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Shattering transitions in collision-induced fragmentation
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We investigate the kinetics of nonlinear collision-induced fragmentation. We obtain the fragment mass
distribution analytically by utilizing its traveling wave behavior. The system undergoes a shattering transition
in which a finite fraction of the mass is lost to infinitesimal fragmefuiss). The nature of the shattering
transition depends on the fragmentation process. When the larger of the two colliding fragments splits, the
transition is discontinuous and the entire mass is transformed into dust at the transition point. When the smaller
fragment splits, the transition is continuous with the dust gaining mass steadily on the account of the frag-
ments. At the transition point, the fragment mass distribution diverges algebraically for small ntdsses,
~m~?, with «=1.2019 ... .
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I. INTRODUCTION model, the dust mass gradually increases once the shattering
transition occurred.

Fragmentation occurs in numerous physical phenomena In contrast with linear fragmentation processes, explicit
and industrial process¢s—5]. Examples include breakup of solutions of the nonlinear and nonlocal rate equations are
liquid droplets[6] and atomic nuclef7], polymer degrada- generally not possible. Nevertheless, the most important
tion [8], shattering of solid objectg9,10], meteor impacts, Physical characteristics can still be obtained analytically. In-
and mineral grinding. Idealized models of such physical pheterestingly, the fragment mass distribution attains a traveling
nomena are also useful conceptual tools for describing confvave form as the transition is approached. Of the spectrum
plex systems such as fluid turbulence, spin glags#l ge- ©Of possible propagation velocities, the extremal one is se-
netic populations[12,13, and random Boolean networks lected and it characterizes typical and extremal behaviors of
[14,15. the mass distribution. In the case of mod@glat the shatter-

In some cases, for example in polymer degradation, thénd transition, the mass distribution is algebraic for small
evolution of a fragment depends only on its size. ThereforeMasses, with a transcendental exponent. Past the transition,
fragments do not interact and such processes are inhereniije fragment mass distribution approaches a universal form.
linear. In other cases including grinding processes, explo- We first consider the number density that manifests the
sions in an enclosed volume, and breakup of eddies in ghattering transitioiSec. I). Then, we analyze the fragment
turbulent flow[16], interactions between fragments are es-mass distribution using rate equations for a deterministic ver-
sential. Such fragmentation processes are intrinsicadly- ~ Sion (Sec. Il)) and a stochastic versid$ec. V) of the frag-
linear [17—20. In this study, we show that the nature of the Mmentation process. Finally, we summarize our results and
mass distribution changes qualitatively due to nonlinearitiesoutline a few suggestions for future wofgec. V.

We investigate a basic class of nonlinear fragmentation
processes where binary collisions are the cause of breakage. Il. THE NUMBER DENSITY

We show that such processes exhibit a shattering transition ) ) )
where infinitesimal fragmentiglush carry a finite fraction of Consider a fragmentation process where at gaatary)

the mass in the system. We consider the simplest realizatigfP!lision event, one particle splits into two pieces while the
where one of the two colliding fragments breaks into twoSecond particle remains intact. We restrict our attention to
pieces. Generically, the number of fragments diverges in gituations Where_the splitting rate is m_dependent_ Qf the fra_g-
finite time, indicating shattering into dust. ment size and without loss of generality, the collision rate is

The nature of the shattering transition depends sensitivel§€t 0 unity. Analogous to the kinetic theory description of

upon the details of the fragmentation process, in particulacellisions in molecular gases, we assume perfect mixing,
which of the two colliding particles splits. We investigate namely, absence of spatial correlations between fragments.

three possibilities:(a) either, (b) the larger, and(c) the The tqtal fragment density(t) evolves according to the rate
smaller of the two particles breaks into two fragments uporfduation
collision. In the first two models, as the transition occurs the

entire mass is instantly transformed into dust. In the third d
Y GeNO=N(0). (1)
*Electronic address: paulk@bu.edu Without loss of generality, the initial density is set to unity,
Electronic address: ebn@lanl.gov N(0)=1, and therefore, the total density is
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1 N n—-uvr
N(t)=—:. 2 | —
1-t Cn(7) ,—UTG o ) , (6)

In a finite time, the number of fragments diverges and the

. S T Wherev =2 andG(x) = (27) " Y2exp(—x%/2) is the Gaussian
average fragment mass vanishes. This divergence mdlcatec}hsstribution Sincen=log,(1/m), the mass distribution be-
that the system undergoes a shattering transitidg=at . ' 2 '

T comes log normal, a behavior typical to fragmentation and
Let 7= [5dt’ N(t") be the average number of collisions g P 9

experienced by a fragment up to timeThis quantity di- cascade processgs8,18,21
verges logarithmically, _ )
B. Larger particle splits

Now in a collision, the larger particle splits into two equal
pieces. If the colliding particles have the same mass, a ran-
domly chosen particle splits. The fragment mass dergjty
This “collision counter” provides a convenient alternative =c,(t) satisfies the rate equation
measure of time.

1
7=In N(t)=|nﬁ. (3

—c,=4c,_ 1A, —2C A1 +2¢2_,—c2, (7)
IIl. DETERMINISTIC FRAGMENTATION den it STl BEEaSL

To complete the model definition we have to specify yherea  is the cumulative density of fragments of masg'2
which of the fragments splits, and how it splits. Following and smaller,A,(t)=3"_c;(t). The initial conditions are
Cheng and Redn¢8], we consider three possibilitie® a (0)=5 ,Onne cari_\r}ejrify that the mass is conserved
randomly chosen() the larger, andc) the smaller fragment er‘(t): 1,n'21.nd that the total density is given by E@). '

_sp_lits upon collision. In this se_ct_ion, we consider_ a determin- The densitycy(t) of unit mass particles satisfies the Ber-
istic rule where fragments split into two equal pieces. In thenouIIi equation @/dt) co=c2— 2¢,N. Using Eq.(2) and the
following section, we show that stochastic rules result in. q 0~ ™0 o 9 Eq.

qualitatively similar behaviors. initial condition ¢o(0)=1 gives

3(1—-1)2

2+(1-1)% ®

A. Random particle splits Co(t) =
We start with the case where a randomly selected particle
splits upon collision(this is equivalent to having both par-
ticles splid. For simplicity, we focus on monodisperse initia
conditions where all particles have unit masss 1. Then, a
fragment produced by collision events has mass=2"".
Let c,(t) be the density of such fragments at tirheThis

density evolves according to

| For sufficiently small n, one can obtain the leading
asymptotic behavior near the shattering transition. Skge
—N ast—1 and the last two terms on the right-hand side of
Eq. (7) are asymptotically negligible, the rate equations sim-
plify to (d/dt) c,=2N(2c,,_,—c,) which are identicalup
to the factor 2 to Egs.(4). Therefore,

d
FC(D=ND[2c, 1()=Cy(D)], (4 Cn(me_%(?n

9

with the total densityN(t)=E}”:0Cj(t). Summing up Egs.

(4) we indeed recover Eql). Also, the total massvi(t) Apart from logarithmic corrections, the densities vanish qua-
:zrzozﬂ' ¢;(t) is conservedM (t)=1. dratically: c,(t)<(1—t)2. We conclude that the shattering
In terms of the collision counter, the process is linear,transition remains discontinuogsee Fig. 1 Figure 1 sug-

(d/d7) ¢,=2c,_,—c,, and subject to the monodisperse ini- 9ests studying the normalized distributitin *c,(t). Below,
tial conditionsc,(0)= 6,0, the exact solution is the Poisso- We show that as a function of, the normalized fragment
nian density{ 18] mass distribution follows a universal behavior in the lange-
limit.
(27" The rate equation&) simplify in terms of the cumulative
g (5 densities:

Cn(T):e_ nl

At the shattering time.=1 (corresponding tor=«), the EA —2A2 A2 (10)
densities vanishc,(t=1)=0 for all n. Therefore, the frag- dt™ ™" n-1 hn-
ment mass density undergoes a first-orddiscontinuous
transition,M (t) = O (t.—t) with ® the Heaviside step func- This equation holds foA,=N if we setA_;=A,. The ini-
tion. In other words, the entire mass is shattered into dust antiial conditions areA,(0)= 6, . We characterize time by the

there are no particles with positive md§s18,21. collision counter(3) and normalize the size density by the
Near the shattering transition, i.e., &s-o, the mass dis- total number densityE,(7)=N"1A(t). These transforma-
tribution approaches tions yield
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1 T ' T T tion (12) exactly. It follows from the exponential behavior
attained byf(x) far behind the front: + f(x)~e** asx—
—oo, Together with Eq(12) it yields a “dispersion” relation

08 1 between the velocity and the decay coefficiemnt,
3—4e?
= 06 | 1 V=T (13
0: . el
= Out of the spectra of possible velocitieg (—°,v ], the
£ 04 | . maximal value is selected. At the maximum, we haw 3

=4(1+1\), from whichA=0.961279 and=1.52961. Al-
ternatively, the velocity is the smaller root ofn(4e/v)=3.
02} - Velocity selection underlies numerous situations, yet it
has been rigorously established only for a few nonlinear
parabolic partial differential equations, typically occurring in
0 L . reaction-diffusion problem§22—-27. Recently, velocity se-
0 0.2 04 0.6 0.8 1 lection has been also applied to a host of difference and
t difference-differential equation®8-37 including a linear
fragmentation process30]. Typically, the selected velocity
FIG. 1. The normalized fragment size distribution. Shown ngi\/eS key physical characteristics such as the growth velocity
N"cy(t) versust for n=0, 1, 2, 4, and 6. The numerical results of a surface in deposition processgs] or the extremal
reported in this study were obtained from integration of the rateheights of random tred82].

equations using the Adams-Bashford method with an adaptive time The typical behavior of the fragment mass density follows

step yielding a relative accuracy of 19in the densities. from the traveling wave form
d c(n—Ng(n—v7), (14
d—TFnzzFﬁ,l—Fﬁ—Fn. (12) "

with g(x) =f(x) —f(x+1). The front locatiom, ~v 7 char-

Asymptotically, this equation admits a traveling wave solu-2Cterizes typical fragments and the typical mags=2""
tion F(r)—f(n—vr) as shown in Fig. 2. The wave form SNrinks as

f(x) satisfies the difference-differential equation m, ~(1—t)° (15)
uif(x)=f(x)+f2(x)—2f2(x—1) (12) with o=vIn2=1.06024 ags— 1. The decay of the typical
dx ’ mass is slower than that in modé&l where o=21In2

_ _ . =1.386 29. Another difference between modalsind B is
and is subject to the boundary conditioné-=)=1 and  manifested by the width: In contrast with the diffusive broad-
f(>)=0. Remarkably, the velocity can be determined ening in modelA, the width saturates at a finite value in
without solving the nonlinear and nonlocal differential equa-modelB. Yet, fundamentally the shattering transitions are the
’ same in both models—the entire system is instantly trans-

y y formed into dust at the transition point.
The extremal behavior of the fragment mass density fol-
lows from the tails off(x). The behavior far ahead of the
08 | y wave front k—) is a sharp double-exponential decay, as
] implied by the leading terms in Eq12), v(d/dx)f(x)=
0.6 —2f2(x—1). In summary, the extremal behaviors are
E ] 1_C1 e)\x, X— — 0
- A PY exp(—C,2%), X— 4. (16)
04 1 1
] We now reexpress the mass distribution in terms of the
ordinary mass variablen=2"". The two distributions are
0.2 ] related viac(m)dm=c,dn (note that large masses corre-
] spond to small indices and vice versdlear the shattering
0 ' ' . transition, the mass distribution attains the scaling form
0 2 4 6

8 c(m)—(N/m,)F(m/m,). Equation(16) leads to the fol-
lowing extremal behaviors of the scaling function:

T

. . . z“, z>1
FIG. 2. The travelling wave. Shown are numerical solutions of F2)

Z)~ 1
Eq. (12) for n=2, 4, 6, and 8. z %exp(—C,z7 1), z<1, (1
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with =1+ \/In2=2.386 83. Hence, large masseslative 10%
to the typical magsare suppressed algebraically, while small N
masses are suppressed exponentially.

Generally, in fragmentation processes the mass distribu: 10%°
tion has a scaling form and this is indeed the case for
collision-induced fragmentation. However, the nonlinear na-
ture of the process results in qualitative changes to the scaIA10
ing behavior. The similarity solutions have two scales char-"-

numerical
———- theory

15

acterizing the front location and fluctuations around it in the = 10" |
linear casgmodelA). In contrast, only a single scale under-
lies similarity solutions in the nonlinear cagmodel B).
10° t
C. Smaller particle splits
When the smaller particle splits upon collision, the frag- 10° |
ment size densities satisfy the rate equations % =T 5 . o
10 10 10 10 10

d m
JiCn=4Cn-1Bn-1—2C,Bn+ 2¢2_,—¢c2, (18

FIG. 3. The mass distribution at the shattering time. Numerical
where Bn:E?;ole is the cumulative density of particles integration of the rate equatiori$8) are compared with the theo-

with mass larger than 2. retical prediction(23).
The density of unit mass particles is readily found by

solving éoz —CS. The next density can be found as well, (as in modelB) equationy In(4efv)=3. We note that the

velocities satisfyyg<v<vc.
1 The fragment size distribution follows the traveling wave
o) =757 (19 form (14) with g(x)=f(x+1)—f(x). The typical mass
shrinks according to Eq15) with o=v In2=4.9526 near
the shattering point. The exponential tails of the wave form

3_
cy(t)= 2 (A+y"—-1 ) imply algebraic tails for the scaling function underlying the
1+t 2(1+1t)%+1 mass distribution
These explicit results already demonstrate that densities are z7 ¢ z>1
positiveat all times. Hence, the total mass dendityt) also Hz)~ ;B gl (22

remains positive after the shattering transition.
The kinetics just below and at the shattering transition cafyith =1+ (pIn2)™1=1.20191 and B=1—\/In2

be determined using the traveling wave behavior. The cumu=q 163 049.

lative distribution obeys d/dt) B,=2B7_,—B} which is Our major result is that the mass distribution diverges

identical to Eq.(10); the initial conditions, however, are dif- z|gepraically at the transition tin{@3]:

ferent: B, (0)=1-6,0. The transformed distribution

F.(7)=N"1B, again evolves according to E(.1). Asymp- c(m,1)~m~¢, (23

totically, it admits a traveling wave solutior,(7)— f(n

—v7), with the wave formf(x) satisfying Eq.(12). How-  for m—0 with the transcendental exponeat=1.20191

ever, the boundary conditions are reverseti-<)=0 and  (Fig. 3). This behavior can be obtained from the lamybe-

F(x)=1, leading to different quantitative and qualitative havior of F(z). Although, in general, the traveling wave

results. form implies time-dependent densities, wher-, the
Both extremal behaviors are now exponential, mass densities beconsationary
Model C exhibits a rich post-transition behavior. The ex-
e’v, X——® plicit solutions(19) suggest that,=y,t~* whent—o. In-
fO)~ 1—e M xoto, (200 deed, this behavior is compatible with E¢#8) and the cu-

mulative amplitudesl“n=2}‘=oyj satisfy the recursion

The behavior far ahead of the front is used to determine theelationI'2—T',=2T'2_, with I'y=1. The amplitudes grow

velocity. The dispersion relation is exponentially, y,~T',~2"2. Summing over densities, the
total fragment mass decays as

4eM—-3

U= N y

(21) M(t)=Ct ! ast—oo, (29)

and the extremum selection principle gives0.58013 and with C=X,_,2""y,=2.66084. Thus, the total fragment
v=7.14509. Numerically, we confirmed this velocity to mass remains positive at all times. The dust maég =1
within 0.01%. Interestinglyy is the larger root of the same —M(t) vanishes at the shattering timg,(1)=0, and it
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SHATTERING TRANSITIONS IN COLLISION-INDUCED.. ..
The order parameter and the total dust mass are intimately

related. Consider the total mass density of fragments of mass

1
2 %or larger:M®(t) =3k _ 2 "¢ (t). From the rate equa-
08 | tions (18), this mass density decreases according to
= 06 | d
5 aM(k)(t): —2 ke (2B +cy). (26)
= 04 The flux of mass from fragments into dust is simply
(d/dt) u=—lim___(d/dty M®. Using Eq.(25), the right-
02t hand side of Eq(26) approaches (3 2/2)u?(t) in the limit
k— and therefore,
0
0 d 2
JEH(D=(3+2:2)u(t). 27)

FIG. 4. Fragment versus dust mass. Shown are the fragment
This in turn shows that the dust mass grows according to

massM (t) (solid line) and the dust mass(t) (dashed lingversus
time t. w(t)~(t—1)3 past the transition.
gradually increases far>1 (Fig. 4). Only in the long time

limit it accounts for the entire mass in the system. We con-

clude that in modeC, the shattering transition is continuous.
Numerically, we observe that for sufficiently largethe

densities follow a universal behavi@Fig. 5

IV. STOCHASTIC FRAGMENTATION

We now briefly describe a generalized collision-induced
fragmentation process where splitting is stochastic. Specifi-
cally, a particle of masses splits into two fragments of
massm’ andm—m’ with m’ chosen stochastically from the
interval 0<m’<m according to some fixed distribution. We
focus on the simplest case of uniform splitting, i’ is

(25)
chosen uniformly irf O,m].

() —2"2u(t).

A. Model A

While this ansatz is asymptotic with respecintdt holds for
When a randomly selected particle splits, the mass density

all times. The functioru(t) vanishes below the shattering

time and grows linearly afterwardsi(t)~(t—1) fort—1
—0. Hence, this function plays the role of an order param- e
c(m,7) satisfies

eter. Note also that(t)~t ! ast—oe.
J = dm’
—c(m,r)z—c(m,r)+2f —c(m’,7). (28
197' m m/

0.20

The kernel 2’ reflects the uniform splitting probability and

the collision rateN is absorbed by the collision counter
This equation is solved using the Mellin transform and for
the monodisperse initial conditior(m,0)= &(m—1), one

finds[34]

)

_n/2
2

i
i

i

}

H

= |
~ i
o 010 i
H

i

!

i

H

I ' ceram-1)te T [—r \/8 in >
I c(m,7)=e "6(m—1)+e Th 7in —
/ In—
I‘ m

0.00 j' f | | |
5 6 7 8 . - , ,
with I, the modified Bessel function. The first term on the
right-hand side simply describes the density of particles that

0.05

FIG. 5. The asymptotic behavior of the size density. Shown ishave yet to collide. The second term simplifies asymptoti-
27 "2¢ () versust for n=6, 10, 20, and 30. The inset shows the cally. Making the transformatiom=e™" leads to a normal
behavior in the vicinity ot =1 for n=30 (axis labels are as in the diSStzribUtiOI’l as in Eq.6) with the propagation velocity

=32

main figure.
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B. Model B with B(m,t)=[-dm’ c(m’,t). In terms of the index, the
When the larger of the two fragments splits, the rate equacumulative densitg(n,t) = fodn’c(n’) obeys Eq(31). The
tions for the mass density(m)=c(m, ) are normalized cumulative density again admits the traveling

wave form. The velocity and decay rate are9 and A
, = 1. At the shattering time, théinite) mass distribution di-
ic(m)=4Jw ﬂc(m’)A(m’)—Zc(m)A(m), (29) verges_algebraica_ll!yc(m,l)~m*“ with 0{:10/9- Past the
at m m’ shattering transition, the asymptotic ansatz(m,t)
—m~¥2y(t) holds for small masses and the dust mass is
with the cumulative densit(m)=fTdm’'c(m’). We em- related to the order parameter vid/@t) x=2u?. We con-
ploy the same transformations used in the deterministic casélude that qualitatively, the shattering transition is similar to
Characterizing mass by “index” nviam=e ", the frag- the deterministic case.
ment size densitg(n) evolves according to

V. DISCUSSION

ﬁc(n)=4fndn’e“'*“c(n’)A(n’)—Zc(n)A(n) We investigated kinetic properties of collision-induced
dat 0 fragmentation processes. Generally, the mass is transferred
(30 from finite fragments into infinitesimal dust in a finite time.
The nature of the shattering transition depends on the frag-
with A(n)= [, dn’c(n’). This cumulative distribution satis- mentation process. When the larger of the colliding particles
fies splits or when a randomly selected one splits, the transition is
discontinuous and the entire mass is transformed into dust
instantaneously. When the smaller particle splits, the transi-
ﬁA(n) —A2(n)— andn’ enuniAz(n,)_ (31) tion is continuous, with the dust accumulating gradually past
at 0 an’ the shattering transition. In this case, finite fragments always
carry a nonzero fraction of the mass.
Expressing time in units of the collision counter and normal- Model A is essentially linear and thus solvable. For mod-
izing by the total densityE(n,7)=N"tA(n), we transform €lsB andC, the nonlinear and nonlocal governing equations
Eq. (31) into cannot be solved in a closed form. Nevertheless, in the vi-
cinity of the shattering transition, we were able to obtain the
most important characteristics analytically by utilizing the
traveling wave form of the fragment mass density. The mass
distribution follows a scaling behavior with a single charac-
teristic scale, in contrast with the two scales found for linear
; ; ; _ ; processes.
tieeeﬁg‘rﬁiﬁet;?\gﬁ,l[ggr;\é?;flgrzcr)ll,[lij;:ﬁegrsj}z;f(n v7) yields For modelC, the post-shattering behavior is nontrivial. At
the transition point, the mass distribution decays algebra-
g ically, c(m)~m~¢, with a transcendental exponent
x _ =1.2014 ... indeterministic fragmentation and a rational
v&f(x):f(x)—fz(x)+2f_mdye‘/ X@fz(y)’ (32 exponenta=10/9 in stochastic fragmentation. We have also
demonstrated that the mass densities exhibit universal
subject to the boundary conditiorl{—)=0 and f() asymptotic behavio(25) in the post—_shattering region.
=1. The exponential decay -1f(x)~exp(\x) as x— o A c_hallenglng_ open problem is the complete. post-
gives the dispersion relation=4(1+)) =X and the shattering behavior in modeﬂ:, for example, the time-
extremum selection principle yields=v=1. Close to the d_ependent_dust mass. This is Iargely_a_ mathematical problem
shattering transition, the typical mass is proportional to the>nce physically, the breakage of sufficiently small fragments
average massm, ~(1—t) [35]. The mass densities behave is impossible. For instance, microcracks on the surface of the
as in the deterministic case and the extremal behavidfs fragment are often precursors fpr breakage. The number of
are recovered witlw=2. The nature of the transition is dis- such surface defects is proportional to the surface area, so
continuous. as in the deterministic case. sufficiently small fragments are effectively unbreakable.
' We focused on the leading asymptotic behavior. There
are, however, corrections to the linear front propagdtish-
C. Model C 27]. The traveling wave solution is actually a functionof
When the smaller particle splits upon collision, the rate=n—X(7) with the position of the frontX(7) given by
equations for the mass density are X(7)=v 7% (3/2\) In7+0O(1). The plus and minus signs cor-
respond to modelB andC, respectively. This translates to a
P I logarithmic correction to the typical mags5).
_C(m):4f —c(m")B(m’)—2c(m’)B(m’) We treated the problem using a mean-field rate equation
Jt m m’ approach. Thus we ignored correlations between the collid-
(33)  ing particles. In principle, spatial correlations may be impor-

d n , d
—F(n)=F2(n)—F(n)—2f dn’ e" "—F*(n’).
aT 0 an’
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tant up to some critical dimension beyond which they carevolves according tod/dt) N=N/T, or (d/dt) N~N*4

indeed be ignored. The analysis of this possibility requires drom whichN~ (t.—t) ~%. Based on this heuristic argument,

more complete description of the process. Particularly, oneve speculate that in ballistic fragmentation, the shattering

must specify the transport mechanism. transition occurs in arbitrary dimensiah Using effective
Collision-induced fragmentation arises most naturally ind-dimensional collision rates{N®), one can convert the

processes where particles move ballistically between colli“one-dimensional” results in this study into a general mean-

sions. Using dimensional analysis we argue that the shattefield theory.

ing transition always occur in ballistic fragmentation. The

typical mean free timé&, velocityv, particle cross sectios

and number densitil are related vialNv Ts~1. Mass con-

servation impliesn~N~1! (heremis the typical mass while We are grateful to K. Kornev for very fruitful remarks.

energy conservation gives~1. Finally m~s¥(@~1 yields  This research was supported by U.S. Department of Energy

s~N~1"Y n particular, T~N~0. The particle density Grant No.(W-7405-ENG-36.
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