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Phase diffusion and random walk interpretation of electromagnetic scattering

Hasan Bahcivafi, David L. Hysell| and Michael C. Kelley
School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14850, USA
(Received 4 February 2003; revised manuscript received 3 April 2003; published 1 August 2003

The relaxation behavior of phase observables for different particle diffusion models is found to establish a
ground for radioscience interpretations of coherent backscatter spectra. The characteristic function for a ran-
dom walk process at twice the incident radiation wave number is associated with the complex amplitude of the
scattered field from a medium containing refractive index fluctuations. The phase relaxation function can be
connected to the evolution of the characteristic function and may describe the average regression of the
scattered field from a spontaneous fluctuation undergoing turbulent mixing. This connection holds when we
assume that the stochastic description of particle movements based on a diffusion model is valid. The phase
relaxation function, when identified as the generalized susceptibility function of the fluctuation dissipation
theorem, is related to the spectral density of the scattered field from steady-state fluctuations.
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[. INTRODUCTION tuations. What we exactly mean by subsiding turbulence will
be discussed in the following sections. This connection will

Coherent scattering of radiowaves from the ionosphereb€ our main point in the present paper to obtain a theoreti-

middle, and lower atmosphere has been attributed to refrag@lly sound formulation of the time evolution, i.e., spectral

tive index fluctuations associated with turbulence. Accordin d?”S'ty’V‘\)/f thﬁ' S(igtteredhfle!d frﬁm st%ady—state turbulent me-
to the theory developed by Villars and Weisskdpf, pres- lums. We should emphasize here that we are Irying to un-
sure fluctuations in the middle and lower atmosphere progerstand the spectral characteristics of backscatter from sta-

: . . o tistical flows. While the term “turbulence” implies different
duce corresponding density fluctuations, which in turn pro"[hings in different contexts, we will find it convenient to use

d_uce fluctuations n refracnvg index and hence, a scattere n several occasions to provide better insight into concepts
field. Electron density fluctuations are the source of scatterefl, o
fields from the ionospheri2]. _ This paper is organized as follows. In Sec. Il, we develop
In this study, we generalize a theory relating the spectra ofim e diffusion and scattering concepts to describe the spec-
the scattered fields to the stochastic motions of individual,; of the scattered fields. We start by a definition of charac-
particles in a statistical flow. We analyze the spread of th§eistic function and explain the basis of how it can be related
particles due to diffusion and obtain characteristic functions he scattered field amplitude. Next, we describe the phase
corresponding to evolving density distributions as a Conseyg|axation function and how it can be identified as the gen-
quence of this diffusional spread. Diffusional spread of ag5jized susceptibility of the fluctuation-dissipation theorem.
quantity can go on indefinitely if the space in which it takes e "5 simple relation is obtained to connect the spectra of
place is unrestricted. However, the relevant space for eleGne geattered field from the steady-state fluctuations to the
Fromggnetlc scatte“nng is what we termpmse spacand it phase relaxation function. In Sec. I, the Levy random walk
is finite. The term “phase space” is used here as the reducerﬂrocess is used to provide an example in which we obtain the

space representing the behavior of the periodic phase varkhase relaxation function and the scattered field spectra.
able. We want to emphasize here that it is something very

different from the one typically used in mechanics and in|. DIEFUSION AND SCATTERED FIELD EVOLUTION
statistical physics. When observed at a fixed wave number in
k space, the motion of particles in a scattering medium may Diffusion can be viewed as an accumulation of incre-
be described by a process ternmthse diffusionwhich can ~ ments, as in a random walk. In the following analysis, we
be visualized as a mixing event at a fixed scale. In a close@ssume that the configuration states or distributions of par-
system or in the absence of energy input from lower wavdicles in space are equivalent. That is, the individual stochas-
numbers in a turbulent medium, all the energy will eventy-tic motions of particles undergoing diffusion are assumed to
ally be dissipated due to molecular viscosity or diffusion. Pe independent of ensemble space-velocity configuration.
A detailed investigation on the relaxation of characteristicThe diffusion process will be stationary in that each particle
function due to phase diffusion on the basis of several StOWIH perform the CharaCterIStIC random Walk SCheme at a.”
chastic diffusion models has only recently been made availimes and wherever it goes. With this conception of motion,
able by Talknef3]. We realize that this diffusional relaxation the governing algebraic equations will be in effect at all
behavior of characteristic functions can be connected to thBMes.

attenuation of scattered field from subsiding turbulent fluc- _ - _
A. Equivalency of the characteristic function to the complex

amplitude of the scattered field

*Electronic address: hb53@ece.cornell.edu The characteristic function corresponding to the electron
TAlso at Earth and Atmospheric Sciences, Cornell University.  density distributionp(x,t) at timet is given by
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2. Subsiding turbulence

— - jkx
okt f_deé P, @ We now consider a refractive index medium initially in

equilibrium at some time in the distant past, which is brought

into steady-state inertial range turbulence by application of
wherex is theextendedspace variable along the radar line of @n appropriate set of thermodynamics forces. In this steady-
sight. If the observation point is far from the whole scatteringState; & constant turbulent energy fiiper unit mass streams
system, the characteristic functish(k,t) yields the com- across scales down to dissipation ranges. For example3 con-
plex amplitude of the scattered field for an incident electro-SIderIng Kolmogorov-type turbulence, the energy distribu-

magnetic wave with wave numbkf2 at timet. The halving gggsltr;ntthies w;sgt:]all) range within which the energy flux is
of the wave number comes from the Bragg condition. This 9 y
simple relation is the most important for the present paper. E(K) = ae?3k 583, )

The above definition of the characteristic function in-
volvesp(x,t), which is a probability density function, not an where the dimensionless coefficieatis about 1.5 as re-
instantaneous electron density or a refractive index fluctuavealed by measurements. Once the volume containing this
tion. Even ifp(x,t) is uniform, yet there will be backscatter turbulent system is closed so that no continuous paths exist
from fluctuations that are not representedggy,t). For this ~ for the transport of mass or energy, the system will no longer
reason, it is not appropriate to say that the characteristif® able to support steady-state turbulent motions due fo irre-
function directly yields the scattered field amplitude. How- Versible processes such as diffusion and viscous dissipation.

ever, given certain assumptions, we can think of the randor?UPPOSINg that no reverse turbulent energy flux occuts in

motion of the scatterers in terms of the time evolution of a5PaC€ and that no energy exists in wave numbers smaller

configuration of pseudomaterighs a configuration corre- thank once the system is closed, the system will be called to

sponding to a spontaneous fluctuajievhich starts out con- be in a state of;uk_)5|d|ng t_urbulencw_lth energy flux CUt(_)ﬁ

centrated at a point and then diffuses outward. Only in thisat k. In the fol!owmg sections, sub3|d|pg turlbulen_ce W'”.be
q ¢ b derstood as the inst t | used to described the state of a medium displaying a linear

regard,p(x,t) can be understood as the instantaneous ele ‘esponse to a spontaneous fluctuation as in the fluctuation-

tron density distribution, which is an average outcome of a"dissipation theorerf,5]

possible traces of diffusion from a configuration state. It will ~ \yia need to empr;asize here that a turbulent medium or
be argued in the following sections that the spectra of theyyy statistical flow may not have any refractive index fluc-

scattered field, given certain assumptions, can be related {Qations, even in the presence of velocity fluctuations. How-
the phase relaxation of the characteristic function at half th%ver, turbulent Ve|ocity fluctuations tend to destroy or mix

radiation wave number. any variation in the refractive index. Therefore, the evolution
of the scattered fieldb(k,t) at a fixed wave numbek is
1. Phase-space representation of density distribution governed by the characteristics of velocity fluctuations. Our

) . aim here is to represent the effect of the velocity fluctuations
The calculation of the scattered field from an electronysjng well-formulated random walk models. Again, the
involves only the phase. Hence, relocation of this electron ieader should keep in mind that our discussion is general in

steps of half a wavelength along the radar line of sighthat the ideas here may be relevant to not only inertial range
should make no difference. In view of the foregoing consid-turbulent fields but also to any statistical flow.

erations, let us relocate all electrons in steps of half a wave-
length to points nearest to the origin on tkeaxis. This 3. Phase diffusion and phase relaxation

operation is nearly equivalent to taking the half wavelength | ot s think of the dynamics of a flow in steady-state

modulusof particle positions along the radar line of sight. jhertial range turbulence in extended space. From the density
Then, p(x,t)=0 for x<—\/4 andx>\/4 and particles are gjstripution in the extended space, we obtain the phase-space
distributed in the phase range w<6<m. Hereinafter, density distribution for a wave numbkin the inertial range.
p(x,t) will be termedphase-space density distributiomhile At the cessation of energy input from larger scales the tur-
we will sometimes call iphase-space diagranConsidering  bulence subsides and the diffusive flux due to both turbulent
that the dynamics of particles does not change with theand thermal motions drives the system towards a uniform
above relocation of particles, extended-space and phasphase-space density distribution. The phase of each particle
space density distributions are equivalent in that the corredndergoes diffusion only for a short time scale and since, by
sponding characteristic functions or the scattered fields wilbur definition, a phase can take values only in the range
be identical. That isfor scattering calculations, every in- —a&<6<a or in the interval of half a wavelength around
stantaneous electron density distribution in the extendedhe origin, an ever increasing spread of the variance isf
space can be represented by a compact electron blob on impossible. Therefore, phase diffusion, as an irreversible
line a half wavelength long, as long as the phase of eaclthermodynamic process, gives risepioase relaxatiorof the
electron is preservedThis point will be useful in the last scattered field, a phase observable, in subsiding turbulence.
section discussing Levy processes, where we model initiaDnce the system comes to equilibrium, the phase-space den-
electron density distributions as small blobs expanding viasity distribution will be uniform and there will be no coher-
diffusion. ent scattering due to absence of fluctuations. Meanwhile,
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some examples of periodic or quasiperiodic motions are dispartial equilibrium can be characterized. The fluctuations of
played by atmospheric and ionospheric waves where indithis type show quasistationary behavior and have a correla-
vidual particles undergo a coherent and periodic motion. Irtion function[6]

this case, the phase may not tend to be distributed according

to the equipartition in the phase-spdeer, ). c(k,7)=(|D(k)|2ye M. (6)

We do not require that the scattered field from a turbulent
) o . field be quasistationary. It is not possible to derive a general

We have discussed that the characteristic function at haformyla for the correlation function or spectral density of
the electromagnetic wave number yields the measured scagrpitrary fluctuations analogous to the above formulation for
tered field. In the absence of energy input from larger scaleghe quasistationary fluctuations. However, it is possible to
the characteristic function for an initially compact electronejate the properties of fluctuations to quantities describing
population with a given reference distribution is in a state ofine pehavior of the system perturbed by external forces.
subsiding turbulence. The scattering field relaxes as the scat- | the presence of an externally perturbing generalized

terers undergo phase diffusion. The corresponding relaxatiogyce of timef(t), the fluctuation®(k,t) can be related to
curve for the value of the characteristic function atixed  this force ad4]

wave numberk will be termedphase relaxation functign
m(k,7) for 7>0. An initial nonuniform phase-space distri-

bution for a compact electron blob approaches the uniform q’(k:t)=f at)f(t—7)dr. (7)
equilibrium distribution due to phase diffusion and absorp- 0

tion of energy in the dissipation scales. Phase relaxation The apove relation can also be expressed in terms of the
curves for different random walk models have recently beertqrier components of the force and the fluctuation
studied[3] and will be reviewed on the basis of turbulent

scattering in the last section. Dk, 0)=a(w)f, (o), (8)

4. Phase relaxation function

[

where a(w) is the generalized susceptibility4,6] and is

B. Relation between spectral density of fluctuations ) ! ! A
taken to describe the diffusional characteristics of the system

and phase relaxation function

We consider a medium that displays steady-state turbulent o ot
fluctuations. The system is thought to be displaying a linear a(w)= fo a(t)e'dt. 9
response to a set of thermodynamic forces.

If this function is specified, the behavior of the system
under a given perturbation is completely determined.

The complex scattered field quantity of a steady-state tur-
bulent medium,®(k,t), will undergo variations in time, 2. Fluctuation-dissipation theorem
fluctuating about its zero mean value. There is some correla- g cjassical limit of the fluctuation-dissipation theorem

tion between the values ap(k,t) at different instants. We g |ate5 the spectrum density of the fluctuations to the imagi-

fﬁ: pigzraciterize the time correlation by the mean value Qf,ry part of the generalized susceptibility function[dk
u

1. Correlation of fluctuations in time

oc . 2T
c(k,t,t")=(Dd(k,t)d*(k,t")). (3 c(k,w)=f mc(k,f)e"”dr=;a”(w)- (10

The statistical averaging above is equivalent to time aver- T in the above equation is related to the mean square of
aging. Thus, the correlation function above depends only ofhe fluctuation by
the time difference=t—t’. Therefore, it can also be written
as = o'()

2T (=
oo == |

dow. (11
c(k,7)=(D(k,0)D* (k,7)). (4) @
) ) ) The above formulas describe the fluctuations under mono-
Because of obvious symmetry in E@), c(k,7) is an  chromatic perturbatiofiat frequencyw. These formulas can
even function, also be viewed as the equation for fluctuations of the scat-
tered field® (k,t) in an equilibrium closed system under the
c(k,7)=c(k,— 7). (5)  action of random forcd. It should be emphasized that the
formulation of the above thermodynamic fluctuation theory
Partial equilibrium is defined as the state in which theis valid for fluctuations of arbitrary siZ&,6]. The absence of
relaxation time for the establishment of partial equilibrium restrictions on the permissible values of the scattered field
for a given value ofb (k,t) is assumed to be much less than amplitude allows us to apply the fluctuation-dissipation theo-
that required to reach the equilibrium valued(k,t) itself. ~ rem to weak incoherent or Thompson scattering as well as
By choosing a specific value fab(k,t), a definite state of strong coherent scattering.
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Consider first a one-dimensional system in equilibrium N g —ikdxy(n)
having a uniform phase-space density distributpe(k,x). m(k,r)=<2 N >
The accompanying scattering field vanishes due to the homo- n
O e T e et neiere the averaging is over all possible vacesxl). i
from the equilibrium distribution and the decay of the corre-_; W take the Fourier transform of the phase relaxaﬂon func-
. . ' S ) .~ tion and express it in terms of real and imaginary parts,
sponding scattering field. The equilibrium fluctuation dissi-
pation theorem can be regarded as a consequence of this o _
one-to-one correspondence. In the absence of reverse turbu- M(K, )= m’(k,w)+im”(k,w)=J’ m(k, 7)e'“7dr.
lent energy flux, a system in subsiding turbulence and the 0 (16)
corresponding scattering field can be considered to be a re-

sponse of the system to a spontaneous fluctuation. In this Representing a turbulent medium as a dissipative system,
regard, the generalized susceptibility functiatw) will be  \ve define its generalized susceptibility function by the Fou-

treated as the average regression of a spontaneous fluctyger transform of the phase relaxation function,
tion.

In order to provide further insight into the diffusional re- a(k,w)=m(k,w). (17)
gression of the scattered field, we consitiediscrete scat-

terers and obtain the complex amplitude of the scattered field We assume that the average shape of a spontaneous fluc-
by tuation pulse is identical with the observed shape of an irre-

versible decay of the scattered field from subsiding turbu-
N lence toward its zero equilibrium value. In this regard, phase
(I)(k,t)zz aikxj(t) (12) rellaxatlon functionrm(k,7) can be understood as the gener-
] alized susceptance of the system.
For stationary scattered fields and invoking the principle

where; is the distance ofth scatterer. After some delay ~ ©f microscopic reversibility7,8], we obtain the spectral den-
the position of each particle is advanceddy such that the sity of the scattered field for an incident radiation at the wave

(15

scattered field after such delay can be formulated as numberk/2 as[4]
N c(k,w)=(2T/w)m"(k,w). (18
D(k,t+ T)=§j: ek Welkox(7), (13 The proof of the above relation employs certain theories

of random variables, which can be found in Ref].

We assume that the statistical properties of increméxts
can be described by a random walk process. In the absence ) o
of any external thermodynamic forces such as energy flux It is evident from the description of the phase-space den-
from lower wave numberS, the diffusion described by a par_S|ty d|Str|bL-]t|0n that if thel’e_ls Only a linear cluster of QleC-
ticular random walk scheme will clearly drive the scatteredtrons and it spreads along its line, the phase-space diagram
field toward zero. We proceed to obtain the correlation funcWill want to expand along the axis. But it will fail to do so

C. On the role of initial phase-space diagrams

tion by performing statistical averaging in time, since any electron exiting at one end, exjs — /4, will
enter at the opposite end, ex= + \/4. Since the total num-
c(k, ) =(D(k,H)D* (k,t+ 7)) ber of electrons will be preserved, the area under it must be

a constant. The final equilibrium state can be expressed by a

N N . ‘ straight line. Suppose that an equilibrium phase-space dia-
={ > ek e kmbgTkoxm(n gram is perturbed such that an initial displacemefit,x)

J m from equilibrium occurs, starting at time zero:

S 03 etk & kx,7)=h+p'(k 19
= E e'kxj(t)E eflkxm(t)z N P( ,X,’T) p( ,X,T), ( )

L : " ) whereh is the height of the equilibrium diagram. The scat-

. . e~ koXn(7) tered field is given by
— e|kxj(t) e—|kxm(t) _
(3 ens N . .
N ko <I>(k,t)=j_wdxéxp(k,x,t)=f_wdxe"‘p’(k,x,t).

=<|<I>(k)|2><§ N > (14 (20)

Now suppose that diffusion takes place. Can we find the
The above derivation assumes uncorrelated positions arghanges to the scattered field normalized by its initial value,
velocities. The second multiplier term on the right-hand side
in the last equation above is what we previously described as P(k,7) 21)
the phase relaxation function, d(k,0)’
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m(k, 7)=do| k

for 7>0, if we know the precise stochastic behavior of thethe scattered field from a medium in a state of subsiding
scatterers? Not from this information alone, since diffusion isturbulence can be obtained from the reference characteristic
Therefore, we need a description @f(k,x,0) to find a sto-

chastic solution for the relaxation of the scattered field from

its perturbed value. In this instance, we have no information

medium. Therefore, in the example in the following section, For example, we take the case of symmetric Levy distri-
we will assume special forms for the initial displacement ofbutions with reference characteristic function

the phase-space diagram and will continue our discussion on

also controlled by the gradients of a phase-space diagrarfunction as
pe al2
t_) } (24
0

about whatp' (k,x,0), onaverage, looks like for a turbulent

the basis of Levy random walk processes. ®o(k)=exd — adk?], (25)

whereoy>0 is a reference scale and the expongrns re-
stricted to G<y=2. Then, the phase relaxation function is
obtained from Eq(24) as

Phase diffusion and relaxation for several random walk
models has recently been studied by Talkf@ including m(k T):exr{_ayky(l
processes with independent increments, self-similar pro- ' 0"t
cesses, and continuous time random walks. In this section,
we will discuss only Levy processes which might establish a A requirement for a stationary process is that<2 for
good example for the use of phase diffusion in the interpre0<y<1 anda<1 for 1<y=<2 [3]. In the above equation,
tation of steady-state turbulent or nonturbulent scatteringthe choice fott, is not clear but by no means determines the
Again, the fundamental idea of this paper is the relation beexponent of the time delay and can be incorporated into the
tween the spectral density of the scattered field and the phas@nstantoy.
relaxation function. We are in no way committing ourselves The generalized susceptance can now be obtained from
to turbulent or nonturbulent flow, since the discussion here i¢he phase relaxation function by a Fourier transform opera-
general and may be relevant to any statistical flow. Limita-tion, as in Eq(10). However, an analytical form ah(k,w)
tions of time and competence preclude a detailed discussiog not easy to obtain except in a case whete=1. Given
of alternative random walk schemes. Although the discussiothat the stochastic motion of particles in a statistical flow can
below on Levy processes closely follows that of H&f, we  be described as a Levy process wijthh=1, the generalized
find it extremely useful to include it in order to provide a susceptance can be obtained using @@) as
self-consistent explanation of the ideas here.

Levy processes are a group of self-similar processes with

Ill. ASTOCHASTIC DIFFUSION MODEL
AND CORRESPONDING SPECTRAL DENSITY

ya

(26)

a space and time evolution of a reference distribution in a m(k, )= k—iw' @7
scaling fashion. We do not know what kind of reference

phase-space density distribution would be appropriate, if itvhere the parameter is defined as

matters at all, for our analysisee section on initial phase-

space distributions Once an initial distribution is chosen, ogk”

the evolution of characteristic function depends on how this A (28)

initial distribution spreads in time. Since Levy processes are
self-similar, the probability density function of this process  Finally, we can obtain the spectral density of the scattered
varies in time as field fluctuations in light of the fluctuation-dissipation theo-
rem using Eq(19)
p(X A =N"p(N "X 1), (22)
2T

. . . . C(k, (,l)) =" 2.
where\ is redefined to be the scaling factor. Then, starting Kt o
with a reference density functiopy(x,ty) at timet,, the

density function at a later timecan be obtained by setting ~ The above form of spectral density is Lorentzian and
A=t/tg, reminiscent of normal diffusion processes. While what mat-

ters most is the shape of the spectrum which is controlled by
£\ @2 k, T on the right-hand side can be calculated by measuring
(_0) (23)  the mean square of fluctuations and solving 8¢) for T.
The phase relaxation function may take a variety of forms
from algebraic decay to exponential and to faster than expo-
Since the characteristic functio®(k,t), is the Fourier nential depending on the type of random walk process using
transform of p(x,t), rescaling thex variant of the density [3]. Accordingly, we anticipate a wide range of spectrum
function corresponds to rescaling tkedomain in®(k,t). densities. A Gaussian form of spectral density that is com-
Let dy(k,tg) be the characteristic function of reference dis-monly used to interpret turbulent Doppler spectrum from at-
tribution pg at timety. Then, the phase relaxation function of mospheric processg®] would establish only a particular

(29

tO al2
p(xit)ZPO[(T> X

t
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case. We think that this wide class of random walk processelsave obtained an analytical form of spectral density only for
and understanding what kind of statistical flow they repre-a particular case of the Levy process, we expect the spectral

sent deserve a separate study. density to display a wide range of behavior. The spectral
density is not necessarily Gaussian, although it is often as-
IV. CONCLUSION sumed to be this way by the research community.

In this paper we have formulated the connection between

In this paper, we have investigated how the stochasti ) .
motion of one scatterer can be related to the scattered ﬁeﬁ(ﬁ] e spectral density of the scattered field from steady-state

spectra from a medium containing many such scatterers. T %atlsnc_al flows ar_ld the ph_ase relaxation funct_lon. We be-
scatterers in the medium can be collapsed into a small com€V€ this connection establishes a sound starting point for
pact volume, i.e., phase space, when the phase of each SCgtt_erpretmg_coh(_arent backs_catter s_pectra from refractive in-
terer is preserved. In this regard, we can release a collectid#f fluctuations in a scattering medium. The phase relaxation
of scatterers in several reference configurations and calculafPProach on the basis of several diffusion models may allow
the evolution of the scattered field for different random walkus to obtain adynamicalpicture of particle processes which
schemes. The average regression of the scattered field from¢uld facilitate the study of other such dynamical processes,
subsiding turbulent flow is described by the phase relaxatioincluding shear instabilities and mixing in turbulent flows.
function. For arbitrary perturbations to the equilibrium The ideas here can ultimately serve as the foundation for
phase-space diagram, the phase relaxation function is relateglore comprehensive ones connecting the time signatures of
to the spectral density of the scattered field from steady-statecattered fields to the physics of atmospheric processes.

turbulent fluctuations under consideration of the fluctuation- o _
dissipation theorem. For the Levy process example we stud- Research at Cornell University was supported in part by

ied, and for other random walk models recently studied, théhe Office of Naval Research under grant N00014-00-1-
phase relaxation function displays a wide range of behavioP658. H.B. thanks Jorge Chau for discussions on the inter-
from algebraic decay to faster than exponential. While wepretation of coherent backscatter.
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