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Interrupted coarsening of anisotropic step meander
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We report on the effect of anisotropy on the step meandering instability on vicinal surfaces during molecular
beam epitaxy growth. A scenario of interrupted coarsening is found: the lateral length scale of the structure first
significantly increases with time and then freezes at a larger length scale. The wavelength selection mechanism
results from a nontrivial nonlinear effect of anisotropy. Anisotropy also leads to solutions which drift sideways,
resulting from the loss of the back-front symmetry of the meander and the nonvariational character of dynam-
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Due to its technological importance in the fabrication of DV2c+F=0, (1)

controlled architectures, and as a fundamental problem in the _ o _

science of nonlinear and irreversible processes, moleculavhereD is the adatoms diffusion constant aRdhe incom-

beam epitaxy(MBE) has emerged as a paradigm for theing flux. We disregard desorption, and this is legitimate for

study of out-of equilibrium driven surfaces. One of the cen-most practical purposes.

tral questions is to build an effective continuum description_ 10 keep the analysis simple enough, we assume a strong

from the knowledge of basic elementary physical processe&nrlich-Schwoebel effectthere is no mass exchange be-
While continuum descriptions regarding growth on a hightween layersand an mstanfcaneous attachment of ad.atoms to

symmetry (singulaj) surface are phenomenological, studiesthe steps from the lower side. Then, the concentration fields

on vicinal surfaces in the step flow regime have now started'© subject to the following boundary conditions on both

to reach a mature level of description from microscopic con—Sldes of the steps:

siderationg 1—4]. The first stage in studying vicinal surfaces
is to determine their step dynamics, from which the dynam-

ics of the full surface can be obtained. Vicinal surfaces are v oren is the normal to the step Heneg is the equilibrium
known to suffer two types of instabilities: step bunching and ' 9

meandering. So far, meandering dynamics can be put imgo_ncentratlon "_1 front of a straight step=( y/kgT, where
three important classe$i) spatiotemporal chaogl] in the 7 iS the step stiffness an the local step curvature. The
presence of atom desorptiofii) a singular behavior with a @nd — signs refer to the ascending and the descending step,
meander amplitude growing with time a& in the absence respectively. Finally, mass conservation at the step entails the

of desorption, whereas the wavelength is frozen at the earli?"owmg form for the normal step velocity,:
stage; andiii) a perpetual coarseniri§] if the elastic step- P
step interaction is relevant. A major task is to answer whether va=0DN- Vel +add D ay(I'x)]. @)

this classification is complete or rather are surface dynamicg, is the atomic areaa the lattice constants the step arc

to reveal new dynamical classes. o length, andD, is the macroscopic diffusion constant of at-
We report on a different type of dynamics induced by oms along the step.

crystalline anisotropy. We find, under various conditions, the  anisotropy enters in general in the static and transport

following scenario. In contrast to the isotropic case, anisotgoefficients(e.g.,D, I', andD,). Let us first consider the

ropy leads to an initial increase of the wavelengtbarsen- case wherel'(6) =T ,Ar(6) and D (6)=D ,A.(6). For

ing), Unti-l the WaVeI?ngth has reacheq a certain VMCh deﬁnitenESS, we adopt a fourfold Symmetmy other sym-
can attain several times that of the linearly unstable mode metry can be dealt with along the same lines

beyond which coarsening is interrupted. This scenario plays
an important role in the process by which the pattern wave- Ar(0)=1+¢€p cog4(0—6p )] (4)
length is selected. We also discuss the possibility of solutions
drifting along the steps. The drift is induced by the lack of Here, §=arctang,() is the angle of the local step’s normal
front-back symmetry of the step meander along with the nonwith respect to its averade(x,t) refers to the instantaneous
variational character of dynamics. Our study is based on atep positiof, er | €[0,1] measures the strength of the an-
continuum derivation of the steps of nonlinear evolutionisotropy, andé; | denotes the angle along whid¢h or D
equations starting from microscopic considerations. has its largest value.

The surface is described by an ensemble of steps sepa- Our starting point is to perform the linear stability analy-
rated by terraces. Concentratiof adatoms on each terrace sis of a uniform train with straight stegseparated by the
obeys the following quasistatic equation: same distancé) moving altogether at constant spe@é ¢ .

cly=cg(1+T'x), Dn-Vc|_=0, 2
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Steps are morphologically unstable against fluctuations with (a) A (b)
wavelengths larger than a certain critical wavelength6]. e, ) '
The most unstable mode is found to be in-phase meanderini [ N B O e
with wavelength / } _ H
Ve AT i
r(0)[Ds(+D(0)a]} " < N
Am=4m , (5) = ey
QF¢2 A
o5 )\b __/
whereDs=Dcg, and we have\.=\,/2. We shall thus
restrict our attention to the in-phase mode, where all steps m,
have the same meandgix,t). The model equationd)—(4) %o ez s s s 0 a 1

are expanded in terms of a small parametér
=(2m€/Ny)?. The linear stability analysis dictates the rel-
evant scales~ ¢~ Y2 andt~ ¢ 2. As in Refs[3,4], the scal-
ing of the meander is singuldr ¢~ 2. Following Ref.[4],
the multiscale expansion of the model equatiths-(3) then
provides a highly nonlinear evolution equation #x,t):

FIG. 1. (8 A as a function ofmy. Solid curves: no step edge
diffusion (D, =0). Dashed curves: no detachment from steq:gg (
=0) with isotropicI" and anisotropicD, . In both cases, from
lower to upper curveer | =0.7 with 6r | =0, er =0, ander
=0.7 with 0r  =m/4. (b) The stable(solid line) and unstable
(dashed ling branches are shown. Small black arrows indicate the
flow of the highest slope for one cell in a box with periodic bound-
ary conditions. White arrows show the path of the average wave-
length in an extended system.

Ix{

T 007 ©

hg=—0x —Modx(I'k) |,

Mo=Dsl(1+(3,{)*)"*+Dia[1+ (6?1 (D)
whereo,=QF¢?/2. This equation takes the form of a con-
servation lawd,{+ d,J=0, whereJ can be regarded as a
mass current along the step. Equatiéh assumes a similar
form as in the isotropic cag&]. However, we show here that
anisotropy drastically affects dynamics.

In the idealized isotropic moddl3,4], the meandering
wavelength\ ,, is found to be selected at the early stage of
the instability; it is not affected by the nonlinear dynamics.
However, the amplitude grows indefinitely . We shall

strength, as shown in Fig. 1. Therefore, as in the isotropic
case, steady-state solutions do not existNor\ ;.

However, if 0= /4, we discover a qualitative change of
the overall picture of steady-state solutions. More precisely,
the quantitydz)\/dmé evaluated amy=0 becomes positive
for e>0.068. This is a signature of a transition from a
subcritical to a supercritical bifurcatiofthis defines the dy-
namical analog of the so-called Lifshitz point in phase tran-
sition phenomena Due to the supercritical nature of the bi-
furcation, steady-state solutions should be stable with respect
to amplitude fluctuations arounmy=0. This stability was

refer to this solution adivergingsolutions. In Ref[3], such

a behavior has been traced back to the absence of steag

states solutions for Eq6) with a wavelengthh=\.. In
contrast, it is found that anisotropy allows for a continuou
family of solutions with\ >\ .

checked numerically by direct integration of the evolution
Yuation, Eq(6), with one cell in a periodic box of size, .
The branch of steady states is stable up to the maximum at

S~ ~

m,\. Close to the maximum the bifurcation is of saddle-

We first turn our attention to the situation where 8. node nature, implying that the decreasing part of the branch

attains the X)— (—x) symmetry. This happens fat, =0 &t Mg>m is unstable. Beyond the maximum, we find “di-
or w/4. For symmetry reasons, a vanishing lateral drift and’er%”g" solutions whose amplitudes increase indefinitely
mass current along the step are then expected for steady™t"" at large slopesn,—1. It is worthwhile to mention
solutions. These solutions are parametrized by, nere that the wavelength of these latter asymptotic solutions
=max(m), where m=4,¢/[1+(8,£)2]¥?=sin6. Using an Can be arbitrarily largg7] [A>N(mg=1)]. This is solely
analogy to point mechanics in a one-dimensional potentiafietermined by initial conditions. o
[4], the wavelength, of stationary solutions is found to be ~ Consider now a situation where the box size is large
enoughL,>\,,\. Starting from small initial perturbations,
Nm we expect the step to exhibit first the linear fastest growing

Mo

Ar(m)

T on g [V(mo)—V(m)]l’de’ tS) mode with wavelength\ ,,. As shown in_ Fig. 1, t\_/vo situa-
tions may then be encountered. If anisotropy is wegk,
where <€r=0.668..., one hasx<\,,. The meander amplitude
increases without bound. The wavelength is frozen and the
V(m)= m Ar(m’ )m’dm’ ) amplitude grows asymptotically a&2. On further increase

mo V1—m'ZB+(1—B)A(M') of tche anisotropy ftrength, and beyono! a crljucal- vadye
> e, one has\,<\. The meander amplitude first increases

andB=Dgl/(Dgl +D a). Consider first an anisotropic line in the course of time until it reaches a steady stata @t
tension andD, =0. When#-=0, the analysis of the above Then, the average wavelength of the cells increases via cell

equations reveals that the steady-state solutions possesg@alescence. The process of coarsening is interrupted when
wavelength which decreases upon increasing the anisotrofifie average wavelength reachegactually for a finite box
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FIG. 2. A snapshot of the meandgx,t). We
show the case where steps are stabilized by an-
isotropic line diffusion, i.e.,ceq=0, with €
=0.92 andf =7/4 (\=3.]\n>\,,). The left
panel shows the meander at different tinjes-
plitude rescaled for better visibility The right
panel shows the amplitudeolid line) and the
average wavelengtlidashedl as a function of
time (arbitrary units.

the chosen wavelength is slightly largge®nce this stage is ¥
reached, the amplitude of each cell grows-as"?, while
coarsening should stop. We expect thus the final wavelengt

100

125

of the cells to be max(;,X).

As shown in Fig. 1a), it is noteworthy that the same
picture holds when allowance is made for line diffusion an-

0

10 10

isotropy[9], even if line tension is isotropic.

Simulations of Eq(6) support this picture. In Fig. 2, we

10>
t

10° 10

Ar | does not depend on the precise form of anisotr@py
Which only enters the prefactar. Using Eq.(4), we find
ar=0.564 whenD| =0.

Hitherto, we have considered only the situation with
6. r=0,m/4. Since interrupted coarsening occurs #ry
=m/4 and not ford =0, we suspect the existence of a
critical angle 6* (¢) e[0,7#/4], beyond which interrupted

show the meander evolution for a system having an extenfo2rsening 1s revealed. We have determiside) numeri-

L,=15\,. The early emerging stagwith noisy initial con-
ditions) exhibit 16 cells. Later, a coarsening process takes

place, leading to the final expected number of llrgt/(X)

=4 cells.

For er  —1, the following asymptotic behavior is ex-

tracted from Eq(8):

Ap =

Am

08

&

0"/(m/4)

0.6 N C

P I R
0.5 0

a————.
(1- GF,L)lIZ

0

(10

cally. The results are plotted in Fig. 3.

Another important question concerns the possibility that
the pattern may drift sideways due to the lack of the

—x symmetry of Eq.(6), a fact that occurs whem,
#0,7/4. The numerical solution of Eq6) reveals no drift.
This is a priori surprising inasmuch as the evolution equa-
tion is not symmetric. A close inspection of E@) reveals
that in the evolution equation fan=4,¢, the X)—(—Xx)
symmetry is reinstituted. This is a consequence of the fact
that Eq.(6) still possesses the simultaneous symmetry group

10 T

107

FIG. 3. The critical angl&g* as a function of
e. Solid lines are fol" and dashed lines fdD_
anisotropy. IC and NC indicate the regions with
interrupted coarsening and with no coarsening,
respectively. Right panel/ as a function of the
small parametet. The solid lines are- £2.
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(x,0) —(—x%,— ). Thus, the drift dilemma is resolved since from Eq. (13). Therefore,J=Md,(6F/ 5{)=0, and from

the symmetric solution should not naturally drift. V4dy{=dyJ one also concludes thaty;=0. Since subdomi-
Drift occurs however when higher-order nonlinear contri-nant terms break the variational character of Ej, they

butions are considered. Indeed, they destroy the abovéestore nonvanishingandVy, as confirmed by the numeri-

mentioned symmetry group. At higher order, the evolutioncal solution of Eq(6) with subdominant terms. _

equation still has the same form as ), albeitoy andM, N MBE experiments at moderate temperature, anisotropy

must be substituted by o=co{l-«€[cos@)l IS usually strong. Consider, for example, a square lattice with

+2c0s@))/3} and M= M,+ k€2Dg cos@)/2. The numeri- nearest neighbor interactions. In the case of100) surface

cal solution of this equation does indeed present driftingt "00mM temperaturg10], we find 7 =I'(10)/T"(11)~86

steady states. An expansion at smaillows one to extract L1 Although the angular dependence in real systems may

: : L be different from Eq.4) [12], a qualitative comparison is
the functional dependence of the drift velocity: obtained by using the ratio of the largest on the smallest

QF)2¢5 value of the stiffness needed to observe interrupted coarsen-
=P (QF) (11 ing with Eq. (4): 7f=(1+e%)/(1—e?)~5<7. Further-
232T'(0)[Dst +D(0)a]’ more, Liu and Evan$13] have shown from kinetic Monte
Carlo simulations, that, in the presence of a kink rounding
where 8 depends on the anisotropy functioAs, A, , and barrier, ». =D (10)/D(11)~ 10> 5 ~2.13 (calculated for
on A. We haveB=0 for my=0 (i.e., A\=\.) and formg isotropicI’). Therefore, both line stiffness and line diffusion
=1 (solutions with vertical slopgsAs shown in Fig. 3, Eq. an!sotropies should induce observaldld] interrupted coars-
(11) was checked for smalf. Two remarks are in order. ening for (11) stepgbut probably not for (10) steps
First, the interrupted coarsening scenario is qualitatively pre- [N summary, interrupted coarsening occurs as a.sub.tle
served in the presence of a drift. Second, in the pure terracgmpromise between, on the one hand, the basic diffusive
of the evolution equatiof6). Indeed, Eq(6) can be written ~ FopY effect which acts as a pinning force—of thermodynamic
to be linked with the structure of the steady-state branch
where  v=KkgT(F€/2Dg) and  M=(Q/ksT)Dsl(1 effect, may be added to the model. Interrupted or endless
that step interactions induce endless coarsening. Since it

diffusion regime D, =0), not only doesV4 vanish, but so instability that tends to drive the meander towards an indefi-
as 9, = d[ M dy(8F1 87)], with or kinetic origin—along preferred crystalline orientations.
g§2+ 7(1+(6x§)2)1’2}, (12 (asin Fig. 2 [15].
+(4,0)2) L. Fis a Lyapunov functional, which always de- coarsening are also obtaing®l], depending on the shape of
; ( 5]:) r<0 leads to an infinite steady-state branch, the elastic interaction
x5 =Y.

doesJ. This stems from théaccidental variational character Nitely growing amplitude and, on the other hand, the anisot-
Surprisingly enough, the step temporal evolution seems
F= f dx
Additional effects, such as a finite anisotropic Schwoebel
creases with time: the steady-state branch. In a previous wdk it was shown
(13)  restores infinite coarsening in the presence of anisoti®py

d F= f d o7 _ J dxM
m = X(?tga—g = — X
This work was supported by the German-French coopera-
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