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Phase diffusion and random walk interpretation of electromagnetic scattering

Hasan Bahcivan,* David L. Hysell,† and Michael C. Kelley
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The relaxation behavior of phase observables for different particle diffusion models is found to establish a
ground for radioscience interpretations of coherent backscatter spectra. The characteristic function for a ran-
dom walk process at twice the incident radiation wave number is associated with the complex amplitude of the
scattered field from a medium containing refractive index fluctuations. The phase relaxation function can be
connected to the evolution of the characteristic function and may describe the average regression of the
scattered field from a spontaneous fluctuation undergoing turbulent mixing. This connection holds when we
assume that the stochastic description of particle movements based on a diffusion model is valid. The phase
relaxation function, when identified as the generalized susceptibility function of the fluctuation dissipation
theorem, is related to the spectral density of the scattered field from steady-state fluctuations.
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I. INTRODUCTION

Coherent scattering of radiowaves from the ionosphe
middle, and lower atmosphere has been attributed to ref
tive index fluctuations associated with turbulence. Accord
to the theory developed by Villars and Weisskopf@1#, pres-
sure fluctuations in the middle and lower atmosphere p
duce corresponding density fluctuations, which in turn p
duce fluctuations in refractive index and hence, a scatte
field. Electron density fluctuations are the source of scatte
fields from the ionosphere@2#.

In this study, we generalize a theory relating the spectr
the scattered fields to the stochastic motions of individ
particles in a statistical flow. We analyze the spread of
particles due to diffusion and obtain characteristic functio
corresponding to evolving density distributions as a con
quence of this diffusional spread. Diffusional spread o
quantity can go on indefinitely if the space in which it tak
place is unrestricted. However, the relevant space for e
tromagnetic scattering is what we term asphase spaceand it
is finite. The term ‘‘phase space’’ is used here as the redu
space representing the behavior of the periodic phase
able. We want to emphasize here that it is something v
different from the one typically used in mechanics and
statistical physics. When observed at a fixed wave numbe
k space, the motion of particles in a scattering medium m
be described by a process termedphase diffusion, which can
be visualized as a mixing event at a fixed scale. In a clo
system or in the absence of energy input from lower wa
numbers in a turbulent medium, all the energy will even
ally be dissipated due to molecular viscosity or diffusion.

A detailed investigation on the relaxation of characteris
function due to phase diffusion on the basis of several
chastic diffusion models has only recently been made av
able by Talkner@3#. We realize that this diffusional relaxatio
behavior of characteristic functions can be connected to
attenuation of scattered field from subsiding turbulent fl

*Electronic address: hb53@ece.cornell.edu
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tuations. What we exactly mean by subsiding turbulence w
be discussed in the following sections. This connection w
be our main point in the present paper to obtain a theor
cally sound formulation of the time evolution, i.e., spect
density, of the scattered field from steady-state turbulent
diums. We should emphasize here that we are trying to
derstand the spectral characteristics of backscatter from
tistical flows. While the term ‘‘turbulence’’ implies differen
things in different contexts, we will find it convenient to us
on several occasions to provide better insight into conce
here.

This paper is organized as follows. In Sec. II, we deve
simple diffusion and scattering concepts to describe the s
tra of the scattered fields. We start by a definition of char
teristic function and explain the basis of how it can be rela
to the scattered field amplitude. Next, we describe the ph
relaxation function and how it can be identified as the g
eralized susceptibility of the fluctuation-dissipation theore
Then, a simple relation is obtained to connect the spectr
the scattered field from the steady-state fluctuations to
phase relaxation function. In Sec. III, the Levy random wa
process is used to provide an example in which we obtain
phase relaxation function and the scattered field spectra

II. DIFFUSION AND SCATTERED FIELD EVOLUTION

Diffusion can be viewed as an accumulation of incr
ments, as in a random walk. In the following analysis, w
assume that the configuration states or distributions of p
ticles in space are equivalent. That is, the individual stoch
tic motions of particles undergoing diffusion are assumed
be independent of ensemble space-velocity configurat
The diffusion process will be stationary in that each parti
will perform the characteristic random walk scheme at
times and wherever it goes. With this conception of motio
the governing algebraic equations will be in effect at
times.

A. Equivalency of the characteristic function to the complex
amplitude of the scattered field

The characteristic function corresponding to the elect
density distributionr(x,t) at time t is given by
©2003 The American Physical Society01-1
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F~k,t !5E
2`

`

dxeikxr~x,t !, ~1!

wherex is theextendedspace variable along the radar line
sight. If the observation point is far from the whole scatteri
system, the characteristic functionF(k,t) yields the com-
plex amplitude of the scattered field for an incident elect
magnetic wave with wave numberk/2 at timet. The halving
of the wave number comes from the Bragg condition. T
simple relation is the most important for the present pap

The above definition of the characteristic function i
volvesr(x,t), which is a probability density function, not a
instantaneous electron density or a refractive index fluc
tion. Even ifr(x,t) is uniform, yet there will be backscatte
from fluctuations that are not represented byr(x,t). For this
reason, it is not appropriate to say that the character
function directly yields the scattered field amplitude. Ho
ever, given certain assumptions, we can think of the rand
motion of the scatterers in terms of the time evolution o
configuration of pseudomaterial~as a configuration corre
sponding to a spontaneous fluctuation! which starts out con-
centrated at a point and then diffuses outward. Only in t
regard,r(x,t) can be understood as the instantaneous e
tron density distribution, which is an average outcome of
possible traces of diffusion from a configuration state. It w
be argued in the following sections that the spectra of
scattered field, given certain assumptions, can be relate
the phase relaxation of the characteristic function at half
radiation wave number.

1. Phase-space representation of density distribution

The calculation of the scattered field from an electr
involves only the phase. Hence, relocation of this electron
steps of half a wavelength along the radar line of si
should make no difference. In view of the foregoing cons
erations, let us relocate all electrons in steps of half a wa
length to points nearest to the origin on thex axis. This
operation is nearly equivalent to taking the half wavelen
modulusof particle positions along the radar line of sigh
Then,r(x,t)50 for x,2l/4 andx.l/4 and particles are
distributed in the phase range2p<u,p. Hereinafter,
r(x,t) will be termedphase-space density distribution, while
we will sometimes call itphase-space diagram. Considering
that the dynamics of particles does not change with
above relocation of particles, extended-space and ph
space density distributions are equivalent in that the co
sponding characteristic functions or the scattered fields
be identical. That is,for scattering calculations, every in
stantaneous electron density distribution in the exten
space can be represented by a compact electron blob o
line a half wavelength long, as long as the phase of e
electron is preserved. This point will be useful in the las
section discussing Levy processes, where we model in
electron density distributions as small blobs expanding
diffusion.
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2. Subsiding turbulence

We now consider a refractive index medium initially
equilibrium at some time in the distant past, which is broug
into steady-state inertial range turbulence by application
an appropriate set of thermodynamics forces. In this stea
state, a constant turbulent energy fluxe per unit mass stream
across scales down to dissipation ranges. For example,
sidering Kolmogorov-type turbulence, the energy distrib
tion in the inertial range within which the energy flux
constant is given by

E~k!5ae2/3k25/3, ~2!

where the dimensionless coefficienta is about 1.5 as re-
vealed by measurements. Once the volume containing
turbulent system is closed so that no continuous paths e
for the transport of mass or energy, the system will no lon
be able to support steady-state turbulent motions due to
versible processes such as diffusion and viscous dissipa
Supposing that no reverse turbulent energy flux occursk
space and that no energy exists in wave numbers sm
thank once the system is closed, the system will be called
be in a state ofsubsiding turbulencewith energy flux cutoff
at k. In the following sections, subsiding turbulence will b
used to described the state of a medium displaying a lin
response to a spontaneous fluctuation as in the fluctua
dissipation theorem@4,5#.

We need to emphasize here that a turbulent medium
any statistical flow may not have any refractive index flu
tuations, even in the presence of velocity fluctuations. Ho
ever, turbulent velocity fluctuations tend to destroy or m
any variation in the refractive index. Therefore, the evoluti
of the scattered fieldF(k,t) at a fixed wave numberk is
governed by the characteristics of velocity fluctuations. O
aim here is to represent the effect of the velocity fluctuatio
using well-formulated random walk models. Again, th
reader should keep in mind that our discussion is genera
that the ideas here may be relevant to not only inertial ra
turbulent fields but also to any statistical flow.

3. Phase diffusion and phase relaxation

Let us think of the dynamics of a flow in steady-sta
inertial range turbulence in extended space. From the den
distribution in the extended space, we obtain the phase-s
density distribution for a wave numberk in the inertial range.
At the cessation of energy input from larger scales the
bulence subsides and the diffusive flux due to both turbu
and thermal motions drives the system towards a unifo
phase-space density distribution. The phase of each par
undergoes diffusion only for a short time scale and since,
our definition, a phase can take values only in the ran
2p<u,p or in the interval of half a wavelength aroun
the origin, an ever increasing spread of the variance ofx is
impossible. Therefore, phase diffusion, as an irrevers
thermodynamic process, gives rise tophase relaxationof the
scattered field, a phase observable, in subsiding turbule
Once the system comes to equilibrium, the phase-space
sity distribution will be uniform and there will be no cohe
ent scattering due to absence of fluctuations. Meanwh
1-2
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some examples of periodic or quasiperiodic motions are
played by atmospheric and ionospheric waves where i
vidual particles undergo a coherent and periodic motion
this case, the phase may not tend to be distributed accor
to the equipartition in the phase-space@2p, p!.

4. Phase relaxation function

We have discussed that the characteristic function at
the electromagnetic wave number yields the measured s
tered field. In the absence of energy input from larger sca
the characteristic function for an initially compact electr
population with a given reference distribution is in a state
subsiding turbulence. The scattering field relaxes as the s
terers undergo phase diffusion. The corresponding relaxa
curve for the value of the characteristic function at afixed
wave numberk will be termedphase relaxation function,
m(k,t) for t.0. An initial nonuniform phase-space distr
bution for a compact electron blob approaches the unifo
equilibrium distribution due to phase diffusion and abso
tion of energy in the dissipation scales. Phase relaxa
curves for different random walk models have recently be
studied@3# and will be reviewed on the basis of turbule
scattering in the last section.

B. Relation between spectral density of fluctuations
and phase relaxation function

We consider a medium that displays steady-state turbu
fluctuations. The system is thought to be displaying a lin
response to a set of thermodynamic forces.

1. Correlation of fluctuations in time

The complex scattered field quantity of a steady-state
bulent medium,F(k,t), will undergo variations in time,
fluctuating about its zero mean value. There is some corr
tion between the values ofF(k,t) at different instants. We
can characterize the time correlation by the mean value
the product

c~k,t,t8!5^F~k,t !F* ~k,t8!&. ~3!

The statistical averaging above is equivalent to time av
aging. Thus, the correlation function above depends only
the time differencet5t2t8. Therefore, it can also be writte
as

c~k,t!5^F~k,0!F* ~k,t!&. ~4!

Because of obvious symmetry in Eq.~3!, c(k,t) is an
even function,

c~k,t!5c~k,2t!. ~5!

Partial equilibrium is defined as the state in which t
relaxation time for the establishment of partial equilibriu
for a given value ofF(k,t) is assumed to be much less th
that required to reach the equilibrium value ofF(k,t) itself.
By choosing a specific value forF(k,t), a definite state of
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partial equilibrium can be characterized. The fluctuations
this type show quasistationary behavior and have a corr
tion function @6#

c~k,t!5^uF~k!u2&e2lutu. ~6!

We do not require that the scattered field from a turbul
field be quasistationary. It is not possible to derive a gene
formula for the correlation function or spectral density
arbitrary fluctuations analogous to the above formulation
the quasistationary fluctuations. However, it is possible
relate the properties of fluctuations to quantities describ
the behavior of the system perturbed by external forces.

In the presence of an externally perturbing generaliz
force of time f (t), the fluctuationF(k,t) can be related to
this force as@4#

F~k,t !5E
0

`

a~ t ! f ~ t2t!dt. ~7!

The above relation can also be expressed in terms of
Fourier components of the force and the fluctuation

F~k,v!5a~v! f v~v!, ~8!

where a~v! is the generalized susceptibility@4,6# and is
taken to describe the diffusional characteristics of the sys

a~v!5E
0

`

a~ t !eivtdt. ~9!

If this function is specified, the behavior of the syste
under a given perturbation is completely determined.

2. Fluctuation-dissipation theorem

The classical limit of the fluctuation-dissipation theore
relates the spectrum density of the fluctuations to the ima
nary part of the generalized susceptibility function as@4#

c~k,v!5E
2`

`

c~k,t!eivtdt5
2T

v
a9~v!. ~10!

T in the above equation is related to the mean square
the fluctuation by

^uF~k!u2&5
2T

p E
0

` a9~v!

v
dv. ~11!

The above formulas describe the fluctuations under mo
chromatic perturbationf at frequencyv. These formulas can
also be viewed as the equation for fluctuations of the s
tered fieldF(k,t) in an equilibrium closed system under th
action of random forcef. It should be emphasized that th
formulation of the above thermodynamic fluctuation theo
is valid for fluctuations of arbitrary size@4,6#. The absence of
restrictions on the permissible values of the scattered fi
amplitude allows us to apply the fluctuation-dissipation the
rem to weak incoherent or Thompson scattering as wel
strong coherent scattering.
1-3
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BAHCIVAN, HYSELL, AND KELLEY PHYSICAL REVIEW E 68, 021101 ~2003!
Consider first a one-dimensional system in equilibriu
having a uniform phase-space density distributionr(k,x).
The accompanying scattering field vanishes due to the ho
geneity of the scattering medium. Now, there exists a o
to-one correspondence between the decay of a displace
from the equilibrium distribution and the decay of the cor
sponding scattering field. The equilibrium fluctuation dis
pation theorem can be regarded as a consequence of
one-to-one correspondence. In the absence of reverse tu
lent energy flux, a system in subsiding turbulence and
corresponding scattering field can be considered to be a
sponse of the system to a spontaneous fluctuation. In
regard, the generalized susceptibility functiona~v! will be
treated as the average regression of a spontaneous flu
tion.

In order to provide further insight into the diffusional re
gression of the scattered field, we considerN discrete scat-
terers and obtain the complex amplitude of the scattered
by

F~k,t !5(
j

N

eikxj ~ t !, ~12!

wherexj is the distance ofj th scatterer. After some delayt,
the position of each particle is advanced bydxj such that the
scattered field after such delay can be formulated as

F~k,t1t!5(
j

N

eikxj ~ t !eikdxj ~t!. ~13!

We assume that the statistical properties of incrementsdxj
can be described by a random walk process. In the abs
of any external thermodynamic forces such as energy
from lower wave numbers, the diffusion described by a p
ticular random walk scheme will clearly drive the scatter
field toward zero. We proceed to obtain the correlation fu
tion by performing statistical averaging in time,

c~k,t!5^F~k,t !F* ~k,t1t!&

5K (
j

N

eikxj ~ t !(
m

N

e2 ikxm~ t !e2 ikdxm~t!L
5K (

j

N

eikxj ~ t !(
m

N

e2 ikxm~ t !(
n

N
e

N

2 ikdxn~t!L
5K (

j

N

eikxj ~ t !(
m

N

e2 ikxm~ t !L K (
n

N
e

N

2 ikdxn~t!L
5^uF~k!u2&K (

n

N
e

N

2 ikdxn~t!L . ~14!

The above derivation assumes uncorrelated positions
velocities. The second multiplier term on the right-hand s
in the last equation above is what we previously describe
the phase relaxation function,
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e

N

2 ikdxn~t!L , ~15!

where the averaging is over all possible traces ofdx(t). We
now take the Fourier transform of the phase relaxation fu
tion and express it in terms of real and imaginary parts,

m~k,v!5m8~k,v!1 im9~k,v!5E
0

`

m~k,t!eivtdt.

~16!

Representing a turbulent medium as a dissipative syst
we define its generalized susceptibility function by the Fo
rier transform of the phase relaxation function,

a~k,v!5m~k,v!. ~17!

We assume that the average shape of a spontaneous
tuation pulse is identical with the observed shape of an i
versible decay of the scattered field from subsiding tur
lence toward its zero equilibrium value. In this regard, pha
relaxation functionm(k,t) can be understood as the gene
alized susceptance of the system.

For stationary scattered fields and invoking the princi
of microscopic reversibility@7,8#, we obtain the spectral den
sity of the scattered field for an incident radiation at the wa
numberk/2 as@4#

c~k,v!5~2T/v!m9~k,v!. ~18!

The proof of the above relation employs certain theor
of random variables, which can be found in Ref.@4#.

C. On the role of initial phase-space diagrams

It is evident from the description of the phase-space d
sity distribution that if there is only a linear cluster of ele
trons and it spreads along its line, the phase-space diag
will want to expand along thex axis. But it will fail to do so
since any electron exiting at one end, e.g.,x52l/4, will
enter at the opposite end, e.g.,x51l/4. Since the total num-
ber of electrons will be preserved, the area under it mus
a constant. The final equilibrium state can be expressed
straight line. Suppose that an equilibrium phase-space
gram is perturbed such that an initial displacementr8(k,x)
from equilibrium occurs, starting at time zero:

r~k,x,t!5h1r8~k,x,t!, ~19!

whereh is the height of the equilibrium diagram. The sca
tered field is given by

F~k,t !5E
2`

`

dxeixr~k,x,t !5E
2`

`

dxeixr8~k,x,t !.

~20!

Now suppose that diffusion takes place. Can we find
changes to the scattered field normalized by its initial val

F~k,t!

F~k,0!
, ~21!
1-4
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PHASE DIFFUSION AND RANDOM WALK . . . PHYSICAL REVIEW E68, 021101 ~2003!
for t.0, if we know the precise stochastic behavior of t
scatterers? Not from this information alone, since diffusion
also controlled by the gradients of a phase-space diag
Therefore, we need a description ofr8(k,x,0) to find a sto-
chastic solution for the relaxation of the scattered field fr
its perturbed value. In this instance, we have no informat
about whatr8(k,x,0), onaverage, looks like for a turbulen
medium. Therefore, in the example in the following sectio
we will assume special forms for the initial displacement
the phase-space diagram and will continue our discussio
the basis of Levy random walk processes.

III. A STOCHASTIC DIFFUSION MODEL
AND CORRESPONDING SPECTRAL DENSITY

Phase diffusion and relaxation for several random w
models has recently been studied by Talkner@3#, including
processes with independent increments, self-similar p
cesses, and continuous time random walks. In this sec
we will discuss only Levy processes which might establis
good example for the use of phase diffusion in the interp
tation of steady-state turbulent or nonturbulent scatter
Again, the fundamental idea of this paper is the relation
tween the spectral density of the scattered field and the p
relaxation function. We are in no way committing ourselv
to turbulent or nonturbulent flow, since the discussion her
general and may be relevant to any statistical flow. Limi
tions of time and competence preclude a detailed discus
of alternative random walk schemes. Although the discuss
below on Levy processes closely follows that of Ref.@3#, we
find it extremely useful to include it in order to provide
self-consistent explanation of the ideas here.

Levy processes are a group of self-similar processes
a space and time evolution of a reference distribution i
scaling fashion. We do not know what kind of referen
phase-space density distribution would be appropriate,
matters at all, for our analysis~see section on initial phase
space distributions!. Once an initial distribution is chosen
the evolution of characteristic function depends on how t
initial distribution spreads in time. Since Levy processes
self-similar, the probability density function of this proce
varies in time as

r~x,lt !5l2a/2r~l2a/2x,t !, ~22!

wherel is redefined to be the scaling factor. Then, start
with a reference density functionr0(x,t0) at time t0 , the
density function at a later timet can be obtained by settin
l5t/t0 ,

r~x,t !5r0F S t0

t D a/2

xG S t0

t D a/2

. ~23!

Since the characteristic function,F(k,t), is the Fourier
transform ofr(x,t), rescaling thex variant of the density
function corresponds to rescaling thek domain in F(k,t).
Let F0(k,t0) be the characteristic function of reference d
tribution r0 at timet0 . Then, the phase relaxation function
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the scattered field from a medium in a state of subsid
turbulence can be obtained from the reference character
function as

m~k,t!5F0FkS t

t0
D a/2G . ~24!

For example, we take the case of symmetric Levy dis
butions with reference characteristic function

F0~k!5exp@2s0
gkg#, ~25!

wheres0.0 is a reference scale and the exponentg is re-
stricted to 0,g<2. Then, the phase relaxation function
obtained from Eq.~24! as

m~k,t!5expF2s0
gkgS t

t0
D gaG . ~26!

A requirement for a stationary process is thatga<2 for
0,g,1 anda<1 for 1<g<2 @3#. In the above equation
the choice fort0 is not clear but by no means determines t
exponent of the time delay and can be incorporated into
constants0 .

The generalized susceptance can now be obtained f
the phase relaxation function by a Fourier transform ope
tion, as in Eq.~10!. However, an analytical form ofm(k,v)
is not easy to obtain except in a case wherega51. Given
that the stochastic motion of particles in a statistical flow c
be described as a Levy process withga51, the generalized
susceptance can be obtained using Eq.~10! as

m~k,v!5
1

k2 iv
, ~27!

where the parameterk is defined as

k5
s0

gkg

t0
. ~28!

Finally, we can obtain the spectral density of the scatte
field fluctuations in light of the fluctuation-dissipation the
rem using Eq.~19!

c~k,v!5
2T

k21v2 . ~29!

The above form of spectral density is Lorentzian a
reminiscent of normal diffusion processes. While what m
ters most is the shape of the spectrum which is controlled
k, T on the right-hand side can be calculated by measu
the mean square of fluctuations and solving Eq.~12! for T.

The phase relaxation function may take a variety of for
from algebraic decay to exponential and to faster than ex
nential depending on the type of random walk process us
@3#. Accordingly, we anticipate a wide range of spectru
densities. A Gaussian form of spectral density that is co
monly used to interpret turbulent Doppler spectrum from
mospheric processes@9# would establish only a particula
1-5



s
re

st
fie
T
om
s
ti
la
lk

om
tio
m
la
ta
on
tu
th
vio
w

for
ctral
tral
as-

een
tate
be-
for
in-

tion
low
h
es,
s.
for
s of

.

by
-1-
ter-

BAHCIVAN, HYSELL, AND KELLEY PHYSICAL REVIEW E 68, 021101 ~2003!
case. We think that this wide class of random walk proces
and understanding what kind of statistical flow they rep
sent deserve a separate study.

IV. CONCLUSION

In this paper, we have investigated how the stocha
motion of one scatterer can be related to the scattered
spectra from a medium containing many such scatterers.
scatterers in the medium can be collapsed into a small c
pact volume, i.e., phase space, when the phase of each
terer is preserved. In this regard, we can release a collec
of scatterers in several reference configurations and calcu
the evolution of the scattered field for different random wa
schemes. The average regression of the scattered field fr
subsiding turbulent flow is described by the phase relaxa
function. For arbitrary perturbations to the equilibriu
phase-space diagram, the phase relaxation function is re
to the spectral density of the scattered field from steady-s
turbulent fluctuations under consideration of the fluctuati
dissipation theorem. For the Levy process example we s
ied, and for other random walk models recently studied,
phase relaxation function displays a wide range of beha
from algebraic decay to faster than exponential. While
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have obtained an analytical form of spectral density only
a particular case of the Levy process, we expect the spe
density to display a wide range of behavior. The spec
density is not necessarily Gaussian, although it is often
sumed to be this way by the research community.

In this paper we have formulated the connection betw
the spectral density of the scattered field from steady-s
statistical flows and the phase relaxation function. We
lieve this connection establishes a sound starting point
interpreting coherent backscatter spectra from refractive
dex fluctuations in a scattering medium. The phase relaxa
approach on the basis of several diffusion models may al
us to obtain adynamicalpicture of particle processes whic
would facilitate the study of other such dynamical process
including shear instabilities and mixing in turbulent flow
The ideas here can ultimately serve as the foundation
more comprehensive ones connecting the time signature
scattered fields to the physics of atmospheric processes
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