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Particle swarms in gases: The velocity-average evolution equations from Newton’s law

Leonardo Ferrari*
Dipartimento di Fisica, Universita` di Parma, and Istituto Nazionale per la Fisica della Materia, Unita` di Parma,
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~Received 11 March 2003; published 11 August 2003!

The evolution equation for a generic average quantity relevant to a swarm of particles homogeneously
dispersed in a uniform gas, is obtained directly from the Newton’s law, without having recourse to the
~intermediary! Boltzmann equation. The procedure makes use of appropriate averages of the term resulting
from the impulsive force~due to collisions! in the Newton’s law. When the background gas is assumed to be
in thermal equilibrium, the obtained evolution equation is shown to agree with the corresponding one following
from the Boltzmann equation. But the new procedure also allows to treat physical situations in which the
Boltzmann equation is not valid, as it happens when some correlation exists~or is assumed! between the
velocities of swarm and gas particles.
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I. INTRODUCTION

In the study of the temporal behavior of a particle swa
in a gas, one often makes use of evolution equations
average quantities~mean velocity, mean energy, etc.!. In
analogy to what happens for the analogous equations f
simple gas~the so-called equations of change! @1#, the above
equations are customarily obtained from the Boltzma
equation without trying to get an effective knowledge of
solution ~i.e., of the particle distribution!. In fact, the evolu-
tion equation for the average value^A& of the generic~scalar
or vector! quantityA is immediately obtained multiplying the
Boltzmann equation byA and then integrating over th
whole velocity space@2–5#. But, although rather expedien
in practice, such a procedure appears to be rather invo
and, in a sense, contradictory, from the conceptual poin
view. In fact, while the Boltzmann equation was derived~on
the basis of the classical laws of particle motion! to explicitly
find the time-dependent particle distribution~from which the
evolution of any particle velocity average follows immed
ately!, the above procedure seems to have been devise
practically ignore, through the said integration over the
locity space, the details of the form of the evolving, not y
determined, particle distribution. So, it is natural to pose
question: can the evolution equations be directly deriv
from the Newton’s law, without having recourse to the p
ticle distribution function, i.e., to the Boltzmann equation

From recent studies@6,7# on the motion of large, heavy
particles~ions! in gases in external fields, it follows that th
question can be affirmatively answered as regards the d
vation, in the homogeneous case, of the evolution equa
for the particle mean velocity. But a careful consideration
the procedure followed in such studies suggests that
method can be generalized to derive the evolution equa
for any average quantity relevant to particles~ions! homoge-
neously dispersed in a gas in external fields.

The formulation and the discussion of such gene
method, as well as the discussion on its possible agreem
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with the method based on the Boltzmann equation, is
principal—but not the only—aim of this paper. In fact, w
shall also put in evidence that our proposed method can
used to obtain results in physical situations to which
Boltzmann theory is inapplicable, as it happens for lar
heavy particles in a dense gas@6,7#. For these reasons, th
method presented in this paper not only constitutes a con
tual simplification of the theory, but also, we believe, a s
nificant advancement in still rather unexplored areas of
particle kinetic and transport theory.

II. DERIVATION OF THE GENERAL
EVOLUTION EQUATION

Consider a swarm of particles~of massm and number
densityn) dilutely and homogeneously dispersed in a u
form gas of particles of massM and number densityN. Sup-
pose that every swarm particle is subject to the action of
or more external forces that may also depend on timt
and/or on the velocityvW ~but not on the positionrW) of the
particle itself. In other words, the swarm particles may
subject to the gravitational force and/or, if they are ions~of
chargee), to uniform electric and/or magnetic fields. If w
indicate with FW (vW ,t) the total external force acting on
swarm particle, the Newton’s law for such particle is

m
dvW

dt
5FW ~vW ,t !1FW int , ~1!

where FW int represents the~impulsive! force exerted by the
gas particles~through collisions! on the considered swarm
particle ~of velocity vW ). Obviously, Eq.~1! is the evolution
equation for the swarm-particle velocityvW .

Now, if A(vW )[A(vx ,vy ,vz) is a scalar quantity, we can
immediately obtain the evolution equation forA(vW ) by tak-
ing the dot product of Eq.~1! by ¹WvWA. In this way we get

¹WvWA•
dvW

dt
5

FW ~vW ,t !

m
•¹WvWA1

FW int

m
•¹WvWA, ~2!
©2003 The American Physical Society03-1
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which can also be written as

dA

dt
5

FW ~vW ,t !

m
•¹WvWA1S dA

dt D
coll

~3!

since the last term in Eq.~2! represents the contribution t
dA/dt due to the collisions which, for simplicity, will be
assumed to be elastic. This way of writing also follows im
mediately from the fact that, in the absence of external for
(FW 50W ), one must simply~and obviously! have

dA

dt
5S dA

dt D
coll

. ~4!

It must be stressed that Eq.~3! is the evolution equation
@for the genericA(vW )] which refers to every swarm particl
having velocity vW at time t. But the collisional term
(dA/dt)coll is in practice different from zero only when
collision of the swarm particle with a gas particle occu
Moreover, the various swarm particles undergo collisio
with the gas particles at instants of time which are distribu
according to the probability law for the survival of a partic
without collisions@8#. In addition, the values taken by such
collisional term depend on the particular dynamics of
collision undergone by the swarm particle considered. So
we want to arrive,as a first step, at an evolution equation
@for A(vW )], which refers to theaverage swarm particle o

velocity vW , we must first of all consider the subgroup
swarm particles~of velocity vW at timet) whose first collision
with a gas particle will take place~at time t8>t) in a given
way, i.e., with a given dynamics. For all the subgroup p
ticles the set of values taken by the function (dA/dt)coll is
obviously the same, but each single value of (dA/dt)coll is
taken by the various subgroup particles at different insta
of time. In other words, all the functions (dA/dt)coll relevant
to the different subgroup particles may be obtained by s
able translations of a single function (dA/dt)coll along the
time axis. In these conditions, since a subgroup particle
fers ~on the average! one collision in a mean time of flightt,
if the number of swarm particles in the subgroup is su
ciently large, we can replace the~ensemble! average of
(dA/dt)coll of all the subgroup particles~at timet), with the
temporal average of (dA/dt)coll , of a single subgroup par
ticle, over a mean time of flight, i.e., with

S dA

dt D
coll

[
1

tE0

tS dA

dt D
coll

dt5S DA

t D
coll

[
1

t
@A~vW 8!2A~vW !#. ~5!

In writing this equation we have taken into account that
variation DA of A ~due to collisions! in a time interval of
durationt is only that occurred in the collision suffered b
the subgroup particle in such a time interval. So, in Eq.~5!,
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vW 8 is the velocity of the subgroup particle after a collisio
initiated with velocityvW . Moreover, the mean time of fligh
is

t5t~g![@NQ~g!g#21, ~6!

whereg is the relative speed between the colliding particl
i.e., g[uVW 2vW u, VW being the gas-particle velocity before th
collision, and

Q~g![E
0

2p

dhE
0

p

s~g,x!sinxdx ~7!

is the total scattering cross section resulting from the diff
ential cross sections(g,x). In Eq. ~7! x andh are the polar
angles of vectorgW 8[VW 82vW 8 with respect togW [VW 2vW , VW 8
being the gas-particle velocity after the collision.

Now, remembering that from the momentum conservat
in a collision, one has

vW 85vW 2
M

m1M
~gW 82gW !, ~8!

and that in an elastic collision it isg85g, one immediately
sees that,at fixedvW , vW 8 depends ong, x, andh ~i.e., onx,
h, andVW ). In other words, assigned values ofx, h, andVW
determine a subgroup of swarm particles in the sense
tended above.

Returning, at this point, to the problem of obtaining t
evolution equation@for A(vW )] relative to theaverage swarm

particle of velocityvW at time t, we must now calculate the
appropriate ensemble average of (dA/dt)coll , which ad-
equately accounts for all the possible collisions experien
by the swarm particles of velocityvW . Once such an ensembl
average is inserted into Eq.~3! in place of (dA/dt)coll , the
desired evolution equation is obtained.

To reach this goal, we recall first that (dA/dt)coll @Eq.
~5!# is the ensemble~or temporal! average~for a subgroup of
particles of velocityvW ) which accounts simply for the fac
that the collisions are distributed in time. Then, we obse
that the ensemble average of Eq.~5! over all the possible
subgroups of particles of velocityvW , i.e., over all the possible
values ofx, h, andVW , certainly yields the appropriate en
semble average of (dA/dt)coll we were looking for, viz.~in-
dicating with ^•••&x,h,VW such an average!,

K S dA

dt D
coll

L
x,h,VW

[
1

NEVW
F~VW ,t !dVW E

0

2p

dh

3E
0

pS dA

dt D
coll

P~x,h!dx. ~9!

Here

P~x,h!dxdh[
s~g,x!sinxdxdh

Q~g!
~10!
3-2
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is the probability of scattering with polar angles betweenx

and x1dx, and betweenh and h1dh, andF(VW ,t) is the
gas-particle velocity distribution~which, in principle, could
also depend onvW ) obeying the normalization condition

E
VW
F~VW ,t !dVW 5N. ~11!

Introducing now Eqs.~5!, ~6!, and ~10! into Eq. ~9!, we
get

K S dA

dt D
coll

L
x,h,VW

5E
VW
F~VW ,t !dVW E

0

2p

dh

3E
0

p

@A~vW 8!2A~vW !#gs~g,x!sinxdx,

~12!

which is the final expression of the appropriate average
lisional term to be considered in theA(vW )-evolution equation
for the average swarm particle of velocityvW at time t. Such
an equation therefore reads@cf. Eq. ~3!#

dA

dt
5

FW ~vW ,t !

m
•¹WvWA1K S dA

dt D
coll

L
x,h,VW

, ~13!

with the last term given by Eq.~12!.
It remains at this point to deduce the evolution equat

for the average valuêA(vW )& t , at time t, of the generic quan
tity A(vW ), whenall the swarm particles are simultaneous
considered~at timet), irrespectively of their velocity. To this
end one should obviously take the ensemble average,
the whole particle swarm, of Eq.~3!, taking into account
that, if N is the total number of the swarm particles, it is

^A~vW !& t[
1

N (
i 51

N
Ai@vW i~ t !# ~14!

and consequently,

K dA

dt L
t

[
1

N (
i 51

N
dAi

dt
5

1

N
d

dt (
i 51

N
Ai5

d

dt
^A~vW !& t . ~15!

Of course, the ensemble average of the term relative to
external force@in Eq. ~3!# does not present any difficulty. Bu
the direct evaluation of the ensemble average of the c
sional term of Eq.~3! is not easy. We observe, however, th
when performing the ensemble average of the evolu
equation forA(vW ), we can certainly replace the equatio
relevant to each swarm particle of velocityvW @i.e., Eq.~3!#
with the corresponding equation@Eq. ~13!# relevant to the
averageswarm particle of the same velocityvW . In this way
we get
02110
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d^A& t

dt
5

1

m
^FW ~vW ,t !•¹WvWA& t1KK S dA

dt D
coll

L
x,h,VW

L
t

, ~16!

which is the evolution equation we were looking for.
It must be stressed that our choice of considering a

neric scalar quantityA(vW ) is both the most simple and th
most general one. In fact, the scalarA may be regarded as
component of a vector~or of a tensor!. So, if CW (vW ) is a
generic vector, i.e.,

CW ~vW !5(
i 51

3

Ci~vW !êi , ~17!

we can write an evolution equation of the form~16! for the
average value of each componentCi(vW ). Consequently, sum
ming the three equations so written~each one of them mul-
tiplied by the corresponding unit vectorêi), we obtain the
evolution equation for̂CW & t , i.e.,

d^CW & t

dt
5

1

m
^„FW ~vW ,t !•¹WvW…CW & t1KK S dCW

dt
D

coll
L

x,h,VW

L
t

,

~18!

where, obviously, the last term is given by the ensem
average~over the whole swarm!, at timet, of Eq.~12! with CW

in place ofA. Of course, whenCW 5vW , we have the swarm-
particle mean-velocity evolution equation

d^vW & t

dt
5

1

m
^FW ~vW ,t !& t1KK S dvW

dt
D

coll
L

x,h,VW

L
t

, ~19!

which could also be obtained by averaging directly Eq.~1!,
and which, for particular choices ofFW (vW ,t) and ofF(VW ,t),
has already been discussed in Refs.@6,7#.

III. RELATION WITH THE BOLTZMANN
EQUATION METHOD

At this point the problem of the agreement between o
present results and those following from the Boltzma
equation must be examined.

In Ref. @6# we have considered the mean-velocity evo
tion @cf. Eq. ~19!# of swarm particles, subject to a consta
force FW , in a gas in thermal equilibrium at a temperatureT

uninfluenced by the swarm-particle motion, so thatF(VW ,t)
is, in effect, the Maxwellian equilibrium distribution

FM~VW !5NS M

2pkTD 3/2

expS 2
MV2

2kT D , ~20!

k being the Boltzmann constant. In the said reference,
have treated such situation by a procedure which is a part
lar case of the general method presented here, and we
noticed that, when the Maxwellian interaction is assum
between swarm particles and gas particles, the result c
3-3
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cides with that following from the Boltzmann equation. W
have also pointed out there@6# that, for heavy swarm par
ticles in a light gas~Rayleigh gas!, whatever the swarm
particle–gas-particle interaction may be, the result also c
cides with that following from the Fokker-Planck equatio
obtainable@9# from the Boltzmann equation under the a
sumption that the gas-particle velocity distribution is t
equilibrium distribution~20!. The same conclusions can b
reached if the swarm particles are ions subject to electric
magnetic fields~cf. Ref. @7#!. However, such conclusions re
fer only to Eq. ~19! when either the Maxwell interaction
model or a large swarm-particle–gas-particle mass rati
considered, and, in addition, the thermal equilibrium of t
background gas is assumed. So, at this stage, nothing ca
concluded about the general equation~16! in the most gen-
eral case. On the other hand, the hypothesis of the the
equilibrium of the background gas@Eq. ~20!# is very com-
mon in studies of the behavior of charged-particle swarm
gases@5,10#, since it permits the linearization of the Boltz
mann equation for the swarm particles. Consequently,
said hypothesis is necessarily present in the investigation
the properties of the corresponding~linearized! collision op-
erator. Since one of these properties is essential to study
equivalence between the Boltzmann-equation method
ours, we shall maintain the above hypothesis in our disc
sion.

In such hypothesis the Boltzmann equation for the vel
ity distribution f (vW ,t) of our swarm particles in homoge
neous conditions is

] f

]t
1

FW ~vW ,t !

m
•

] f

]vW
5J~ f !, ~21!

where

J~ f ![E
VW
dVW E

0

2p

dhE
0

p

@FM~VW 8! f ~vW 8,t !

2FM~VW ! f ~vW ,t !#gs~g,x!sinxdx ~22!

is the Boltzmann collision integral.
On the other hand, the ensemble average^A(vW )& t ~at time

t) of A(vW ), over the whole swarm, is now calculate
through f (vW ,t), according to the rule

^A~vW !& t[
1

nEvW
A~vW ! f ~vW ,t !dvW . ~23!

So, in order to find the evolution equation for^A(vW )& t , we
multiply Eq. ~21! by A(vW ) and then integrate over the who
velocity space. The result is~cf., for instance, Refs.@2–4#!

d^A~vW !& t

dt
2

1

m
^FW ~vW ,t !•¹WvWA& t5

1

nEvW
A~vW !J~ f !dvW , ~24!

where all the symbolŝ•••& t must be intended in the sens
of Eq. ~23!.

If we put
02110
n-

d

is
e
be

al

in

e
on

he
nd
s-

-

f ~vW ,t !5 f M~vW !h~vW ,t !, ~25!

where

f M~vW !5nS m

2pkTD 3/2

expS 2
mv2

2kTD ~26!

is the Maxwellian~equilibrium! distribution of the swarm
particles, we have

J~ f !5 f M~vW !I ~h!

[ f M~vW !E
VW
FM~VW !dVW E

0

2p

dhE
0

p

@h~vW 8,t !2h~vW ,t !#

3gs~g,x!sinxdx, ~27!

and consequently,

1

nEvW
A~vW !J~ f !dvW 5

1

nEvW
f M~vW !A~vW !I ~h!dvW . ~28!

On the other hand, if we define the inner product of tw
functionsf(vW ) andc(vW ) as

~f,c![
1

nEvW
f M~vW !f~vW !c~vW !dvW , ~29!

we can rewrite Eq.~28! as

1

nEvW
A~vW !J~ f !dvW 5„A,I ~h!…. ~30!

But, for the symmetric property of the operator I~see Ref.
@11#!, we have@cf. Eqs.~25!, ~27!, and~29!#

„A,I ~h!…5„h,I ~A!…5
1

nEvW
f M~vW !h~vW ,t !I „A~vW !…dvW

5
1

nEvW
f ~vW ,t !dvW E

VW
FM~VW !dVW E

0

2p

dh

3E
0

p

@A~vW 8!2A~vW !#gs~g,x!sinxdx. ~31!

Hence, from Eqs.~30! and~31!, by comparison with Eq.~12!

@with FM(VW ) in place ofF(VW ,t)], and taking into account
the definition of ensemble average~23!, we have

1

nEvW
A~vW !J~ f !dvW 5K K S dA

dt D
coll

L
x,h,VW

L
t

. ~32!

So, Eq.~24! becomes exactly Eq.~16!.
Therefore, when the background gas is in thermal equi

rium, our procedure and that based on the Boltzmann eq
tion must be considered equivalent. This is not a surpris
result if one considers that the main hypotheses at the gro
of the derivation of the Boltzmann equation are in some w
contained in our procedure@and in Eq.~20!#. In fact, ~1! the
3-4
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collisions have been tacitly assumed to be binary;~2! the
collisional term in Eq.~16! has been evaluated supposin
tacitly, that the collision dynamics is not influenced by t
external forces;~3! the duration of a collision has been im
plicitly assumed to be, in general, much smaller than
duration of a free flight between collisions; and~4! spatial
and velocity correlations are absent~i.e., the condition of
‘‘molecular chaos’’ is verified!. In fact, gas and swarm par
ticles have been assumed to be uniformly distributed
space. On the other hand, the only velocity distribution
volved in our procedure is that of the gas particles, and
distribution, in our equivalence proof, has been assume
be thevW -independent distributionFM(VW ) of Eq. ~20!.

We want to stress, however, that our procedure is, i
sense, more general than that based on the Boltzmann e
tion. In fact, our procedure allows to consider al

vW -dependent gas-particle velocity distributions, violating,
this way, the hypothesis of molecular chaos implied in
Boltzmann theory. In effect, a case of this type has alre
been considered by us in Refs.@6,7# where the motion of
large, heavy particles in a gas in any regime has been s
ied, and a shifted Maxwellian distribution centered atVW

5jvW ~with 0,j,1) has been chosen asF(VW ). With this
ics

,

02110
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choice, proper formulas for mobility, mean-velocity evol
tion, and conductivity tensor of large, heavy ions in elect
and magnetic fields have been obtained@6,7#.

IV. CONCLUSIONS

In this paper, starting from the Newton’s law, we ha
obtained the evolution equation for any average quantity
evant to particles uniformly dispersed in a gas in exter
force fields.

The method we have used~1! constitutes the simplest an
most direct way to deduce the velocity-average evolut
equations from the Newton’s law,~2! establishes the correc
statistical procedure, i.e., the succession and the type o
averages which have to be performed to arrive at cor
results,~3! obtains results which coincide~at least when the
background gas is in thermal equilibrium! with those cus-
tomarily derived from the Boltzmann equation within its lim
its of validity, and~4! offers the way to achieve results als
in situations in which the Boltzmann equation cannot be e
ployed.

We shall return on the last point, with some applicatio
in a planned future paper.
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