote the elementary operators asQj and intro-
duce the corresponding superoperatorsQj n , n5L,R,1,2.
We first note that the superoperator corresponding to
function of Qj can be expressed in terms ofQj 1 andQj 2 ,
i.e.,

@ f ~Qj !#2[ f ~QjL !2 f ~QjR!5 f S Qj 11
1

2
Qj 2D

2 f S Qj 12
1

2
Qj 2D ~61!

and
1-7
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2@ f ~Qj !#1[ f ~QjL !1 f ~QjR!5 f S Qj 11
1

2
Qj 2D

1 f S Qj 12
1

2
Qj 2D . ~62!

For example,

~Qj
2!15Qj 1

2 1
1

4
Qj 2

2 ~63!

and

~Qj
2!25Qj 1Qj 21Qj 2Qj 1 . ~64!

Using these rules~and additional useful relations given in th
Appendix! we can expandB1(t), A2(t), andV2(t) in a
Taylor series inQj 1 andQj 2 , converting the time-ordered
product of superoperators in Eq.~53! into a time-ordered
product of elementary operators. We thus need to calcul

W$ j mnmtm%[^TQ̃j NnN
~tN!•••Q̃j 1n1

~t1!&0 , ~65!

wheren1 , . . . ,nN56 and j m runs over the various opera
tors. The numberN of operators in such products that ent
the computation ofR(n) is greater thann11,N>n11. The
reasons are as follows.~i! An ,Bn may be nonlinear functions
of elementary operators and we use Eq.~61! and the formu-
las of the Appendix to express them as products ofQn . ~ii !
The expansion inV2 adds more operators to the product.

To computeW we define asuperoperator generating
functional

S@$J~ t !%#5K T expF(
j n

E Jj n~t!Q̃j n~t!dtG L
0

. ~66!

Time-ordered correlation functions of superoperators can
obtained from the generating functional by functional deriv
tives:

W$ j mnmtm%5
]

]Jj 1n1
~t1!

•••

]

]Jj NnN
~tN!

S$J~ t !%U
J50

.

~67!

Since the Hamiltonian is quadratic, the generating fu
tional may be computed exactly using the second order
mulant expansion. This gives

S@$J~ t !%#5expH(
j ,k

E
2`

`

dt2E
2`

t2
dt1

3@2 i\Jj 1~t2!Jk2~t1!Gjk
12~t22t1!

1Jj 1~t2!Jk1~t1!Gjk
11~t22t1!#J , ~68!

where we have introduced the two fundamental Liouv
space Green’s functions
02111
e

e
-

-
u-

Gjk
12~t22t1!5

i

\
^TQ̃j 1~t2!Q̃k2~t1!&0 , ~69!

Gjk
11~t22t1!5^TQ̃j 1~t2!Q̃k1~t1!&0 .

Using Eq.~28! we can recast these Green’s functions in H
bert space as

Gjk
12~t!5

i

\
u~t!@^Q̃j~t!Q̃k~0!&02^Q̃j~0!Q̃k~t!&0#,

~70!

Gjk
11~t!5

1

2
@^Q̃j~t!Q̃k~0!&01^Q̃k~0!Q̃j~t!&0#. ~71!

The\21 factor inG12 was introduced to make the classic
limit more transparent~see the next section!, since with this
factorG12 has a well defined classical limit. Note that sin
the trace of a commutator vanishes identically, in a tim
ordered product the superoperator to the far left must
a ‘‘1. ’’ The Green’s functionsG22 and G21 thus vanish
identically and we only have two fundamental Green’s fun
tions G11 and G12. Note also thatG11(t) is finite for
positive and negativet whereasG12(t) vanishes fort
,0. Equation ~68! is an extremely compact expressio
which can readily be used to compute response function
arbitrary order.

The two fundamental Green’s functions can be expres
in terms of the matrix of spectral densitiesCi j (v) defined as
the Fourier transform ofG12 @23,41,57,58#:

Gi j
12~t!52u~t!E

2`

` dv

2p
Ci j ~v!sin~vt!. ~72!

We then have

Gi j
11~t!5\E

2`

` dv

2p
Ci j ~v!cothS \v

2kBTD cos~vt!. ~73!

The Wick theorem for superoperators then follows from E
~67! and ~68! and can now be stated as follows:

^TQ̃j 1n1
~t1!•••Q̃j NnN

~tN!&0

5(
p

^TQ̃j ana
~ta!Q̃j bnb

~tb!&0•••^TQ̃j pnp
~tp!

3Q̃j qnq
~tq!&0 . ~74!

Here j ana••• j qnq is a permutation ofj 1n1••• j NnN and the
sum runs over all possible permutations, keeping the t
ordering. Since onlyG11 and G12 survive, many of the
terms will vanish.

Wick’s theorem makes it possible to develop Feynm
diagram perturbative techniques which express the linear
nonlinear responses of the interacting system in terms of
two fundamental Green’s functions. This theorem is use
whenever a quadratic reference is adequate and nonquad
parts of the Hamiltonian can be treated perturbatively.
1-8
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states that multipoint correlation functions of systems w
quadratic boson Hamiltonians may be factorized into pr
ucts of two-point correlation functions of the primary coo
dinates.

V. MODE COUPLING AND SEMICLASSICAL RESPONSE
OF BOSON FIELDS

Equation~17! contains 2n terms representing all possib
‘‘left’’ and ‘‘right’’ actions of the various commutators. Each
term corresponds to a Liouville space path and can be
resented by a double-sided Feynman diagram@23#. The vari-
ous correlation functions interfere and this gives rise to m
interesting effects such as new resonances. The (i /\)n factor
indicates that individual correlation functions do not have
obvious classical limit. The entire response function mu
however, have a classical limit. When the various correlat
functions are combined, the (i /\)n factor is canceled as\
tends to 0, and one obtains the classical response, inde
dent of \. The elimination of\ for higher nonlinearities
requires a delicate interference among all 2n correlation
functions.

The terms contributing toR(n) @Eq. ~53!# will generally
have a (i /\)n1p factor wherep is the order inV2 . This
factor must be canceled as\→0 to ensure a well defined
classical limit. This is guaranteed since by Wick’s theore
we will haven1p G12 terms, each carrying an\ factor. In
the classical limit we set coth(\v/2kBT)>2kBT/\v. We
then see from Eq.~72! that the two Green’s functions ar
simply connected by the classical fluctuation relation

G12~t!52u~t!
1

kBT

d

dt
G11~t!. ~75!

G12 is independent of\. The factor \coth(\v/2kBT)
5\/tanh(\v/2kBT) is analytic in\ and can be expanded i
a Taylor series, thus yielding a semiclassical expansion of
response. To obtain the classical limit we need to keep\ in
the generating functional, perform the\ expansion~since
response functions are generally analytic in\) and only then
send\→0. Setting this limit at the right step is essential f
developing a proper semiclassical expansion. Classica
sponse functions may not be computed using classical tra
tories alone: The response depends on the vicinity of a
jectory. One needs to run a few closely lying trajectories t
interfere. Formally, this can be recast using stability ma
ces, which carry the information on how a perturbation o
trajectory at a given time affects it at a later time. The
peated computation of the stability matrix greatly comp
cates purely classical simulations@34,37#. The semiclassica
expansion circumvents these calculations in a very profo
way. Corrections to the trajectory to low order in\ carry the
necessary information. Combining several semiclassical
jectories@45# allows them to interfere and the leading ord
in \ (\n for Rn) survives and gives the classical respon
This allows us to avoid computing stability matrices, whi
is required when the classical limit is considered from
outset. The classical limit obtained in this way reproduc
02111
-

p-

y

n
t,
n
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e
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the results of mode coupling theory and removes all am
guities as to how higher order correlation functions should
factorized@13,17,18,33#.

To illustrate how this works, let us consider the followin
model HamiltonianHm @25,26,41,57,59#:

Hm5(
j

S Pj
2

2M j
1

M jV j
2Qj

2

2 D 1V~Q!, ~76!

wherePj (Qj ) is the momentum~coordinate! operator of the
j th primary mode,V j andM j are its frequency and reduce
mass, respectively, andV(Q) is the anharmonic part of the
potential. The primary modes interact with a large number
harmonic ~bath! coordinates which induce relaxation an
dephasing. Low frequency bath degrees of freedomq and
their coupling to the primary modes are described by
HamiltonianHB , and the material Hamiltonian is given b
@23,26#

H5Hm~Q!1HB~Q,q!. ~77!

We assume a harmonic bath linearly coupled to the
mary coordinatesQj ,

HB5(
a

F pa
2

2ma
1

mava
2

2 S qa2(
j

cj a

mava
2

Qj D 2G ,

~78!

wherepa (qa) are the momentum~coordinate! operators of
the bath oscillators.

This model gives the following Brownian oscillator form
for the spectral density@57#:

C~v!5ImS 1

M @V21vS~v!2Iv21 ivg~v!#
D . ~79!

M , V, andE are diagonal matrices and their matrix eleme
areMi j 5d i j M j , V i j 5d i j V j , andI i j 5d i j .

g i j (S i j ) is the imaginary~real! part of the self-energy
operator representing relaxation~level shift!:

g i j ~v!5
p

Mi
(
a

cj acia

2mava
2 @d~v2va!1d~v1va!#,

S i j ~v!52
1

p
ReE

2`

`

dv8
g i j ~v8!

v82v
. ~80!

Equations~68! and~67!, together with Eqs.~72!, ~73!, and
~79!, constitute closed expressions for the Brownian osci
tor response functions. Ordinary Langevin equations are
tained by taking the overdamped limitg@V of Eq ~79!.
When the primary coordinates are uncorrelated, the supe
erator Green’s functions are

Gi j
12~t!52u~t!exp~2L it!L il id i j , ~81!
1-9
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Gi j
11~t!5\ exp~2L it!L il i coth~b\L i !d i j

1
4

b (
n51

`
nn exp~2nnt!

nn
22L i

2
L il id i j , ~82!

where nn[2pn/\b are the Matsubara frequencies,L i

5V i
2/g i i , andl i51/MiV i

2 . The expansion of nonlinear re
sponse functions using collective coordinates has been
cussed in detail in@23,41,45,60# and recently employed in
mode coupling theory@13,15#.

All nonlinear response functions of the linearly drive
harmonic oscillator vanish identically due to interferen
among Liouville space paths@23#. The simplest model tha
shows a finite nonlinear response is a nonlinearly driven h
monic oscillator where the operatorA is a nonlinear function
of the coordinate. This model has been studied both quan
mechanically and classically@38#. Its response can alterna
tively be computed by following the dynamics of the Gau
ian wave packets in the complete~system and bath! phase
space, since the system-bath HamiltonianHB is harmonic in
the full phase space$P,Q,pa ,qa% @12,13,32,33,61#.

We next discuss the connection between our results a
fully classical computation of the response. In classical m
chanics the density matrix assumes the form of an ordin
distribution function in phase space. This can be obtai
from the quantum density matrix by switching to the Wign
representation@62#

rW~pq;t !5
1

~2p\!dE dŝ q2s/2ur~ t !uq1s/2&exp~ ip•s!,

~83!

whered is the number of degrees of freedom. The Wign
representation offers a transparent and simple semiclas
picture that interpolates between the quantum and clas
regimes. Wave functions, on the other hand, do not hav
clear classical counterpart~although there are, of course
very powerful semiclassical approximations for the wa
function such as the WKB approximation!.

Wick’s theorem for superoperators in Liouville space
lows us to develop a unified picture of quantum field a
classical mode coupling theories, which clearly reveals
information content of the classical and quantum nonlin
response functions. Both classical and quantum respo
functions contain interference. Quantum mechanically it
between 2n Liouville space paths. The classical interferen
is of a very different nature@63# and involves 2n close-lying
trajectories. The response function in phase space is obta
by ensemble averaging over such bundles of trajecto
@45,63#. Alternatively, the classical response can be rec
using stability matrices, which carry the relevant dynami
information on the vicinity of a given trajectory. The conne
tion between the quantum and classical 2n-fold interference
is made more transparent by keeping the left/right or
1/2 pathways rather than working in phase space. We
tain \ during the semiclassical calculation and send it to z
only at the end.
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In the fully classical phase space approach, we take
two separate~left and right! paths required in a quantum
mechanical formalism and expand them around a single c
sical reference path, letting the stability matrices carry
burden of retaining the information about the differences
tween the paths. In the present1/2 representation we kee
track of closely lying trajectories by retaining terms to ord
\ and combine them only at the very end. In this way, s
bility matrices, which pose enormous computational diffic
ties @64#, never show up.

Another way to view the classical-quantum connection
by starting with the expressions for quantum mechan
nonlinear response functions in terms of combinations
n-point correlation functions of the relevant variables. The
correlation functions differ in their time ordering, i.e
^A(t1)A(t2)A(t3)&, ^A(t2)A(t1)A(t3)&, etc.R(n) is then a
combination of 2n such correlation functions, each represe
ing a distinct Liouville space pathway. Classically, of cours
time ordering is immaterial since all operators commute a
we have only a singlen-point correlation function. The pres
ence~absence! of symmetry with respect to the permutatio
of the n time variables in classical~quantum! correlation
functions implies that the effective multidimensional spa
of time is reduced by a factor ofn! in the classical case
Classical correlation functions thus carry less informat
than their quantum counterparts. Classically, it suffices
calculate ^A(t1)A(t2)•••A(tn)& for t1<t2<•••<tn .
Quantum mechanically, each of then! permutations of the
time arguments is distinct and carries additional informati
The stability matrices provide the extra information requir
for computing the response functions from classical corre
tion functions.

Since classical correlation functions do not carry enou
information for computing nonlinear response functions, it
not possible to simulate and interpret the response in te
of standard equilibrium fluctuations; additional nonequili
rium information is necessary@63#.

Correlation functions are equilibrium objects that can
computed using sums over unperturbed trajectories; resp
functions can either be obtained as equilibrium averages~sta-
bility matrices! or recast in terms of 2n close-lying nonequi-
librium trajectories perturbed at various points in tim
Quantum corrections to classical response functions ma
represented in terms of classical response functions of hig
orders@45#.

Finally, we note that an alternative semiclassical\ expan-
sion of the response is possible even when the temperatu
low compared with the material frequencies, and the sys
is highly quantum, provided the anharmonicities are we
@24,25#. The leading terms in the expansion can be obtain
by solving classical equations of motion. This is done
hiding the\ in the coth factor in Eq.~72! by recasting it in
the form coth(v/2vT), wherevT5kBT/\ is the thermal fre-
quency, and redefiningG11 by multiplying it by \. The
response is then analytic in\ ~as long as we forget about th
\ dependence ofvT). Semiclassical approximations ord
narily hold when the temperature is high compared to
relevant vibrational frequencies. This points to a much l
1-10



er
h

el
co

e
t,
a

in
ol

b

a
rr
be

di
-
a

ce
we

us
su

t/
t the

a
ow-
en-
ss-
ard
-
is

em
tors
ng

sum

ticle

nt
en-

ce
the
ga-
ng
of
e

c-
ale

ad-

the
ted
he
ute
sed

ed

ace
ese

y
and
ery
tion
log.

ula-
n
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obvious, low temperature weak anharmonicity regime, wh
the response of the system is almost classical even thoug
temperature is very low.

VI. WICK’S THEOREM
FOR FERMION SUPEROPERATORS

One reason that the handling of boson operators and fi
is simpler compared to fermions is that superoperators
responding to elementary boson operators are also elem
tary, i.e., their commutators are also numbers. To see tha
us consider the commutation rules of superoperators by
ing with commutators on an arbitrary operatorF:

@QjL ,QkL#F5@Qj ,Qk#F,

@QjR ,QkR#F52F@Qj ,Qk#,

@QjL ,QkR#50. ~84!

Since @Qj ,Qk# is a number, we see that the correspond
superoperators are elementary as well. This property h
also if we consider the linear combinations in the1,2 rep-
resentation. To see that, we start with@A1 ,B2# and act on
an ordinary operatorF:

@A1 ,B2#F5
1

2
@A,B#F1

1

2
F@A,B#,

@A2 ,B2#F54@A1 ,B1#F5†@A,B#,F‡. ~85!

Since the commutator of elementary operators is a num
Eq. ~85! gives

@A1 ,B2#5@A,B#,

@A2 ,B2#54@A1 ,B1#50. ~86!

The commutators of elementary boson superoperators
thus numbers. It then follows that the superoperators co
sponding to elementary boson operators are Gaussian,
in the 1, 2 or in theL,R representation. The indicesn in
Eq. ~74! can thus run over1, 2 or L,R and Wick’s theorem
holds in either case.

Using L,R, the functional can be used to generate in
vidual Liouville pathways. Using1,2 it generates combina
tions of such paths, making the classical limit more transp
ent, since we work with combinations of Hilbert spa
correlation functions which enter the response and have
defined classical limits.

Life is more complicated for fermions. To see that, let
consider the anticommutation rules for Fermi elementary
peroperators:

$QjL ,QkL%F5$Qj ,Qk%F,

$QjR ,QkR%F5F$Qj ,Qk%,

$QjL ,QkR%F52QjFQk . ~87!
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Since$Qj ,Qk% is a number this shows that left/right or righ
left superoperators have elementary anticommutators bu
anticommutator of left/right operators is not generally
number. We thus do not have Gaussian statistics. Note, h
ever, that left and right operators always commute. The g
erating functional needs to be formulated using the Gra
man algebra of anticommuting numbers, similar to stand
Green’s functions@1,6#. The important point is that a modi
fied Wick theorem still holds for Fermi superoperators. It
given by Eq.~74! with the following changes.~i! We must
use L,R rather than1,2 variables forn. ~ii ! Each term
needs to be multiplied by (21)P, whereP is the number of
permutations of elementary operators required to bring th
to the specified order. Since left and right superopera
commute, we count only the number of permutations amo
left and among right operators.~Permuting a right and left
operator does not count inP.!

The expectation of theT product of any number of~boson
or fermion! superoperators may thus be expressed as the
of all possible products of expectations ofT products of the
separated pairs of operators for the reference many-par
density matrixr0 corresponding toH0.

VII. DISCUSSION

Hilbert space and Liouville space offer a very differe
language for the description of nonlinear response. The d
sity matrix provides a fully time-ordered description, sin
we only need to propagate it forward in time. In contrast,
wavefunction involves both forward and backward propa
tions. The choice is between following the ket only, movi
forward and backward, or following the joint dynamics
the ket and the bra and moving only forward. Artificial tim
variables ~Keldysh loops! commonly used in many-body
theory @20,21,46# are connected with the wave function pi
ture. The density matrix uses the real laboratory time sc
throughout the calculation.

In Liouville space all observables are time ordered, le
ing naturally to a semiclassical approximations@28# and
Feynman path integral diagrammatic techniques@1–7#.
Maintaining time ordering allows us to recastS(n) using non-
linear response functions which decouple the field and
material parts. The nonlinear response function is calcula
as a path integral in Liouville space by summing over t
various possible pathways in Liouville space that contrib
to the polarization. Path integrals have been extensively u
as a useful tool for numerical computations of mix
quantum-classical calculations@65–67#. The density matrix
formulation provides a similar development for phase sp
based numerical procedures. Graphical visualization of th
paths is provided by double-sided Feynman diagrams@23#.

The density matrix Liouville space picture offers man
attractive features. The physical observables are directly
linearly related to the density matrix. Consequently, ev
step and intermediate quantity appearing in the descrip
has a simple physical meaning and a clear classical ana
This should be contrasted with wave function based calc
tions of the transition amplitude, which by itself is not a
1-11
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observable, since signals are related to sums of produc
such amplitudes.

The density matrix provides a practical way of performi
ensemble averagings and developing reduced descrip
where bath degrees of freedom are traced out from the
set. Since it represents the state of the system by a m
rather than a vector, anN-point grid for p andq in a semi-
classical picture will requireN2 points for the wave function
and N4 for the density matrix. The ability to perform en
semble averagings and obtain reduced descriptions m
than compensates for this price for complex systems. Ma
body theory of superoperators further naturally allows for
treatment of dephasing and decoherence effects. Diag
and off-diagonal elements of the density matrix are known
populations and coherences, respectively. When an off
diagonal element evolves in time for a system coupled t
bath, it acquires a phase, since its evolution from the
~ket! and the right~bra! is governed by different bath Hamil
tonians. This phase depends on the state of the bath. W
we perform an ensemble average of these elements ove
distribution of the bath degrees of freedom, this varia
phase results in a damping of these elements. The dam
of off-diagonal elements of the density matrix resulting fro
phase~as opposed to amplitude! fluctuations is calledpure
dephasingor phase relaxation~also known asdecoherence!.
Dephasing processes can be visualized in Liouville sp
only by following simultaneously the evolution of the b
and of the ket and maintaining the bookkeeping of their jo
state. Dephasing processes directly affect all spectrosc
observables since they control the coherence, which is
window through which the system is observed. Differe
pathways representing distinct sequences of populations
coherences are naturally separated in Liouville space.
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APPENDIX: SOME USEFUL RELATIONS FOR
SUPEROPERATOR ALGEBRA IN LIOUVILLE SPACE

A Liouville space operatorAa is labeled by a Greek sub
script wherea5L,R,1,2. It is defined by its action onX,
an ordinary~Hilbert space! operator. We write a general ma
trix element
s

-

02111
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~AaX! i j [(
k,

~Aa! i j ,k,Xk, . ~A1!

Aa is thus atetradic operator with four indices. SinceALX
[AX andARX[XA, we obtain using Eq.~A1!

~AL! i j ,k,5Aikd j , , ~A2!

~AR! i j ,k,5A, jd ik . ~A3!

Note that the order of thej , indices in Eq.~A3! has been
reversed.

Since A1[ 1
2 (AL1AR) and A2[AL2AR , we have

(A2) i j ,k,5Aikd j ,2A, jd ik and (A1) i j ,k,5 1
2 @Aikd j ,

1A, jd ik#. It then follows that@AL ,BR#50. This commuta-
tivity of left and right operators is possible thanks to t
large size of the Liouville space and simplifies algebraic m
nipulations, resulting in many useful relations:

2@A1 ,B2#5@AL ,BL#2@AR ,BR#5~AB!22~BA!2 ,

exp~AL!5exp~A1!expS 1

2
A2D ,

exp~A1!5expS 1

2
ALDexpS 1

2
ARD ,

exp~A2!5exp~AL!exp~2AR!,

~expA!152 exp~A1!coshS 1

2
A2D ,

~expA!252 exp~A1!sinhS 1

2
A2D . ~A4!

In the following a is a complex number:

d~v2A2!5E dad~a2AL!d~v2a1AR!,

d~v2A1!5E dad~a2AL!d~v2a2AR!,

d~a2AL!d~a2AR!5d~A12a!d~A2!. ~A5!
s
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