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Particle swarms in gases: The velocity-average evolution equations from Newton’s law
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The evolution equation for a generic average quantity relevant to a swarm of particles homogeneously
dispersed in a uniform gas, is obtained directly from the Newton's law, without having recourse to the
(intermediary Boltzmann equation. The procedure makes use of appropriate averages of the term resulting
from the impulsive forcédue to collisiongin the Newton’s law. When the background gas is assumed to be
in thermal equilibrium, the obtained evolution equation is shown to agree with the corresponding one following
from the Boltzmann equation. But the new procedure also allows to treat physical situations in which the
Boltzmann equation is not valid, as it happens when some correlation éaists assumedbetween the
velocities of swarm and gas particles.
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[. INTRODUCTION with the method based on the Boltzmann equation, is the
principal—but not the only—aim of this paper. In fact, we
In the study of the temporal behavior of a particle swarmshall also put in evidence that our proposed method can be
in a gas, one often makes use of evolution equations fonsed to obtain results in physical situations to which the
average quantitie§mean velocity, mean energy, etcin  Boltzmann theory is inapplicable, as it happens for large,
analogy to what happens for the analogous equations for aeavy particles in a dense gg&7]. For these reasons, the
simple gagthe so-called equations of changé], the above method presented in this paper not only constitutes a concep-
equations are customarily obtained from the Boltzmanriual simplification of the theory, but also, we believe, a sig-
equation without trying to get an effective knowledge of its hificant advancement in still rather unexplored areas of the
solution (i.e., of the particle distribution In fact, the evolu-  particle kinetic and transport theory.
tion equation for the average val(a) of the generidscalar
or vecto) quantityA is immediately obtained multiplying the Il. DERIVATION OF THE GENERAL
Boltzmann equation byA and then integrating over the EVOLUTION EQUATION
whole velocity spacé2-5]. But, although rather expedient . _
in practice, such a procedure appears to be rather involved Consider a swarm of particle®f massm and number
and, in a sense, contradictory, from the conceptual point ofi€nsityn) dilutely and homogeneously dispersed in a uni-
view. In fact, while the Boltzmann equation was deried form gas of particles of masd and nur_nber densﬁM._Sup-
the basis of the classical laws of particle mojiemexplicity ~ POS€ that every swarm particle is subject to the action of one
find the time-dependent particle distributirom which the ~ OF more external forces that may also depend on time
evolution of any particle velocity average follows immedi- and/or on the velocity (but not on the positiom) of the
ately), the above procedure seems to have been devised particle itself. In other words, the swarm particles may be
practically ignore, through the said integration over the ve-Subject to the gravitational force and/or, if they are ido6
locity space, the details of the form of the evolving, not yetchargee), to uniform electric and/or magnetic fields. If we
determined, particle distribution. So, it is natural to pose thandicate with |f(5 ,t) the total external force acting on a
question: can the evolution equations be directly derivecdswarm particle, the Newton’s law for such particle is
from the Newton’s law, without having recourse to the par-
ticle distribution function, i.e., to the Boltzmann equation? do . . .
From recent studiefs,7] on the motion of large, heavy m——=F(v,t) +F, (1)
particles(ions) in gases in external fields, it follows that this

guestion can be affirmatively answered as regards the deri- - ) )
vation, in the homogeneous case, of the evolution equatiofere Fint represents théimpulsive force exerted by the

for the particle mean velocity. But a careful consideration ofdas particlesithrough collisions on the considered swarm
the procedure followed in such studies suggests that thearticle (of velocity v). Obviously, Eq.(1) is the evolution
method can be generalized to derive the evolution equatiosquation for the swarm-particle velocity.

for any average quantity relevant to particlems) homoge- Now, if A(v)=A(v, ,vuy,0,) is a scalar quantity, we can

neously dispersed in a gas in external fields. . : : . . -
Theyforrgulation anc? the discussion of such generafmmed'ately obtain the evolution equation fa(v) by tak-

method, as well as the discussion on its possible agreemelfd the dot product of Eql) by V;A. In this way we get

. dv F(u.b) c Fint
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which can also be written as v’ is the velocity of the subgroup particle after a collision
. initiated with velocityv. Moreover, the mean time of flight
dA_ F(o,b) ViA_’_(dA) @
dt om0 ldt _
coll r=7(9)=[NQ(9)g] *, (6)

since the last term in Eq2) represents the contribution to whereg is the relative speed between the colliding particles,
dA/dt due to the collisions which, for simplicity, will be je g=|V-y|, V being the gas-particle velocity before the
assumed to be elastic. This way of writing also follows im- ¢qjjision, and

mediately from the fact that, in the absence of external forces

F=0), one must simplyand obviously have 2m - fw .
(F=0) Pl Y Q@)= | "an| “otg.nsinxax ™
dA [dA
gt \lat (4 s the total scattering cross section resulting from the differ-

coll ential cross sectiorr(g,x). In Eq.(7) y and 5 are the polar

. . . angles of vectog’'=V'—v’ with respect tog=V—v, V'

It must be streised that E() is the evolution equation being the gas-particle velocity after the collision.

[for the genericA(v)] which refers to every swarm particle  Now, remembering that from the momentum conservation
having velocity v at time t. But the collisional term in a collision, one has
(dA/dt) .o Is In practice different from zero only when a

collision of the swarm particle with a gas particle occurs. -, -
Moreover, the various swarm particles undergo collisions U U M (9
with the gas patrticles at instants of time which are distributed

according to the probability law for the survival of a particle and that in an elastic collision it ig’ =g, one immediately
without collisions[8]. In addition, the values taken by such a sees thatat fixedv, v’ depends om, x, and 7 (i.e., ony,
collisional term depend on the particular dynamics of the

collision undergone by the swarm particle considered._So, igti:-termine a subgroup of swarm particles in the sense in-
we want to arriveas a first stepat an evolution equation .14 apove

[for A(J)J, which refers to theaverage swarm particle of  Returning, at this point, to the problem of obtaining the
velocity v, we must first of all consider the subgroup of eyolution equatiorifor A(v)] relative to theaverage swarm

swarm particlegof velocity v at timet) whose first collision  particle of velocityo at timet, we must now calculate the
with a gas partiCle will take plaC@t t|met,>t) ina given appropriate ensemble average (ﬁMdt)CO”’ which ad-
way, i.e., with a given dynamics. For all the subgroup par-equately accounts for all the possible collisions experienced
ticles the set of values taken by the functia@®{(dt)c, is by the swarm particles of velociti/. Once such an ensemble

obviously the same, but each single value @\(dt) . iS average is inserted into E¢@) in place of dA/dt) ., the
taken by the various subgroup particles at different inStantﬁesired evolution equation is obtained cott

of time. In other words, all the functionsl&/dt) ., relevant To reach this goal, we recall first thad_,(\/dt)m” [Eq.

to the different subgroup particles may be obtained by suit-_.- .
able translations of a single functionlA/dt)., along the (5)]s the ensembléor temporal average(for a subgroup of

time axis. In these conditions, since a subgroup particle suf@rticles of velocityv) which accounts simply for the fact
fers (on the averageone collision in a mean time of flight, that the collisions are distributed in time. Then, we observe

if the number of swarm particles in the subgroup is suffi-that the ensemble average of E§) over all the possible

ciently large, we can replace th@nsemblg average of subgroups of particles of velocity, i.e., over all the possible

(dA/dt) o Of all the subgroup particle@t timet), with the  values ofy, », andV, certainly yields the appropriate en-
temporal average ofdA/dt).o, of a single subgroup par- semble average ofi\/dt).,;; We were looking for, viz(in-

—9), ®

andV). In other words, assigned values pf 7, andV

ticle, over a mean time of flight, i.e., with dicating with(- - -), . such an average
dA . dA 1( . o (en
GR)_L((dA)(AA 9 ) [ Avwer[ ey
dt 7)o\ dt T dt coll - NJy 0
coll coll coll x:mV
1oL = dA
= ~[AG)-AG)]. ® <15 Poemax. @
coll

In writing this equation we have taken into account that theHere

variation AA of A (due to collision$ in a time interval of ]

duration 7 is only that occurred in the collision suffered by P(y.n)dydry= a(g,x)sinydxdn 10
the subgroup particle in such a time interval. So, in &), X XS Q(g)
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is the probability of scattering with polar angles between d(A), 1 - . R dA
and y+dy, and between; and »+d#», and F(V,t) is the gt~ m F@O-ViA)+ a) , (16)
gas-particle velocity distributiotwhich, in principle, could colll y,n vl ¢

also depend om) obeying the normalization condition which is the evolution equation we were looking for.

It must be stressed that our choice of considering a ge-
J:]-“(\*/,t)d\*/:N. (11)  neric scalar quantityA(v) is both the most simple and the
v most general one. In fact, the scalamay be regarded as a

Introducing now Egs(5), (6), and (10) into Eq. (9), we component of a vectofor of a tensor. So, if C(v) is a
get generic vector, i.e.,

3
dA - N Cv)=2, Ci(v)e, 17
<<a)00”>x77\7_ J'V]:(V,t)dVJ'O d77 i=1

we can write an evolution equation of the foiit6) for the

% jW[A(J')—A(J)]ga'(g,)()sin)(d)(, average value of each componén(zf). Consequently, sum-
0 ming the three equations so writté@ach one of them mul-

(12)  tiplied by the corresponding unit vectey), we obtain the

evolution equation fotC),, i.e.,
which is the final expression of the appropriate average col-

lisional term to be considered in tigv)-evolution equation d(C),

for the average swarm particle of velocity at timet. Such dt
an equation therefore reafisf. Eq. (3)]

dé) > >
dt J
coll Y.V

t
(18

=%<(F*<J,t>-v*;)é>t+<<

dt m v dt averaggover the whole swarinat timet, of Eq. (12) with C

dA F(u,t) . <(ﬁ) > 13 where, obviously, the last term is given by the ensemble
I J S -
N X in place ofA. Of course, wherC=v, we have the swarm-

with the last term given by Eq12) particle mean-velocity evolution equation

It remains at this point to deduce the evolution equation s 1 ?
for the average vaIu(eA(J)}t, at time t, of the generic quan- S}t)t = E(lf(l;,t»ﬁ' < d_l:> > . (19
tity A(v), whenall the swarm particles are simultaneously coll/ \ v/,
consideredat timet), irrespectively of their velocity. To this
end one should obviously take the ensemble average, ovéthich could also be obtained by averaging directly Eq,

the whole particle swarm, of Eq3), taking into account and which, for particular choices &(v,t) and of F(V,t),
that, if \is the total number of the swarm particles, itis  has already been discussed in Rg€s7).

- 1 o > IIl. RELATION WITH THE BOLTZMANN
(A(v))= /sz‘l Ailvi(t)] (14 EQUATION METHOD
At this point the problem of the agreement between our
and consequently, present results and those following from the Boltzmann

equation must be examined.
dA 1 dA, 1.d N d . In Ref.[6] we have considered the mean-velocity evolu-
= X/Z gt - vadt > Ai:a<A(U)>t- (19  tion [cf. Eq. (19)] of swarm particles, subject to a constant
! force F, in a gas in thermal equilibrium at a temperatdre

Of course, the ensemble average of the term relative to théninfluenced by the swarm-particle motion, so tHV,t)

external forcdin Eq. (3)] does not present any difficulty. But 'S I effect, the Maxwellian equilibrium distribution

the direct evaluation of the ensemble average of the colli- 3/2 M2

sional term of Eq(3) is not easy. We observe, however, that, V)=N| —— xp — ——
. i Fu(V) €

when performing the ensemble average of the evolution 2mkT 2kT

equation forA(v), we can certainly replace the equation k being the Boltzmann constant. In the said reference, we

relevant to each swarm particle of velocity[i.e., EQ.(3)]  have treated such situation by a procedure which is a particu-
with the corresponding equatidieq. (13)] relevant to the |ar case of the general method presented here, and we have
averageswarm particle of the same velocit& In this way  noticed that, when the Maxwellian interaction is assumed

we get between swarm particles and gas particles, the result coin-

; (20
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cides with that following from the Boltzmann equation. We f(J,t)sz(J)h(J,t), (25)

have also pointed out thef@] that, for heavy swarm par-

ticles in a light gas(Rayleigh gay whatever the swarm- where

particle—gas-particle interaction may be, the result also coin-

cides with that following from the Fokker-Planck equation . m %2 mo?

obtainable[9] from the Boltzmann equation under the as- fM(U):”(m-) exr{ - m) (26)

sumption that the gas-particle velocity distribution is the

equilibrium distribution(20). The same conclusions can be is the Maxwellian(equilibrium) distribution of the swarm

reached if the swarm particles are ions subject to electric angarticles, we have

magnetic fieldgcf. Ref.[7]). However, such conclusions re-

fer only to Eq.(19) when either the Maxwell interaction  J(f)=fy(v)I(h)

model or a large swarm-particle—gas-particle mass ratio is )

considered, and, in addition, the thermal equilibrium of the ¢ (> vl TRl 4 e

background gas is assumed. So, at this stage, nothing can be _fM(v)fvfM(V)dvfo dﬂfo [hw".H)=h(v.B)]

concluded about the general equatid®) in the most gen- )

eral case. On the other hand, the hypothesis of the thermal Xga(g,x)sinxdy, (27)

equilibrium of the background gd&q. (20)] is very com-

mon in studies of the behavior of charged-particle swarms i

gaseq5,10], since it permits the linearization of the Boltz- 1 ) 1 L )

mann equation for the swarm particles. Consequently, the _f‘ A(v)J(f)dvz—fﬂ fu(@A)I(h)dv. (28

said hypothesis is necessarily present in the investigations on NJo nJv

the properties of the correspondifinearized collision 0p- 5 the other hand, if we define the inner product of two

erator. Since one of these properties is essential to study the . - b

equivalence between the Boltzmann-equation method an nctions ¢(v) andy(v) as

ours, we shall maintain the above hypothesis in our discus- 1 S

sion. | | (b==[ tueuow, @
In such hypothesis the Boltzmann equation for the veloc- nJy

ity distribution f(v,t) of our swarm particles in homoge- we can rewrite Eq(29) as

neous conditions is

r%';md consequently,

1 - -
of F(u,t) of 11 o1 ﬁﬁ A(v)J(f)dv=(A,1(h)). (30)
w0 (21)
But, for the symmetric property of the operatofsee Ref.
where [11]), we have[cf. Egs.(25), (27), and(29)]
N 2 ™ o 1 N N > >
ath=[ v Tan | 1A A= (1A= [ 10001 A
~Fu(Vf(o,0]ga(gx)sinydy (22 _1 f Hotdo f £y (V)dV J i
nJty v 0
is the Boltzmann collision integral.
On the other hand, the ensemble aver@d@)), (at time % JW[A(J’)—A(J)]ga(g Ysinydy. (31)
t) of A(J), over the whole swarm, is now calculated, 0 '

throughf(v.,t), according to the rule Hence, from Eqs(30) and(31), by comparison with Eq(12)

.1 R [with F\(V) in place of F(V,t)], and taking into account
(A(v))= ﬁJ:; A(v)f(v,t)do. (23)  the definition of ensemble avera@es), we have
So, in order to find thﬁ evolution equation f()ﬁ(zf))t, we Ef A(D)I(F)do = <(?TA) > > _ (32)
multiply Eq. (21) by A(v) and then integrate over the whole nJy t con Y

velocity space. The result igf., for instance, Refd2—4))
So, Eq.(24) becomes exactly Eq16).

Therefore, when the background gas is in thermal equilib-
rium, our procedure and that based on the Boltzmann equa-
tion must be considered equivalent. This is not a surprising
where all the symbol$- - - ), must be intended in the sense result if one considers that the main hypotheses at the ground
of Eq. (23). of the derivation of the Boltzmann equation are in some way

If we put contained in our proceduf@and in Eq.(20)]. In fact, (1) the

d(A(v)),

1 .- . 1 - "
It _E<F(U.t)'VvA>1_ﬁfJA(U)J(f)dv’ (24
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collisions have been tacitly assumed to be bind®;the  choice, proper formulas for mobility, mean-velocity evolu-
collisional term in Eq.(16) has been evaluated supposing,tion, and conductivity tensor of large, heavy ions in electric
tacitly, that the collision dynamics is not influenced by theand magnetic fields have been obtaiféd].

external forces(3) the duration of a collision has been im-

plicity assumed to be, in general, much smaller than the

duration of a free flight between collisions; afd) spatial IV. CONCLUSIONS
and velocity correlations are absefite., the condition of ) ) '
“molecular chaos” is verifiedl In fact, gas and swarm par-  In this paper, starting from the Newton’s law, we have

ticles have been assumed to be uniformly distributed irPbtained the evolution equation for any average quantity rel-

space. On the other hand, the only velocity distribution in-€vant to particles uniformly dispersed in a gas in external

volved in our procedure is that of the gas particles, and thigorce fields.

distribution, in our equivalence proof, has been assumed to The method we have us¢t) constitutes the simplest and

be thes-independent distributiotFy (V) of Eq. (20). most _dlrect way to deduce the velocny-_average evolution
We want to stress, however, that our procedure is, in gquatlons from the Newton’s lau2) establishes the correct

sense, more general than that based on the Boltzmann equs(igtlsncal prﬁ.cidwe’ "Et"’ tbhe suc]:ccessgntand t.he tytpe of thte
tion. In fact, our procedure allows to consider also@verages wnich have to bé perlormed 1o arrive at correc

- . e . results,(3) obtains results which coincid@at least when the
v-dependent gas-particle velocity distributions, violating, 'nbackground gas is in thermal equilibriginwith those cus-

this way, the hypothesis of molecular chaos implied in thetomarily derived from the Boltzmann equation within its lim-
Boltzmann theory. In effect, a case of this type has alreadyq of \alidity, and(4) offers the way to achieve results also

been considered by us in Ref$,7] where the motion of , gjyations in which the Boltzmann equation cannot be em-
large, heavy particles in a gas in any regime has been Stu‘i{}oyed.

ied, and a shifted Maxwellian distribution centered \at We shall return on the last point, with some applications,
=&y (with 0<£<1) has been chosen & V). With this  in a planned future paper.
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