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Smooth-particle boundary conditions
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We study the relative usefulness of static and dynamic boundary conditions as a function of system dimen-
sionality. In one space dimensiaitynamicboundaries, with the temperatures and velocities of external mirror-
image boundary particles linked directly to temperatures and velocities of interior particles, perform qualita-
tively better than the simplestaticmirror-image boundary condition witfixed boundary temperatures and
velocities. In one space dimension, the Euler-Maclaurin sum formula shows that heat-flux errors with dynamic
temperature boundaries vary bBs*, whereh is the range of the smooth-particle weight functiegr <h).
Geometric effects(lack of a simple sum formujafrustrate a corresponding exact analysis in higher-
dimensional problems. We illustrate all of these ideas here for the two-dimensional RayleigidBiew.
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I. SMOOTH-PARTICLE SIMULATIONS

look very much similar to the motion equations of molecular
dynamicg 3,4], but involve the individual particle stress ten-

Lucy and Monaghan discovered the smooth-particle techsors{o} in place of the more usual interatomic forces. By

nique for solving continuum problems in 197Z,2]. Their

using this approach one can solve complex continuum prob-

idea was to compute continuum averages of particle propetems with a simple particle technique.

ties according to a weight functiow(r <h) which is nor-
malized (spatial integral of unity and has a finite rangh.
Any continuum propertyC(r) is an average of nearby par-
ticle values:

C(r)EZ Cjw(r—rj)/ 2 w(r—rj).

Likewise, the mass density at any point in spae) is the
sum of contributions from all nearby particlgparticles
within a distanceh):

p(r)=mX, w(r—r;),

where each of the particles has a masgdistributed in space
according to the weight functiow. These averaging ideas,
applied to thepartial differential equations of continuum me-
chanics, lead directly to sets ofdinary differential equa-

tions for the time developmetit =v,v,e} of all the particle
coordinates, velocities, and energigsv,e}. The smooth-
particle equations of motion,

(o
?

|bi=m2 = ‘ViW(rij)],
j . \p

i

Many of the early applications were devoted to astro-
physical problems in which boundary conditions were not
important. But continuum problems involving surfaces—
penetration, fracture, or heat transfer, for example—require
algorithmic implementations of realistic boundary condi-
tions. A simple problem, the formation of convective rolls
due to a temperature gradient in a gravitational fiélk
“Rayleigh-Benard” problem), is prototypical. Temperature
and velocity have specified boundary values on a box con-
taining the fluid under investigation. A “good” boundary al-
gorithm is the one that minimizes the dependence of the
results on the number of degrees of freedom used to describe
the problem.

We noticed that a simple averaging technique could be
applied to smooth-particle simulations, sometimes with rela-
tively small errors(of the order ofh™4). It turned out to be
possible to demonstrate this result analytically in one dimen-
sion. We explain this in the following section. Our further
investigations of this idea established that boundary effects
are larger, and more complicated, in two space dimensions.
This Brief Report summarizes our findings.

II. HEAT TRANSFER IN ONE DIMENSION

The simplest boundary-driven problem is heat transfer be-
tween a hot and a cold reservoir. For equally spaced particles
with a constant temperature gradient and a constant thermal
diffusivity, the simplest versions of the corresponding
smooth-particle equations afg|
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This Rayleigh-Beard problem is described in the following

. dw;
[Ti“—; [Qi+Qj]lei]]; section.

Ill. THE RAYLEIGH-BE NARD PROBLEM

dWij
Qo+ [(Ti=Til g% [ o o -
j i In our prior investigations of the Rayleigh-Bard prob-
lem [7,8] using smooth particles we used external mirror-
where T is temperature an@ is heat flux. The sums and jmage particles at the system boundaries, giving each mirror
differences on the right-hand sides of these relations guaramarticle the temperatureT(, or T¢) and velocity ¢ =0) as-
tee two desirable properties of their solutidi: energy is  sociated with the nearby boundary. This approach leads to
conserved exactly an@) the heat flux vanishes when all the flow fields agreeing with accurate continuum solutions
particle temperatures are identical. within a few percent when the number of particles used is a
Provided that the rangé of the weight functionw(r  few thousand. This “static mirror’(with static indicating
<h) is sufficiently large, a constant temperature gradienfixed values of temperature and velogity illustrated in the
should lead to the heat flux from Fourier’s l&d= —«VT.  middle of Fig. 1, and is evidently an improvement over using
We arbitrarily choose the proportionality constants equal tdfixed particles to form a boundary layer. The fixed-particle
unity. We further choose the particle temperatures to correapproach appears at the top of the figure. In two dimensions,
spond to unit temperature gradiefT,(x)=x}, so that unit e typically set the mass and distance scales by choosing
thermal diffusivity should give a large-imiting heat flux of particle masses of unity and a mass density of unity. For
—1. We use a nearest-neighbor particle spacing of unity injetails, see Ref§7,8].
the one-dimensional problem, which sets the distance scale. Our experience with the one-dimensional heat flow of
With unit temperature gradient the temperatures of boundargec. Il suggested that we instead use dynamic-mirror-image
particles “outside” the system take on integer values withtemperatures and velocities which provide the correct tem-
T,=Tn_1+1. Anumerical evaluation of the heat flux using perature and velocitpn the boundary:
the one-dimensional form of Lucy’s weight function

(T, 0) mirror ™ (T, 0 interio™ 2(Tvv)boundary-
W

~ T 5 ~ ~
r=—<1):—(l—r)3(1+3r), _ _ .
h 4h These choices for the mirror properties ensure that the tem-
] perature and velocity on the boundary have their prescribed
gives the results values. This choice for the temperature also implies that the

15 80 255 heat fluxes parallel and perpendicular to the boundary satisfy

SE— E—— == the two relations
Qh:2 16’ Qh:3 81’ Qh:4 256
H . —+ ” : EO' L =0L. . .
for weight-function ranges of 2,3, and 4. This suggests the Quiror ™ Qimerio=03 - Qumiror= Qinteror

exact result The dynamic mirror approach is illustrated at the bottom of

_ "y Fig. 1.
Q(hy=-1+h" gIn the Rayleigh-Beard problem, convective rolls are
In fact, this surprisingly simple result can be derived fromdriven by applying a temperature gradient across an enclosed
the Euler-Maclaurin sum formulgs], which relates the sum SyStém in the presence of a gravitational field. A snapshot of
over particles to an integral plus Bernoulli-number correc-& Smooth-particle simulation, using 5000 particles and

tions Cgy involving the derivatives of the integrand at the LUCY'S Weight function, appears in Fig. 2. Numerical imple-
integration end points: mentations of(i) static and(ii) dynamic-mirror boundary

conditions do lead to significantly different results. See Fig.

+h 3. But the difference, illustrated here for the total kinetic
> XW'=f XW' dx+Cgy=—1+h"" energy of the flow field as it approaches the steady-state
~h value, is small with respect to the deviation from an accurate

The polynomial form of the weight function guarantees thatcontmuum simulation based on a converged square grid. See

only a finite numbexexactly one i this casaf Bernouli- ag?/{/ré Tgﬁgtjgret?ﬁagc;rr?epzrrlzfngtic improvement in conver-
number corrections to the integral contribute to the sum of . . : pro :

: . rgence found in one dimension has no simple analog in two
heat fluxes. This very favorable convergence of the parUch

sum to the continuum flux suggests trying the same techoPace dimensions. We confirmed this conclusion numerically

nigue in two and three space dimensions. We studied next ?é)riuf(glggcz%ﬁa%?qglrftgfatﬁzt f:g\éjviérr]]tt\,\(;iﬁpabcoetr?I;n?gre
two-dimensional problem, using the two-dimensional formand triangular lattices ofpfixed a?ticles l:;ut Wi'?h d nan?ic-
of Lucy’s weight function 9 P ’ y

mirror temperatures. Although convergence to the continuum

limit occurs smoothly and stably in either case, there is no

w(?= r 1) - i(l_}')s(lJrgr‘)_ simple power law dependence of heat flux on the gradient.
h h? Oscillations(as a function oh) above and below the correct
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FIG. 2. The Rayleigh-Beard flow for 5000 smooth particles.
The simulation corresponds to the exterior static-boundary mirrors
(above though an illustration with exterior dynamic-boundary mir-
rors (below) looks almost the same. The aspect ratio of the syatem
is 2. For details, see Ref7].

rather than just the two given by Lucy’s form, made no
qualitative change to these results.

IV. CONCLUSIONS

Despite the advantages of the dynamic-mirror boundaries,
the deviations of fluid flow fields in two dimensions are not
significantly improved over those obtained by using static-
mirror boundary conditions. Our investigation of simple
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FIG. 1. Three types of smooth-particle boundary conditions. At
the top the boundary particles are fixed, as are also their tempera-
tures and velocities. In the middle static view, the moving mirror
exterior particles have temperatures and velocities corresponding to
fixed boundary values. In the bottom dynamic view, the moving
mirror exterior particles have instantaneous temperatures and ve-
locities, providing correct averages when combined with corre-
sponding interior particles.
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continuum result can be observed. We checked that a Weiggt

function with three vanishing derivatives dt,

(N r 1) L A-T)¥1+47)
wir=-< =——(1-r r),
h 2D wh?

FIG. 3. Time history of the kinetic energy for a RayleighrBed

ow. The solid line is an accurate grid-based solution of the con-
tinuum equations of motion. The dashed and dotted lines corre-
spond to the exterior static-boundary mirror particles and the exte-
rior dynamic-boundary mirror particles described in the text.
Reduced units for kinetic energy and time are used, as is explained
in Refs.[7,8].
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