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Interrupted coarsening of anisotropic step meander
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2Groupe de Recherche sur les Phe´nomènes hors E´quilibre, LSP CNRS, UMR5588, Universite´ J. Fourier, Grenoble 1, Boıˆte Postale 87,
F38402 Saint Martin d’He`res, France

~Received 12 January 2003; published 11 August 2003!

We report on the effect of anisotropy on the step meandering instability on vicinal surfaces during molecular
beam epitaxy growth. A scenario of interrupted coarsening is found: the lateral length scale of the structure first
significantly increases with time and then freezes at a larger length scale. The wavelength selection mechanism
results from a nontrivial nonlinear effect of anisotropy. Anisotropy also leads to solutions which drift sideways,
resulting from the loss of the back-front symmetry of the meander and the nonvariational character of dynam-
ics.
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Due to its technological importance in the fabrication
controlled architectures, and as a fundamental problem in
science of nonlinear and irreversible processes, molec
beam epitaxy~MBE! has emerged as a paradigm for t
study of out-of equilibrium driven surfaces. One of the ce
tral questions is to build an effective continuum descript
from the knowledge of basic elementary physical proces

While continuum descriptions regarding growth on a hi
symmetry ~singular! surface are phenomenological, studi
on vicinal surfaces in the step flow regime have now star
to reach a mature level of description from microscopic c
siderations@1–4#. The first stage in studying vicinal surface
is to determine their step dynamics, from which the dyna
ics of the full surface can be obtained. Vicinal surfaces
known to suffer two types of instabilities: step bunching a
meandering. So far, meandering dynamics can be put
three important classes:~i! spatiotemporal chaos@1# in the
presence of atom desorption;~ii ! a singular behavior with a
meander amplitude growing with time asAt in the absence
of desorption, whereas the wavelength is frozen at the e
stage; and~iii ! a perpetual coarsening@5# if the elastic step-
step interaction is relevant. A major task is to answer whet
this classification is complete or rather are surface dynam
to reveal new dynamical classes.

We report on a different type of dynamics induced
crystalline anisotropy. We find, under various conditions,
following scenario. In contrast to the isotropic case, anis
ropy leads to an initial increase of the wavelength~coarsen-
ing!, until the wavelength has reached a certain value~which
can attain several times that of the linearly unstable mo!,
beyond which coarsening is interrupted. This scenario pl
an important role in the process by which the pattern wa
length is selected. We also discuss the possibility of soluti
drifting along the steps. The drift is induced by the lack
front-back symmetry of the step meander along with the n
variational character of dynamics. Our study is based o
continuum derivation of the steps of nonlinear evoluti
equations starting from microscopic considerations.

The surface is described by an ensemble of steps s
rated by terraces. Concentrationc of adatoms on each terrac
obeys the following quasistatic equation:
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D ¹2c1F50, ~1!

whereD is the adatoms diffusion constant andF the incom-
ing flux. We disregard desorption, and this is legitimate
most practical purposes.

To keep the analysis simple enough, we assume a st
Ehrlich-Schwoebel effect~there is no mass exchange b
tween layers! and an instantaneous attachment of adatom
the steps from the lower side. Then, the concentration fie
are subject to the following boundary conditions on bo
sides of the steps:

cu15ceq
0 ~11Gk!, Dn̂•“cu250, ~2!

wheren̂ is the normal to the step. Here,ceq
0 is the equilibrium

concentration in front of a straight step.G5Vg̃/kBT, where
g̃ is the step stiffness andk the local step curvature. The1
and2 signs refer to the ascending and the descending s
respectively. Finally, mass conservation at the step entails
following form for the normal step velocityvn :

vn5VDn̂•“cu11a]s@DL]s~Gk!#. ~3!

V is the atomic area,a the lattice constant,s the step arc
length, andDL is the macroscopic diffusion constant of a
oms along the step.

Anisotropy enters in general in the static and transp
coefficients~e.g., D, G, and DL). Let us first consider the
case whereG(u)5G0AG(u) and DL(u)5DL0AL(u). For
definiteness, we adopt a fourfold symmetry~any other sym-
metry can be dealt with along the same lines!:

AG,L~u!511eG,L cos@4~u2uG,L!#. ~4!

Here,u5arctan(]xz) is the angle of the local step’s norma
with respect to its average@z(x,t) refers to the instantaneou
step position#, eG,LP@0,1@ measures the strength of the a
isotropy, anduG,L denotes the angle along whichG or DL
has its largest value.

Our starting point is to perform the linear stability anal
sis of a uniform train with straight steps~separated by the
same distance,) moving altogether at constant speedVF,.
©2003 The American Physical Society01-1
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Steps are morphologically unstable against fluctuations w
wavelengths larger than a certain critical wavelengthlc @6#.
The most unstable mode is found to be in-phase meande
with wavelength

lm54pS G~0!@DS,1DL~0! a#

VF,2 D 1/2

, ~5!

whereDS5DVceq
0 and we havelc5lm /A2. We shall thus

restrict our attention to the in-phase mode, where all st
have the same meanderz(x,t). The model equations~1!–~4!
are expanded in terms of a small parameterj
5(2p,/lm)2. The linear stability analysis dictates the re
evant scalesx;j21/2 andt;j22. As in Refs.@3,4#, the scal-
ing of the meander is singularz;j21/2. Following Ref.@4#,
the multiscale expansion of the model equations~1!–~3! then
provides a highly nonlinear evolution equation forz(x,t):

] tz52]xFs0

]xz

11~]xz!2
2M0]x~Gk!G , ~6!

M05DS,~11~]xz!2!211DLa@11~]xz!2#21/2, ~7!

wheres05VF,2/2. This equation takes the form of a co
servation law] tz1]xJ50, whereJ can be regarded as
mass current along the step. Equation~6! assumes a simila
form as in the isotropic case@3#. However, we show here tha
anisotropy drastically affects dynamics.

In the idealized isotropic model@3,4#, the meandering
wavelengthlm is found to be selected at the early stage
the instability; it is not affected by the nonlinear dynamic
However, the amplitude grows indefinitely asAt. We shall
refer to this solution asdivergingsolutions. In Ref.@3#, such
a behavior has been traced back to the absence of st
states solutions for Eq.~6! with a wavelengthl>lc . In
contrast, it is found that anisotropy allows for a continuo
family of solutions withl.lc .

We first turn our attention to the situation where Eq.~6!
attains the (x)→(2x) symmetry. This happens foruG,L50
or p/4. For symmetry reasons, a vanishing lateral drift a
mass currentJ along the step are then expected for stea
solutions. These solutions are parametrized bym0
5max(m), where m5]xz/@11(]xz)2#1/25sinu. Using an
analogy to point mechanics in a one-dimensional poten
@4#, the wavelengthl0 of stationary solutions is found to b

l5
lm

2pE2m0

m0 AG~m!

@V~m0!2V~m!#1/2
dm, ~8!

where

V~m!5E
m0

m AG~m8!m8dm8

A12m82b̃1~12b̃ !AL~m8!
~9!

and b̃5DSl /(DSl 1DLa). Consider first an anisotropic lin
tension andDL50. WhenuG50, the analysis of the abov
equations reveals that the steady-state solutions posse
wavelength which decreases upon increasing the anisot
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strength, as shown in Fig. 1. Therefore, as in the isotro
case, steady-state solutions do not exist forl.lc .

However, ifuG5p/4, we discover a qualitative change o
the overall picture of steady-state solutions. More precis
the quantityd2l/dm0

2 evaluated atm050 becomes positive
for eG.0.068. This is a signature of a transition from
subcritical to a supercritical bifurcation~this defines the dy-
namical analog of the so-called Lifshitz point in phase tra
sition phenomena!. Due to the supercritical nature of the b
furcation, steady-state solutions should be stable with res
to amplitude fluctuations aroundm050. This stability was
checked numerically by direct integration of the evoluti
equation, Eq.~6!, with one cell in a periodic box of sizeLb .
The branch of steady states is stable up to the maximum
m̃,l̃. Close to the maximum the bifurcation is of saddl
node nature, implying that the decreasing part of the bra
at m0.m̃ is unstable. Beyond the maximum, we find ‘‘d
verging’’ solutions whose amplitudes increase indefinite
;t1/2 at large slopesm0→1. It is worthwhile to mention
here that the wavelength of these latter asymptotic soluti
can be arbitrarily large@7# @l.l(m051)#. This is solely
determined by initial conditions.

Consider now a situation where the box size is lar
enoughLb.lm ,l̃. Starting from small initial perturbations
we expect the step to exhibit first the linear fastest grow
mode with wavelengthlm . As shown in Fig. 1, two situa-
tions may then be encountered. If anisotropy is weak,eG

,eG
c 50.668 . . . , one hasl̃,lm . The meander amplitude

increases without bound. The wavelength is frozen and
amplitude grows asymptotically ast1/2. On further increase
of the anisotropy strength, and beyond a critical valueeG

.eG
c , one haslm,l̃. The meander amplitude first increas

in the course of time until it reaches a steady state atlm .
Then, the average wavelength of the cells increases via
coalescence. The process of coarsening is interrupted w
the average wavelength reachesl̃ ~actually for a finite box

FIG. 1. ~a! l as a function ofm0. Solid curves: no step edg
diffusion (DL50). Dashed curves: no detachment from steps (ceq

0

50) with isotropic G and anisotropicDL . In both cases, from
lower to upper curve:eG,L50.7 with uG,L50, eG,L50, andeG,L

50.7 with uG,L5p/4. ~b! The stable~solid line! and unstable
~dashed line! branches are shown. Small black arrows indicate
flow of the highest slope for one cell in a box with periodic boun
ary conditions. White arrows show the path of the average wa
length in an extended system.
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FIG. 2. A snapshot of the meanderz(x,t). We
show the case where steps are stabilized by
isotropic line diffusion, i.e.,ceq50, with eL

50.92 anduL5p/4 (l̃53.1lm.lm). The left
panel shows the meander at different times~am-
plitude rescaled for better visibility!. The right
panel shows the amplitude~solid line! and the
average wavelength~dashed! as a function of
time ~arbitrary units!.
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the chosen wavelength is slightly larger!. Once this stage is
reached, the amplitude of each cell grows as;t1/2, while
coarsening should stop. We expect thus the final wavelen
of the cells to be max(lm,l̃).

As shown in Fig. 1~a!, it is noteworthy that the sam
picture holds when allowance is made for line diffusion a
isotropy @9#, even if line tension is isotropic.

Simulations of Eq.~6! support this picture. In Fig. 2, we
show the meander evolution for a system having an ex
Lb515lm . The early emerging stage~with noisy initial con-
ditions! exhibit 16 cells. Later, a coarsening process ta
place, leading to the final expected number of int(Lb /l̃)
54 cells.

For eG,L→1, the following asymptotic behavior is ex
tracted from Eq.~8!:

l̃G,L5a
lm

~12eG,L!1/2
. ~10!
02060
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l̃G,L does not depend on the precise form of anisotropy~4!,
which only enters the prefactora. Using Eq.~4!, we find
aG50.564 whenDL50.

Hitherto, we have considered only the situation w
uL,G50,p/4. Since interrupted coarsening occurs foruL,G

5p/4 and not foruL,G50, we suspect the existence of
critical angle u* (e)P@0,p/4#, beyond which interrupted
coarsening is revealed. We have determinedu* (e) numeri-
cally. The results are plotted in Fig. 3.

Another important question concerns the possibility th
the pattern may drift sideways due to the lack of thex→
2x symmetry of Eq.~6!, a fact that occurs whenuL,G
Þ0,p/4. The numerical solution of Eq.~6! reveals no drift.
This is a priori surprising inasmuch as the evolution equ
tion is not symmetric. A close inspection of Eq.~6! reveals
that in the evolution equation foru5]xz, the (x)→(2x)
symmetry is reinstituted. This is a consequence of the
that Eq.~6! still possesses the simultaneous symmetry gro
th
g,
FIG. 3. The critical angleu* as a function of
e. Solid lines are forG and dashed lines forDL

anisotropy. IC and NC indicate the regions wi
interrupted coarsening and with no coarsenin
respectively. Right panel:Vd as a function of the
small parameterj. The solid lines are;j2.
1-3
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(x,z)→(2x,2z). Thus, the drift dilemma is resolved sinc
the symmetric solution should not naturally drift.

Drift occurs however when higher-order nonlinear con
butions are considered. Indeed, they destroy the ab
mentioned symmetry group. At higher order, the evolut
equation still has the same form as Eq.~6!, albeits0 andM0
must be substituted by s5s0$12k,@cos(u)21

12 cos(u)#/3% and M5M01k,2DS cos(u)/2. The numeri-
cal solution of this equation does indeed present drift
steady states. An expansion at smallj allows one to extract
the functional dependence of the drift velocity:

Vd5
b

23/2

~VF !2,5

G~0!@DS,1DL~0!a#
, ~11!

whereb depends on the anisotropy functionsAG , AL , and
on l. We haveb50 for m050 ~i.e., l5lc) and for m0
51 ~solutions with vertical slopes!. As shown in Fig. 3, Eq.
~11! was checked for smallj. Two remarks are in order
First, the interrupted coarsening scenario is qualitatively p
served in the presence of a drift. Second, in the pure ter
diffusion regime (DL50), not only doesVd vanish, but so
doesJ. This stems from the~accidental! variational character
of the evolution equation~6!. Indeed, Eq.~6! can be written
as] tz5]x@M]x(dF/dz)#, with

F5E dxFn2 z21g~11~]xz!2!1/2G , ~12!

where n5kBT(F,/2DS) and M5(V/kBT)DS,(1
1(]xz)2)21. F is a Lyapunov functional, which always de
creases with time:

d

dt
F5E dx] tz

d F
d z

52E dxMF]xS d F
d z D G2

<0. ~13!

For a drifting steady state, the meanderz(x,t) only depends
on the variablex85x2Vdt. The change of variablex→x8 in
Eq. ~12! then shows thatF is time independent~i.e., dF/dt
50). SinceM>0, one has either]x(dF/dz)50 or M50,
iti,

ev

ich
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from Eq. ~13!. Therefore,J5M]x(dF/dz)50, and from
Vd]xz5]xJ one also concludes thatVd50. Since subdomi-
nant terms break the variational character of Eq.~6!, they
restore nonvanishingJ andVd , as confirmed by the numeri
cal solution of Eq.~6! with subdominant terms.

In MBE experiments at moderate temperature, anisotr
is usually strong. Consider, for example, a square lattice w
nearest neighbor interactions. In the case of Cu~100! surface
at room temperature@10#, we find hG5G(10)/G(11);86
@11#. Although the angular dependence in real systems m
be different from Eq.~4! @12#, a qualitative comparison is
obtained by using the ratio of the largest on the smal
value of the stiffness needed to observe interrupted coar
ing with Eq. ~4!: hG

c 5(11eG
c )/(12eG

c )'5,hG . Further-
more, Liu and Evans@13# have shown from kinetic Monte
Carlo simulations, that, in the presence of a kink round
barrier,hL5DL(10)/DL(11);10.hL

c'2.13 ~calculated for
isotropicG). Therefore, both line stiffness and line diffusio
anisotropies should induce observable@14# interrupted coars-
ening for (11) steps@but probably not for (10) steps#.

In summary, interrupted coarsening occurs as a su
compromise between, on the one hand, the basic diffu
instability that tends to drive the meander towards an ind
nitely growing amplitude and, on the other hand, the anis
ropy effect which acts as a pinning force—of thermodynam
or kinetic origin—along preferred crystalline orientation
Surprisingly enough, the step temporal evolution see
to be linked with the structure of the steady-state bran
~as in Fig. 1! @15#.

Additional effects, such as a finite anisotropic Schwoe
effect, may be added to the model. Interrupted or end
coarsening are also obtained@9#, depending on the shape o
the steady-state branch. In a previous work@5#, it was shown
that step interactions induce endless coarsening. Sinc
leads to an infinite steady-state branch, the elastic interac
restores infinite coarsening in the presence of anisotropy@9#.
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