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Superoperator representation of nonlinear response: Unifying quantum field
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Computing response functions by following the time evolution of superoperators in Liouville 6phose
vectors are ordinary Hilbert space operataffers an attractive alternative to the diagrammatic perturbative
expansion of many-body equilibrium and nonequilibrium Green'’s functions. The bookkeeping of time ordering
is naturally maintained in redphysica) time, allowing the formulation of Wick’s theorem for superoperators,
giving a factorization of higher order response functions in terms of two fundamental Green’s functions.
Backward propagations and analytic continuations using artificial tifiie&lysh loops and Matsubara con-
tours are avoided. A generating functional for nonlinear response functions unifies quantum field theory and
the classical mode coupling formalism of nonlinear hydrodynamics and may be used for semiclassical expan-
sions. Classical response functions are obtained without the explicit computation of stability matrices.
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[. INTRODUCTION are necessary. The Hilbert space description requires a se-
quence of forward and backward propagations as opposed to
An important ingredient in many-body theories is the abil-the all-forward representation of response functions in Liou-
ity to factorize averages of products of a large number oville space[27-31. The superoperator approach provides a
operators into products of averages of pairs. This Wick theotnifying framework applicable to quantum and classical sys-
rem is common to the broad arsenal of techniques used fd¢ms, with and without second quantization. It thus connects
the treatment of quantum and classical systems alike. Quafi€ld theories with classical mode coupling theories of fluc-
tized fields are used, e.g., in Green’s function perturbatiofUating hydrodynamics. Semiclassical approximations are
theory of many identical bosons or fermiofis-7]; time de- developed directly for nonlinear response functi@res, spe-

pendent Hartree-Fock and time dependent density function&liﬁc combinations of correlation functionsather than for

equations of motion of many-electron systef8§ and the individual correlation functions, which do not have a natural
Hartree-Fock Bogoliubov equations for superconductors an Iass!cal I|_m|t and the|r_ semlcle_lssmal.a.pprox!matmns are
Bose-Einstein condensatfg]. Classical fields are consid- us ill defined. Recent interest in multidimensional Raman
ered in mode coupling theor.ies of nonlinear hydrodynamic techniques generated considerable activity in modeling mul-

. _ itime correlation functiong32—4Q. The mode coupling
of fluids and glassefl0,11; cumulant (1N) expansions for simulation of correlation functions using Langevin equations

shprt range interactions in fluids; and Gaussian models Oﬁoses many probleni¢3,33. These difficulties disappear by
spin Hamiltoniang12-18. _ modeling the entire response where the classical limit is
Green’s function perturbation theory forms the basis foryniquely and unambiguously recovered. The present formal-
the powerful Feynman diagrammatic techniques widely usegsm shows how nonlinear response functions may be ex-
in the description of many-particle systeifis-9]. This for-  pressed in terms of the lower order response of collective
malism is based on expressing quantities of interesinas-  variables[25,26,4].
ordered expansiong&quilibrium and nonequilibrium Green’s In Sec. Il we discuss two strategies for simulating re-
function techniqueg$5,7,19 employ various types of con- sponse functions. The first, based on the wave function in
tours which, in effect, transform the computation to a time-Hilbert space, does not maintain a full bookkeeping of time
ordered form in some artificialunphysical time variable  ordering whereas the second, based on the density matrix in
along the contouf20-22. Liouville space, doed42-44. A detailed comparison is
The primary goal of this article is to demonstrate that themade of the physical insight and the numerical effort re-
description is greatly simplified by employing superoperatorquired in both pictures. These results form the basis for de-
algebra and computing response functions using the densityeloping the many-body Green’s function perturbation
matrix in Liouville space[23—-24. One of the rewards of theory in Sec. lll. Using a generalized superoperator gener-
working in the higher dimensional Liouville space is that weating functional, we obtain a time-ordered perturbation
need consider only time-ordered quantities in f@hlysica)  theory of elementary Liouville space operators, and derive
time, and Wick’s theorem therefore assumes a particularlyvick’s theorem for boson field superoperators in Sec. IV.
compact form; no special contours or analytic continuationsThese results are used in Sec. V to derive a semiclassical
expansion for response functions which in the classical limit
recovers mode coupling theory. The extension to fermion
*Present address: Department of Chemistry, University offields is made in Sec. VI, and our results are summarized and
California, Irvine, CA 92697-2025. discussed in Sec. VII.
Email address: sumukamel@uci.edu Wick's theorem is based on a perturbative expansion
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around a quadratic Hamiltonian and is thus limited to physi- n

cal situations when this is a good reference for the actual sV(t)= > (™ )[Bly{" ™ (1)), 3)
dynamics. It is given for boson fields in Sec. IV using a m=0
closed expression for the generating functional, and for fer- (m) . .
mion fields in Sec. VI. In Sec. V we explore it in coordinate Here|a,//]- ) denotes the wave function tath order inHip, .

space without using second quantization. Section Il intro-lf. thg system is initially in a mlxed stz_itéza.g:, a canon.|<_:al
duces the notation and reviews previous results. The supe%'smbu“m where the statgj) is occupied with probability
operator algebra of Sec. Ill was used earlier for specific apFi W& need to average EB) over that ensemble:
plications (time dependent Hartree-Fock, fifth Raman
spectroscopy[24—26,43. This section recasts these earlier () — )
results in a more general and compact notation that sets the S (t)_; PiS (). )
stage for the subsequent sections.

Time dependent perturbation theory gives for the linear

II. LIOUVILLE VS HILBERT SPACE DESCRIPTION responsg23]

OF QUANTUM NONLINEAR RESPONSE

A. Partially time-ordered, wave function based expansion

i [t
of response functions st Z%fwdrﬁ #|UT(t=7)BU(t—71) Al g )E(7)

We consider a material system with Hamiltonidih

A . . +c.c. (5)
coupled to an external driving fiell(7) by the interaction

Here|4;)=|4;(0)) andU(r) is the retardedevolution op-
Hin(7)=—AE(7), (1) erator in Hilbert space which propagates the wave function

. _ _ ) forward in time:
whereA is a general dynamical variable. For clarity we as-

sume a scalar field; extension to vector fields is straightfor- U(7)=6( r)exp( - I—HT ' (6)
ward by introducing tensor notation. The total Hamiltonian h
H is gi b
r(7) Is given by whereas thedvancedGreen’s function
Hy(7)=H+Hj (7). 2 UT(T)ZQ(T)eX%fI_LHT) )

We shall be interested in the expectation value of an op-
erator B of the driven system at timé For a system de- is responsible for backward propagatiof(.r) denotes the
scribed by a wave functiofiys;(t)) this is given byS(t) Heaviside function(0 for 7<0, 1 for 7>0).
=(4;(1)|B|y;(1)). A perturbative calculation dfy;(t)) then For the third order response, which describes many of the
gives tonth order in the field most common nonlinear spectroscopigs], we obtain

i\3rt t 72
P0=(3) [ an an [ anRutr BB B

3 t T T
+ f dTlf 1d72f 2deRb(t.Ts,Tz.Tl)E(Tl)E(Tz)E(Ts)‘*'C-C-, (8)

i
h

where and we have defined,=t and r;;=7,— 7;. These equations
represent a time loop of forward and backward propagations
[46]. Equation(9) may alternatively be recast using correla-
Ra(74,73,72,71) tion functions:

=(;|U" (139 AUT (729 AUT (7,0 BU( 740 Al o),
Ra( 74,73, 72, 71) = (| A(T3) A(75) B(72) Al 71) | ),

Ry(74,73,72,71)
= (| UT (740 BU(759 AU(73) AU( o) Al g}),

Ro( 74,73, 72, 71) = (| B(7) A(73) A(m2) A(71) | ),
9) (10
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where we denote operators in the Heisenberg picture by a In the density matrix formulation we maintain a simulta-

caret,
A(r)=UT(nAU(7). (11)

The time variables oR. in Eq. (8) are fully ordered ¢;
<7,<73=t). However, this is not the case f&; andR,.

By breaking the integrations into various segments we ca

maintain full time ordering, and recast E() using a re-

neous bookkeeping of the interactions with the ket and with
the bra. This is why Eq(17) has 2' terms, each constituting
a distinctLiouville space pathwayl'he wave function calcu-
lation, in contrast, focuses on amplitudes and the various
time orderings of the ket and the bra interactions are lumped
|11ogether. Equatioi3) thus has onlyn+1 terms. The differ-
ent terms in this case simply reflect the order of the interac-

sponse function. This will be done next through the densit)}?ons within the bra and within the kebut not the relative

matrix expansion.

B. Time-ordered expansion: Response functions

time ordering of bra and ket interaction§Vhen the system
interacts with a thermal bath, thé erms in Eq.(17) repre-

sent distinct physical processes and their separate treatment
is absolutely crucial. The density matrix separates these

Rather than using a wave function, the state of the systefyms directly and naturally without the need for any change

can be described by its density matrix, defined as

p<t>=; i (D) Pi( (D). (12)

Equations(3) and(4) can alternatively be recast in the form

sW(t)=TrBp™(1)], (13

where

p<“><t>=$ mzo Pile™ )" ™) (14

is the density matrix expanded to théh order inH;,;. The

of time variables.

The quantum nonlinear response functi®f is given by
a combination of (+1) order correlation functions. Re-
sponse functions provide a natural link between theory and
experiment[47]. R(™ is a purely material quantity which
contains all the necessary information for describingritie
order response. It is independent of the details of a particular
measurementg.g., the temporal sequences of pulses as well
as their frequencies and wave vecjorBhe field envelopes
enter through the multitime convolutions in E@.5). When
S is calculated in terms of the wave function without using
response functiongEqg. (4)], we need to repeat the calcula-
tion for every new realization of the fiel®R(" is therefore a
compact and economical way for clarifying the fundamental

expectation value dB to nth order in the field is obtained by relationships among various techniques and their information
computing the density matrix to the same order. This givegontent. Since the nonlinear response functions are succes-

[23]

t Tn T
s<”>(t)=f drnf drn,l.--f “dry

.., )E(7)E(72)- - -E(7y,).
(15

X R(n)(t,Tn,Tn_l, .

HereR(™ is thenth order response function
i\" . A
R(n)(TnJrl! s 171):(%) Tr{[ oSBT 1), A(To) T,

A(Tnfl)]v e 1A( 7-l)] peq}v (16)

which can alternatively be recast as

R(n)(TrH_l, PR ,7'1)

= ( fli_) Tr{é(7n+1)

X[A(T), - JA(T) [A(T1),peqll -
(17)

Note that the time variables in Eq. (8) are not ordered. In
contrast, the complete time ordering in Ed5) makes the

density matrix description most intuitive and directly con-

nected to experimen23].

sively probing higher order correlation functions, they nec-
essarily carry additional information as the ordeiis in-
creased.

C. Forward/backward vs all-forward representation
of response functions

The expression for the response obtained by expanding
the density matrix in powers of the external fig¢lgq. (16)]
separates naturally into several contributions, each represent-
ing a distinct time ordering of the various interactions. The
time variables appearing in E¢L5) are chronologically or-
dered and represent successive interactions with the field. In
contrast, the time variables in the wave function description
are not fully ordered and consequently have a much less
transparent physical interpretatidR{" has 2' terms(Liou-
ville space pathwaysin the density matrix descriptiofEq.

(16)] but onlyn+1 terms using wave functiori&g. (8)]. In
practice, we need compute only half of the terms since they
come in complex conjugate pairs.

For the linear response E(L6) gives

RO, m)= 1 3 PV (720 BU(rz Al + .
19

The third order response is similarly given by
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3 4
z Rgg)(T4,T3,T2,Tl)+C.C.,
s=1

(19

i
R(S)(74173172171)2<g)

R (74,73,72,71)

=Ej Pi(#|UT (720 AU (73 AUT (749 BU (4 Al ),
RO (74,753,752, 71)

=; Pi(4i|U(m2) AUT(73)AUT (749 BU(740) Al ),
R (74,73,7,71)

:2; Pi(#|U( 3D AU (720 AUT (74 BU( 749 Al ),
R (74,73,72,71)

=; P ;| UT (74 BU( 749 AU(73) AU( 750 Al ;).

(20

Unlike Eq.(8), Eqg.(15) allows us to define a response func-
tion since it is fully time ordered. Note th&,=R;,, andR,
corresponds t&R; + R, + Rj.

Equations(18) and (19) can be calculated by either ex-

PHYSICAL REVIEW E 68, 021111 (2003

whereLA=[H,A] is the Liouville operator.

We shall denote superoperators by the subsaript ,R
where the operator8, andAg act on the kefleft) and bra
(right) of the density matrixA_ B=AB andAgB=BA) [50].
We further define the equilibrium distribution function

peq=§ Pl 4;(0))(;(0)]. (23)

Adopting this notation for Eq(17) yields for the linear re-
sponse

RM(7y,71)= TIBLG(21)ALpeql +C.C. (24)
and for the third order response
R(lg)(7'4,73:7'2:71)
=T B G(743) ARG(T32) ARG( T2 AL Peg,
R(zg)(7'4,73:7'2:71)
=Tr[BLG(743) ARG( 732 ALG( T21) ArPeql,
R(sg)(7'4,73:7'2a71)
=Tr[BLG(743) ALG( T3 ARG( T21) ArPeql,
R513)(r4,7-3,72,7-1)

=TI BLI(T43) ALG(T3) ALG(T2D) ALPegl- (29

panding the correlation functions in eigenstates or using\ote that since the density matrix needs only to be propa-
wave _pa_ckets in the coordinate repre_sentatlon. Semiclassjated forward, Eqg25) contain only the forward propagator
cally, it is possible to expand;(t)) in coherent states g(t) and not its Hermitian conjuga@’(t), which describes

l4;(t))=J fdpda|pa){pal#;(t)). Each R; may thus be

backward propagation. This is in contrast with the Hilbert

computed as an average given by a sum over trajectorigspace expressiofEq. (20)], which contains botiU(7) and

moving forward and backward in time as given by the vari-

ut(7).

ousU andU" factors, respectively. Coherent states provide As in the wave function picture, the response functions

an overcomplete basis spt8]. Powerful semiclassical ap-

may be computed by sums over states or by semiclassical

proximations were developed for carrying out this propagawave packets:

tion [27-31,49.
In Egs.(19) and(20) we used the density matrix to derive

(n) — ’ "Nn' ! r ! | A(N)
formal expressions for the response functions, but for the i’ (t)_J j dpdqdp’da’[p’q"){p"q’|p}" (1) Ipa)(pal.

actual calculation we went back to the wave function in Hil-

bert space. Since quantum mechanics is usually described

| (26)
n

terms of wave functions, wave packet and semiclassical de- Each term(Liouville space pathn Eq. (25) can be recast
scriptions are normally developed for wave functions. It isin the form[23,51]

possible, however, to construct an alternative forward propa-
gating wave packet picture by staying with the density ma-
trix in Liouville space all the way. To that end we represent

the time dependent density matrix as

p()=U(1)p(0)UT(1)=G(t)p(0). (21)

Rfs)(7'4a7'3,7'2le)ZTr[BLP,(n)(t)], (27)
where p{"(t) is the density matrix generating function for
pathj, which can be computed using two forward moving
trajectories representing the simultaneous evolution of the
ket and the br&28,45. In the wave function representation

The first equality is the common representation where weave act on the ket only. Propagating the bra forward is

treat p(t) as anoperator in Hilbert spaceln the second
equation we considgr(t) as avector in Liouville spaceWe
further introduce the Liouville space evolution operator

i
——Lt/,

g(t)= e(t)exp( 7

(22)

equivalent to propagating the ket backward. By keeping
track of both bra and ket simultaneously we can enjoy the
physically appealing all-forward evolution. Since the various
Liouville space pathways are complex quantities, they inter-
fere when added. This interference may result in dramatic
effects.
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A systematic approach for computing the response func- R i
tions will be developed in the next section. G(1p,m1)=O0(1,— m)€XP — 2 L(1,= 7). (8D
Ill. SUPEROPERATOR ALGEBRA Equation(SO) is the Liouville space analog of E¢ll). The
AND THE TIME-ORDERED PERTURBATIVE expectation value 0B,
EXPANSION OF RESPONSE FUNCTIONS S(t)=Tr[Bp(t)], (32
In Egs.(24) and(25) we introduced the indicdsandRto ~ may now be represented in the form
denote the action of a superoperator from the left or the right.
In the following manipulations, in particular for the sake of N it A
developing a semiclassical picture, it will be useful to define S(t)={ TB.(t)ex gJ_deE(T)Af(T) - (33
their symmetric ¢=+) and antisymmetric ¥=—) combi-
nations[24] The operatorB. (t) corresponds to the observation time,
1 whereasA_(rj) represent various interactions with the ex-
A-=ALAr Av=5(ALtAR). (28 ternal field at timer, and(- - -) denotes averaging with re-
spect to the equilibrium density matrpg:
Recasting these definitions in Hilbert space using ordinary (F)=Tr{Fpegl- (34

operators, we geA,X=3(AX+XA), A_X=AX—XA, X

. i By expanding the exponent in the right hand s{&&1S)
being an arbitrary operator. Hereafter we shall use Greek : :
indices to denote superoperatdks with either v=L,R or Of Eq. (33) in powers ofE(7), we obtain for the response

functions
v=+,—.

We consider operators that depend parametrically on time. i\
ThIS time dependence can be either in the Helsenberg PICLUrER(M (7, , 1+ 7y)= (ﬁ) (Bi(Tns)A_(7n)---A_(1y)).
A,(7) [Eqg. (30)] or in the interaction picturéd,(7) [EQ.
(40)]. By introducing a time ordering operatdrfor super- (39
operators in Liouville space, we can freely commute variousEquation(35) is merely a compact notation for E€L7). It
operators without worrying about commutatiofigakes any  should be emphasized that all time arguments are fully or-
product of superoperators and reorders them in ascendingered, r;<7,<---<r,,,. The Liouville space correlation
times from right to left. More precisely, we define function in the RHS represents a combination of ordinary
(Hilbert space correlation functions.
TA,(71)B,(7) Equation(35) may be evaluated directly only for simple
v m models. To convert it into a general computational tool we
A,(11)B,(72), T7,<71, need to develop a perturbation theory for response functions
B.(7,)A, (1) < based on t|m§-orc_iere_d superoperators. To that end we parti-
_{ TPk 1=t tion the Hamiltonian into a simple, solvablesually qua-

1 _ dratic partH, and a perturbatioV:
E[Av(Tl)BM(Tl)_l_B;L(Tl)AV(Tl)]a T2= T1s H=Hg+V, (36)

(29) and introduce the Heisenberg and interaction pictures. We
R _ define the Liouville operatore=Ly+V_ corresponding to
whereA, () is eitherA,(7) or A,(7). T orders all superop- Eq. (36) where Lo=(H;)_, i.e., Lo;X=HoX—XH,. The
erators such that time decreases from left to right: The latestme evolution operator with respect tg is
operator appears in the far left, and so forth. This is the i
natural time ordering which follows chronologically the vari- Go(7o,71)=60(72— rl)ex;{ — 2 Lo(m—71)
ous interactions with the density matri84]. The precise h

order in _Wlhi‘?h supeLoperz:\jtorr]s apé)ear ?Iek;(t it_')(a?jerat%r is ) The total (Heisenbergtime evolution operator with respect
immaterial since at the end the order will be fixed anyhow by, . - :
T. For example T before an exponent means that each termto L will be deﬂnotedg( 72,71). We ~can then write
in the Taylor expansion of this exponent should be time or- G(15,7)=Go(72,7)G(72,71), (39
dered. ~

We next introduce the Heisenberg picture for superoperawhereg is the time evolution operator in the interaction pic-

tors, whose time evolution is governed by the Liouville op-ture:

. @7

erator ~ i (2 -
g(Tz,Tl)ZTeX[{—ﬁ dTZV_(T)}. (39
1
A (1)=G"(1,0A,G(7,0) (30) Throughout this paper we use a caret to denote operators
in the Heisenberg picturd=Eq. (30)] and a tilde for operators
with in the interaction picture, i.e.,

021111-5
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A (1)=GH(7,0),A,G0(7,0), 40 i - - -

(=507, ALl 7.0 40 RO(rym) = 5 THBL (7). ) A (7)Trs, —)po).

v=+,— or L,R. 47

The equilibrium density matrix of the interacting system  The time-ordering operator allows us to express @)

can be generated from the density matrix of the noninteractin the compact form
ing system fpg) by an adiabatic switching of the coupling

resulting in b~ ~
’ R (7y, )= %<TB+(T2)A(71)
Peq=9(0,=%)po. (41) _
[ ) ~
For an isolated system at zero temperature, (Et). gen- xexr{ - %J dTV(T)D , (48
erates the ground state density matrix of the interacting sys- o 0

tem, starting with the noninteracting ground state. This is the ) ) ) ) )
procedure of Gell-Mann and Loy52]. At zero temperature where we def}ne averaging with respect to the density matrix
the zero order ground state evolves into the actual normaro Of the noninteracting system

ized ground state and hence H¢l) need not have a de- _

nominator. Note that in the wave functioGell-Mann—Low (F)o= TITFpol. (49)
for_mulat|o_n of adiabatic 5\_N|tch|ng, the wave function ac- Equation (48) can be immediately generalized for the re-
quires a singular phase which must be canceled by a denomg—ponse to arbitrary order:
nator given by the closed loop matrix; the Liouville space ' _—
expression is simpler since the phase never shows up. A re- _ [ 1% _ '_f v
markable point is that Eq41) holds as well at finite tem- S()={ TB.(Dex h drV()
peratures provided the system is coupled to a bath at constant
temperature. This is a thermodynamic adiabatic switching
where the populations of adiabatic states change and equili-
brate with the bath at all timg¢&3-55. It is distinct from the

adiabatic switching of an isolated quantum system where the Expanding Eq(50) to nth order in the external field gives
populations of adiabatic states do not chaffe@.

—o0

it ~
Xex;{%f_deE(T)A_(T) >O. (50

At finite temperatures we start with the grand canonical i\n/ _ ~ ~
distribution RO(7oq- ) =| ] { TBu(7ne)A(m) - A(7)
_ eXF[_B(HO_/-LN)] (42) i T+l o~
PO Trexd — B(Ho— uN)]’ Xexr{—gf_ d7V_(7) > , (5D
0

where=(kgT) ! (kg is the Boltzmann constantu is the
chemical potentiall\ is the number operator of particles, and Where we recall that
Eq. (41) generates the distribution i i
ex—B(H—uN)] 43 X(T):ex%gLor)Xexp{—%Lm), (52)
Pea™ Trexd — p(H—uN)T*

We now have all the ingredients required for computing the X=A; A V_.

response. Let us start with the linear response function The Taylor expansion of the exponent in the RHS of &d)

i finaIIy giVeS
(1) B +\7 ‘A +
R (7-2!7-1)_%<B ( 2) 7( 1)> ( ) R(n)( )
Th+1 " T1

* (_1)m i m+n
-2, 5 il

T+l o, n+1 o, ~
X drj ... B d7r/{(TB (7hi1)

Using Eqgs.(30) and (38) we obtain

i~ ~ ~ ~
R (75, 71) = 2 TG (72,00 (72) G(72,00G'(71,0)

XA_(71)G(71,006(0,— ) po]. (45) —o *
The lastG'(7,,0) can be neglected since it does not affect the XA_(15)- - A (T)V_(10)---V_(71))o- (53
trace. Also
Equation(53) constitutes the interaction-picture represen-
G(75,00G"(71,00=GC(7p,71), (46)  tation of the correlation function E¢35) [24,41]. All super-
operators in this expression should be time ordered chrono-
which gives logically from right (early time to left (late timg. This

021111-6
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forms the basis for formulating the field theory and Wick iz . .
theorem in Liouville space in the next section. R(Z)(Ts,Tz,TlF(g) (TBy(73)A_(72)A_(71))o-

Note that simple time ordering in Liouville space is a (54)
more complex operation when recast in Hilbert space. This is
why superoperators simplify the bookkeeping. To demonWe need to apply the superoperators in a time-ordered fash-
strate that, let us tak®(®) (we use the Heisenberg picture but jon (in Liouville space, i.e., firstA_(r,), thenA_(,), and

the argument holds as well in the interaction picture, whergina|ly B, (7). Separating all possible actions for the left
we should simply replace all carets by tilgles and the right we get

|
2 THTB. (73)A_(7)A_(71)peql= THB(73)A(T2)A(T1) pegl+ THA(T)A(T)) pedB(73) 1= TIB(73)A(72) peA(1)]
— T A(72) peA(11)B(73) 1= T B(73) A(71) peqA(72) 1= TIA(71) peA( 72)B(73)]
+TIB(73) peqA( 7)) A(72) 1+ TH peA( 1) A(72)B(73)]. (55)

In Hilbert spacgthe RHS of Eq.(55)] all operators that or using creation and annihilation operators
act onpgq from the left are time ordered and the time in-
creases as we go to the left, starting wiih,. All right Y _2 T ot
operators are ordered in the opposite way: Time increases as 0T rs@ds.
we go to the right, starting withq. This mixture of positive
and negative time ordering coming from the evolution of theyyhere
ket (left) and the bra(right), respectively, is what compli-
cates the bookkeeping of ordinary operators in Hilbert space.
This is in marked contrast with Liouville spafthe LHS of P(X) =2 es(X)ay (58)
Eq. (55)], where we keep track of the left and right labels of °
the various interactions. Consequently, all superoperators a
always positively time ordered in real, physical time, which
makes the formulation of a Wick theorem possible.

(57)

%hd @5 is the single particle basis set. For bosons, these op-
erators satisfy the commutation relations

[as ,a:] =0rs (59
IV. THE CUMULANT EXPANSION AND WICK'S and
THEOREM FOR BOSON SUPEROPERATORS
So far we have considered four types of operators that [¢(x), 4" (x")]= 8(x=x"). (60)

enter Eq.(51): the reference Hamiltoniakly— uN; A, rep- _ )
resenting the coupling to the external fieM; representing  For fermions, Eq(59) should be replaced by an anticommu-

the part of the Hamiltonian to be treated perturbatively; andator. Our elementary set of operators is thus theget! or
the desired observabB. To proceed further we introduce the field operatorsy(x),4'(x). The following arguments
the concept oklementary operatorsAny dynamical system hold for fermions as well; however, the derivation is simpler
can ultimately be described by a basic set of operators whoder boson fields with ECA. We shall therefore focus on
commutatorgor anticommutatoisarec numbers. Examples bosons first, and the extension to fermion fields will be pre-
of elementary operators with commuting algekELCA) are  sented in Sec. VI.
the canonical variable®Q,, ,Pz]=iJ,z and the boson op- We will denote the_ elementary operators@sand intro-
erators[aa,a;;]z 8.5 Used to describe systems of identical duce the corresponding superoperai@s, »=L,R,+,—.
bosons in second quantization. Second quantized fermion&e first note that the superoperator corresponding to any
are described by elementary operators with anticommutinginction of Q; can be expressed in terms @f, andQ;_,
algebra{ca,c;g}=5a,;. The operatorX=A, B, V, Hy, and €~
N are some functions of these elementary operators. 1

We choose our reference to be a quadratic Hamiltonian — _
given by the bilinear combination of elgmentary field opera- [FQ)I-=1Q ~1(Qjr) = f( Qi+ 3 Qj)
tors

1
—f(Qj+—§Qj—) (61)
Ho= f dXTO0) %' () (), (56)  ang
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1 [ ~
Z[f(Qj)]+Ef(QjL)+f(QjR):f(Qj++EQ]) GJ'T(_(TZ_Tl):flfl<TQj+(72)Qk7(Tl)>O1 (69
f Qj+-;qj_). 62 Gy (ra= ) =(TOL. (7)Bh (7))o
Using Eq.(28) we can recast these Green'’s functions in Hil-
For example, bert space as
1 i ~ - ~ ~
(QP)+=Qf:+ Q- (63) Gfk‘(r)=,',L—e<r)[<Qj(T>Qk(0>>o—<Qj<0>Qk(T>>o],
(70)
and
1 . ~ ~
(Q)_-=0Q;.Q;-+Q,-Q; . (64) GH(+(T):E[(Qj(T)Qk(0)>0+<Qk(0)Qj(7')>0]- (72)

Using these ruleéand additional useful relations given in the The# ! factor inG* ~ was introduced to make the classical
AppendiX we can expand, (7), A_(7), andV_(7) in a limit more transparentsee the next sectipnsince with this
Taylor series inQ;, andQ;_, converting the time-ordered factorG* ~ has a well defined classical limit. Note that since
product of superoperators in E¢GJ) into a time-ordered the trace of a commutator vanishes identically, in a time-
product of elementary operators. We thus need to calculateordered product the superoperator to the far left must be
a “+.” The Green’s functiondg5~~ and G~ * thus vanish
W{j m¥m7m} =(TQj u (78)- - Qju, (7))o, (65  identically and we only have two fundamental Green's func-
tions G** and G ™. Note also thatG™ () is finite for
wherevy, ...,wy==* andj, runs over the various opera- Positive and negativer whereasG" ~(7) vanishes forr
tors. The numbeN of operators in such products that enter <0. Equation (68) is an extremely compact expression
the computation oR("™ is greater tham+1N=n+1. The Which can readily be used to compute response functions to
reasons are as followéi) A, ,B, may be nonlinear functions arbitrary order.
of e|ementary operators and we use m) and the formu- The two fundamental Green’s functions can be eXpressed
las of the Appendix to express them as product@gf (“) in terms Of the matI’IX Of Spectl’a| dens|t|€% ((l)) deﬁned as
The expansion iV_ adds more operators to the product. the Fourier transform o6 ™~ [23,41,57 5%
To computeW we define asuperoperator generating

functional ()= 20(7)f Cij(w)sin(w7). (72)

S[{J(t)}]=<TeXF{JZ ijv(T)ij(T)dT> . (66)  We then have
v 0

» dw hw
Time-ordered correlation functions of superoperators can be Gﬁ+(7)=ﬁfmﬁcij(w)00ti'( oK T>005(w7) (73
obtained from the generating functional by functional deriva-

tives: The Wick theorem for superoperators then follows from Egs.
(67) and(68) and can now be stated as follows:

W{] meTm}:

&levl(Tl) o aJ i VN(TN) <Tbjlvl(71)' : 'éjNVN(TN»O

J=0

(67)

Since the Hamiltonian is quadratic, the generating func-
tional may be computed exactly using the second order cu-

—E (TQ . (ra) Qi ()0 - (TQy , (7p)

mulant expansion. This gives Xéquq(Tq»o- (74)
_ * 72 Herejav,: - -jqvq is @ permutation of v, - - - jyvy and the
S[{J(t)}]—exp[% f_wdﬁf_wdﬁ sum runs over all possible permutations, keeping the time

ordering. Since onlyG** and G~ survive, many of the
X[ =73} (79)I—(11)Gji (12— 71) terms will vanish.
Wick's theorem makes it possible to develop Feynman
+Jj+(Tz)Jk+(Tl)G,T<+(Tz— 71)]] (68) diag_ram perturbative techniques Which express the linear and
nonlinear responses of the interacting system in terms of the
two fundamental Green’s functions. This theorem is useful
where we have introduced the two fundamental Liouvillewhenever a quadratic reference is adequate and nonquadratic
space Green'’s functions parts of the Hamiltonian can be treated perturbatively. It
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states that multipoint correlation functions of systems withthe results of mode coupling theory and removes all ambi-
guadratic boson Hamiltonians may be factorized into prodguities as to how higher order correlation functions should be
ucts of two-point correlation functions of the primary coor- factorized[13,17,18,33

dinates. To illustrate how this works, let us consider the following
model HamiltoniarH ,, [25,26,41,57,5p
V. MODE COUPLING AND SEMICLASSICAL RESPONSE P2 M .02Q?
OF BOSON FIELDS - i el I3 I Y
Hin=2) (2Mj S| +V(Q), (78

Equation(17) contains 2 terms representing all possible
“left” and “right” actions of the various commutators. Each
term corresponds to a Liouville space path and can be re
resented by a double-sided Feynman diagia&j. The vari- mass, respectively, and(Q) is the anharmonic part of the

ous correlation functions interfere and this gives rise to mambotential The primary modes interact with a large number of
interesting effects such as new resonances. THgT factor harmonic (bath coordinates which induce relaxation and

indicates that individual correlation functions do not have an .
) . o . . hasing. Low fr n h r f fr n
obvious classical limit. The entire response function mustdep asing. o equency bath degrees of freedprand

however, have a classical limit. When the various correlatio their coupling to the primary modes are described by the

functions are combined, the/¢)" factor is canceled a8 etz%rggomanHB’ and the material Hamiltonian is given by

tends to 0, and one obtains the classical response, indep
dent of 4. The elimination of# for higher nonlinearities
requires a delicate interference among all @rrelation
functions.

The terms contributing t&R(™ [Eq. (53)] will generally
have a {/#)"*P factor wherep is the order inV_. This
factor must be canceled d@s—0 to ensure a well defined

whereP;(Q;) is the momentunicoordinatg¢ operator of the
I[]'th primary mode{); andM; are its frequency and reduced

H=Hmn(Q)+Hg(Q,q). (77

We assume a harmonic bath linearly coupled to the pri-
mary coordinate€);,

classical limit. This is guaranteed since by Wick’s theorem H :E pi n mawi _z Cia 0. ?

we will haven+p G*~ terms, each carrying a factor. In B4 2m, 2 |Ya T mow? )l

the classical limit we set coth{/2kgT)=2kgT/hw. We o (79
then see from Eq(72) that the two Green’s functions are

Slmply connected by the classical fluctuation relation where Pa (Qa) are the momentur(noordinate operators of

the bath oscillators.

L 1d ., This model gives the following Brownian oscillator form
G (n)=—0( T)kB_T 3¢ (. (79 for the spectral densit}57]:
G*'~ is independent of. The factor #cothfiw/2kgT) Clw)=Im 1 . (79
=#hltanhfiw/2kgT) is analytic inz and can be expanded in M[Q%+ w3 (0)—lo?*+ioy(w)]

a Taylor series, thus yielding a semiclassical expansion of the

response. To obtain the classical limit we need to keep M, (), andE are diagonal matrices and their matrix elements
the generating functional, perform the expansion(since areM;;=8;M;, Q;;=48,Q;, andl;;= 35, .

response functions are generally analytiéjnand only then i (2ij) is the imaginary(rea) part of the self-energy
sendf— 0. Setting this limit at the right step is essential for gperator representing relaxatidlevel shift:

developing a proper semiclassical expansion. Classical re-

sponse functions may not be computed using classical trajec- .
tories alone: The response depends on the vicinity of a tra- Vii(“’)zmz om
jectory. One needs to run a few closely lying trajectories that b a®
interfere. Formally, this can be recast using stability matri-

ces, which carry the information on how a perturbation of a ° yij(o")

trajectory at a given time affects it at a later time. The re- Sij(w)=— ;Ref do'——. (80)
peated computation of the stability matrix greatly compli- e eToe

cates purely classical simulatiofi34,37]. The semiclassical ] )
expansion circumvents these calculations in a very profound EQuations(68) and(67), together with Eqs(72), (73), and

way. Corrections to the trajectory to low orderfincarry the (79), constitute clo§ed exprgssions for th.e Brownian oscilla-

necessary information. Combining several semiclassical trd®" résponse functions. Ordinary Langevin equations are ob-
jectories[45] allows them to interfere and the leading order {ainéd by taking the overdamped limjt>( of Eq (79).

in % (4" for R") survives and gives the classical response_When the pr|,mary cgordmates are uncorrelated, the superop-
This allows us to avoid computing stability matrices, which €rator Green's functions are

is required when the classical limit is considered from the L

outset. The classical limit obtained in this way reproduces Gij (1)=20(r)exp(— A7) A\ S, (81)

CjaCia
2 [5((1)_(1)a)+5((1)+(1)a)],

a
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Gi‘}'*'(T):ﬁ exp(— A7) A\ COth B A;) & In the fully classical phase space approach, we take the
two separatgleft and righy paths required in a quantum

4 2 voexp—vy7) mechanical formalism and expand them around a single clas-

+ E nZl Wm)‘i@j (82 sical reference path, letting the stability matrices carry the

burden of retaining the information about the differences be-
) tween the paths. In the presehtf — representation we keep

whezre vo=2mn/hp arezthe Matsubara frequencies,i  4ck of closely lying trajectories by retaining terms to order
=Qyi, and\=1/M;Q7. The expansion of nonlinear re- 3 anq combine them only at the very end. In this way, sta-

sponse functions using collective coordinates has been digyjji, matrices, which pose enormous computational difficul-
cussed in detail i123,41,45,60 and recently employed in ties){64] neve,r show Ep P

mode coupllng theory13,13. . . . Another way to view the classical-quantum connection is
All nonlinear response functions of the linearly driven . . . .
. . SO . ! by starting with the expressions for quantum mechanical
harmonic oscillator vanish identically due to interference . : . o
nonlinear response functions in terms of combinations of
J-point correlation functions of the relevant variables. These

monic oscillator where the operataris a nonlinear function corelation functions differ in their time oLd('armg, e,
of the coordinate. This model has been studied both quantuf(TDA(T2)A(73)), (A(m2) A(T1)A(73)), etc.R™ is then a
mechanically and classicalf8]. Its response can alterna- combination of 2 such correlation functions, each represent-
tively be computed by following the dynamics of the Gauss-iNg a distinct Liouville space pathway. Classically, of course,
ian wave packets in the completsystem and bajhphase time ordering is immaterial since all operators commute and
space, since the system-bath Hamiltortifis harmonic in ~ we have only a single-point correlation function. The pres-
the full phase spacfP,Q,p,.q,.} [12,13,32,33,61L ence(absencieof symmetry with respect to the permutation
We next discuss the connection between our results and@f the n time variables in classicalguantum correlation
fully classical computation of the response. In classical mefunctions implies that the effective multidimensional space
chanics the density matrix assumes the form of an ordinargf time is reduced by a factor af! in the classical case.
distribution function in phase space. This can be obtaineclassical correlation functions thus carry less information
from the quantum density matrix by switching to the Wignerthan their quantum counterparts. Classically, it suffices to
representation62] calculate (A(7)A(7y)---A(ry)) for m<m<.-.-<r,.
Quantum mechanically, each of timé permutations of the
time arguments is distinct and carries additional information.
f ds(q—s/2|p(t)|q+2)expip-s), The stability matrices provide the extra information required
for computing the response functions from classical correla-
(83 tion functions.

Since classical correlation functions do not carry enough
whered is the number of degrees of freedom. The Wignerinformation for computing nonlinear response functions, it is
representation offers a transparent and simple semiclassicadt possible to simulate and interpret the response in terms
picture that interpolates between the quantum and classicaf standard equilibrium fluctuations; additional nonequilib-
regimes. Wave functions, on the other hand, do not have dum information is necessaf¥3].
clear classical counterpafttlthough there are, of course, Correlation functions are equilibrium objects that can be
very powerful semiclassical approximations for the wavecomputed using sums over unperturbed trajectories; response
function such as the WKB approximatipn functions can either be obtained as equilibrium averésfes

Wick’s theorem for superoperators in Liouville space al-bility matrice9 or recast in terms of 2close-lying nonequi-
lows us to develop a unified picture of quantum field andlibrium trajectories perturbed at various points in time.
classical mode coupling theories, which clearly reveals th&uantum corrections to classical response functions may be
information content of the classical and quantum nonlinearepresented in terms of classical response functions of higher
response functions. Both classical and quantum responseders[45].
functions contain interference. Quantum mechanically it is Finally, we note that an alternative semiclassicaxpan-
between 2 Liouville space paths. The classical interferencesion of the response is possible even when the temperature is
is of a very different naturg63] and involves 2 close-lying  low compared with the material frequencies, and the system
trajectories. The response function in phase space is obtainégl highly quantum, provided the anharmonicities are weak
by ensemble averaging over such bundles of trajectorie24,25. The leading terms in the expansion can be obtained
[45,63. Alternatively, the classical response can be recasby solving classical equations of motion. This is done by
using stability matrices, which carry the relevant dynamicaliding the# in the coth factor in Eq(72) by recasting it in
information on the vicinity of a given trajectory. The connec- the form cothfp/2wt), wherew=kgT/% is the thermal fre-
tion between the quantum and classic&f@ld interference  quency, and redefining ** by multiplying it by 7. The
is made more transparent by keeping the left/right or theesponse is then analytic in(as long as we forget about the
+/— pathways rather than working in phase space. We ret dependence ofvr). Semiclassical approximations ordi-
tain# during the semiclassical calculation and send it to zeraarily hold when the temperature is high compared to all
only at the end. relevant vibrational frequencies. This points to a much less

1
(27h)¢

pw(pQ;t) =
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obvious, low temperature weak anharmonicity regime, whereéince{Q; ,Q,} is a number this shows that left/right or right/
the response of the system is almost classical even though iisft superoperators have elementary anticommutators but the

temperature is very low. anticommutator of left/right operators is not generally a
number. We thus do not have Gaussian statistics. Note, how-
VI. WICK’'S THEOREM ever, that left and right operators always commute. The gen-
FOR FERMION SUPEROPERATORS erating functional needs to be formulated using the Grass-

. , an algebra of anticommuting numbers, similar to standard
One reason that the handling of boson operators and fle|C{§ d g

is simpler compared to fermions is that superoperators cor: reen’s functiong1,6]. The important point is that a modi-
pie P perop fled Wick theorem still holds for Fermi superoperators. It is
responding to elementary boson operators are also elemen:

tary, i.e., their commutators are also numbers. To see that, |§{ven by Eq.(74) with the following changes(i) We must

us consider the commutation rules of superoperators by actS€ L,R rather than+,— variables forv. (i) Each term

ing with commutators on an arbitrary operafar needs to.be multiplied by 1)P, whereP is t_he numbgr of
permutations of elementary operators required to bring them

[QiL,QulF=[Q;,Q\]F, to the specified order. Since left and right superoperators
. . commute, we count only the number of permutations among
[Qir,QurlF=—F[Q:,Q/] left and among right operator§Permuting a right and left
J ) ] 1 1

operator does not count iR.)

The expectation of th& product of any number dboson
or fermion superoperators may thus be expressed as the sum
f all possible products of expectations Dproducts of the
eparated pairs of operators for the reference many-particle
ensity matrixpy corresponding td .

[QjL . Qkr]=0. (84)

Since[Q;,Qy] is a number, we see that the corresponding0
superoperators are elementary as well. This property hol
also if we consider the linear combinations in the— rep-
resentation. To see that, we start with, ,B_] and act on

an ordinary operatoF:
VII. DISCUSSION

[A, ,B_JF= E[A,B]FJr EF[A,B], Hilbert space and Liouville space offer a very different
2 2 language for the description of nonlinear response. The den-

sity matrix provides a fully time-ordered description, since

[A_,B_]F=4[A, ,B.]JF=[[A,B],F]. (85) we only need to propagate it forward in time. In contrast, the
wavefunction involves both forward and backward propaga-

Since the commutator of elementary operators is a numbefions. The choice is between following the ket only, moving

Eq. (85 gives forward and backward, or following the joint dynamics of
the ket and the bra and moving only forward. Artificial time
[A:,B_]=[AB], variables (Keldysh loops commonly used in many-body
theory[20,21,46 are connected with the wave function pic-
[A-,B_]=4[A; ,B,]=0. (86)  ture. The density matrix uses the real laboratory time scale

throughout the calculation.

The commutators of elementary boson superoperators are |n Liouville space all observables are time ordered, lead-
thus numbers. It then follows that the superoperators corréing naturally to a semiclassical approximatiof28] and
sponding to elementary boson operators are Gaussian, befeynman path integral diagrammatic techniquds-7).
in the +, — or in theL,R representation. The indicesin  Maintaining time ordering allows us to rec&f’ using non-

Eq. (74) can thus run ovet-, — orL,R and Wick's theorem Jinear response functions which decouple the field and the
holds in either case. material parts. The nonlinear response function is calculated

Using L,R, the functional can be used to generate indi-as a path integral in Liouville space by summing over the
vidual Liouville pathways. Usingt,— it generates combina- various possible pathways in Liouville space that contribute
tions of such paths, making the classical limit more transparto the polarization. Path integrals have been extensively used
ent, since we work with combinations of Hilbert spaceas a useful tool for numerical computations of mixed
correlation functions which enter the response and have wefjuantum-classical calculatiofi§5—67. The density matrix
defined classical limits. formulation provides a similar development for phase space

Life is more complicated for fermions. To see that, let ushased numerical procedures. Graphical visualization of these
consider the anticommutation rules for Fermi elementary supaths is provided by double-sided Feynman diagrg28
peroperators: The density matrix Liouville space picture offers many

attractive features. The physical observables are directly and
{QjL . QuutF=1{Q; . QlF, linearly related to the density matrix. Consequently, every

step and intermediate quantity appearing in the description
1Qjr,QurtF =F{Q;,Qx}, has a simple physical meaning and a clear classical analog.

This should be contrasted with wave function based calcula-
1QjL, QkrtF=2Q;F Q. (87)  tions of the transition amplitude, which by itself is not an
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observable, since signals are related to sums of products of

such amplitudes. (Aax)ijzz (AQij,keXce - (A1)
The density matrix provides a practical way of performing «t

ensemble averagings and developing reduced description§ is thus atetradic operator with four indices. Sinc&, X

where bath degrees of freedom are traced out from the out= Ax and AxX=XA, we obtain using Eq(A1)

set. Since it represents the state of the system by a matrix

rather than a vector, aN-point grid forp andq in a semi-

classical picture will requiré\? points for the wave function

and N* for the density matrix. The ability to perform en-

semble averagings and obtain reduced descriptions more (AR)ij, e =A¢jOi- (A3)

than compensates for this price for complex systems. Many-

body theory of superoperators further naturally allows for theV

treatment of dephasing and decoherence effects. DiagonQ

and off-diagonal elements of the density matrix are known a

populations and coherences respectively. When an off- :

diagonal element evolves in time for a system coupled to & A¢i%i«]- It then follows tha{ A, ,Bg]=0. This commuta-

bath, it acquires a phase, since its evolution from the leffVity of left and right operators is possible thanks to the

(ket) and the right(bra) is governed by different bath Hamil- Iarge size of the L_|ouy|IIe space and S|mpl_|f|es algebraic ma-

tonians. This phase depends on the state of the bath. whé&ipulations, resulting in many useful relations:

we perform an ensemble average of these elements over the

distribution of the bath degrees of freedom, this variable 2[A..,B_]=[A_,B ]-[Ar.Br]=(AB)_—(BA)_,

phase results in a damping of these elements. The damping

(ADij ke=Aic0¢» (A2)

ote that the order of th¢f indices in Eq.(A3) has been
versed.

Since A,=3(A +Agr) and A_=A, —Ag, we have
AL)ij ce=AikSje— Agj ik and @Ur)ij,;df:%[AiK&j(

of off-diagonal elements of the density matrix resulting from 1
phase(as opposed to amplituiéluctuations is callegpure eXF(AL):eXF(A+)eXF(EA—>
dephasingor phase relaxatiofalso known aslecoherence

Dephasing processes can be visualized in Liouville space

only by following simultaneously the evolution of the bra _ + E
and of the ket and maintaining the bookkeeping of their joint eXpA.)=ex 2AL ex zAR k
state. Dephasing processes directly affect all spectroscopic

observables since they control the coherence, which is the _ _
window through which the system is observed. Different EXHA )= EXpAL)eXP( ~ Ar),
pathways representing distinct sequences of populations and

coherences are naturally separated in Liouville space.

(expA), =2 exp{AQcos)‘(%A)
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In the following a is a complex number:

5(w—A,):J das(a—A,)8(w—a+Ag),
APPENDIX: SOME USEFUL RELATIONS FOR

SUPEROPERATOR ALGEBRA IN LIOUVILLE SPACE

A Liouville space operatoA,, is labeled by a Greek sub- Sw—A,)= f dad(a—A,)8(w—a—Ag),
script wherea=L,R,+,—. It is defined by its action oiX,
an ordinary(Hilbert space operator. We write a general ma-
trix element Sla—A))dé(a—Ag)=d6(A,—a)d(A_). (A5)
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