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Periodic solutions for systems of coupled nonlinear Schro¨dinger equations
with three and four components
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Periodic solutions for systems of coupled nonlinear Schro¨dinger equations~CNLS! are established by the
Hirota bilinear method and elliptic functions. The interesting feature is the choice of theta functions in the
formulation. The sum of moduli of the components or the total intensity of the beam in physical terms, will
now be a rational function, instead of a polynomial, of elliptic functions. Each component of the CNLS may
have multiple peaks within one period.
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Systems of coupled nonlinear Schro¨dinger equations
~CNLS! arise in various fields of applications, e.g., hydrod
namics and optics@1#. In the present work, we conside
CNLS of the form

i
]cn

]t
1«n

]2cn

]x2 1S (
m51

N

bmncmcm* Dcn50,

n51,2, . . . ,N. ~1!

The focus here will be on periodic waves. Periodic wav
for the single-component regime, or theN51 case of Eq.~1!
have, in fact, been studied intensively earlier. By employ
special transformations, elegant, exact solutions of the o
nary, uncoupled nonlinear Schro¨dinger equation have bee
derived@2–4#. These expressions can describe periodic w
trains, as well as wave patterns generated by modulati
instability, periodic evolution of bright solitons on a contin
ous wave background, and in a special regime, collision
dark solitary waves.

Let us now turn our attention to the fully coupled syste
Eq. ~1! ~N greater than 1!. Analytical solutions of Eq.~1! as
single or products of Jacobi elliptic functions have been
rived earlier in the literature for both the regimes of anom
lous and normal dispersion,«n511 or 21, respectively, and
all interaction coefficientsbmn being11. These explicit ex-
act solutions in terms of products of Jacobi elliptic functio
are available for CNLS systems ranging from two to s
components@5–9#. In fact, a general algorithm based on
ansatz of Lame` functions has been formulated. Physic
properties of the waves, e.g., the frequency and the w
number, can be solved as a system of algebraic equat
Reductions to the known solutions can be established
rectly for a small number of components@10,11#. Recently,
the case ofbmn being allowed to be both positive and neg
tive has been considered@12,13#. The Lame` and elliptic
functions are shown to be applicable as well. The eigenva
spectrum and Ba¨cklund transformation of Eq.~1! have been
derived@14#, and thus such CNLS systems are of fundam
tal theoretical interest.
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In hydrodynamics, CNLS systems arise in the propagat
of surface and internal wave packets@15#. The induced mean
flow must be computed before the coefficient of the cu
nonlinearity for each waveguide is established. This mec
nism will provide the coupling. From the perspective of o
tics CNLS models are relevant in the propagation of mu
mode, incoherent, spatial solitons in noninstantaneous K
media, where diffraction and light-induced waveguiding e
fects are in balance. In one theoretical model, the total int
sity is the superposition of the contributions from all th
relevant modes in the nonlinear waveguide. Analytically,
self- and cross-phase nonlinearities are replaced by a li
term. When this term is the square of a hyperbolic secan
square of a Jacobi elliptic dn function, calculations ha
been performed@16,17#.

The Hirota form has been proven to be effective in o
taining solitary and periodic waves for evolution equation
and will be employed here. The goal of the present work is
derive some further solutions of CNLS systems using a
ferent choice of theta functions in the bilinear formulatio
Details of the calculations are similar to earlier works@9,18#
and will be omitted. Basically, for each component, a sin
trilinear equation is considered instead of two uncoupled
linear equations. A proper ansatz of theta functions is
sumed and the Hirota derivatives are handled by identitie
theta functions. An interesting feature here is the choice
theta functions in the bilinear formulation. This results
solutions in terms of rational functions, instead of just po
nomials, of Jacobi elliptic functions.

CNLS of three components. Expressions and definitions o
elliptic and theta functions can be found in the literatu
@19,20,9#. The Hirota forms of the solutions in terms of the
functions are

g15A1@c1u4
2~ax!2u3

2~ax!#u1~ax!,
~2!

g25A2@c2u4
2~ax!2u3

2~ax!#u2~ax!,

g35A3u3
3~ax!, f 5u3~ax!u4

2~ax!,
~3!

cm5
gm exp~2 iVmt !

f
, m51,2,3.
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The choice here is to allow for different theta functions inf
rather thanu4 alone. These solutions of the CNLS system a
more compact in terms of the Jacobi elliptic functions:

c15A1Ak~12k2!1/4Fc12
dn2~rx !

~12k2!1/2G sn~rx !exp~2 iV1t !

dn~rx !
,

~4!

c25A2AkFc22
dn2~rx !

~12k2!1/2G cn~rx !exp~2 iV2t !

dn~rx !
, ~5!

c35
A3 dn2~rx !exp~2 iV3t !

~12k2!1/2 . ~6!

c1 is a root of

3c222cA12k22150

andc2 is a root of

3c22
2c

A12k2
2150.

In contrast to the previous studies@18,9#, the present
choice of theta functions forf @Eq. ~3!# allows a one-
parameter family of solutions in the amplitudes. More p
cisely, there are onlytwo equations constraining the thre
unknownsA1 , A2 , A3 ,

c1
2A1

22c2
2A12k2A2

252r 2kA12k2,

A12k2A1
22A2

25kA3
2.

The sum of intensities, which is related to the refractive
dex, is

(
m51

3

cmcm* 5
2r 2~12k2!

dn2~rx !
1B116r 2 dn2~rx !, ~7!

B15
c2~2A12k21c2!A2

2

k
2

c1~21c1A12k2!A1
2

k
. ~8!

The angular frequencies are

V156c1r 2A12k22r 2~524k2!2B1 ,

V256c2r 2A12k22r 2~52k2!2B1 ,

V3524r 2~22k2!2B1 .

The long wave limit (k→1) produces, not surprisingly, sol
tary waves

c15b1 tanrx sechrx exp@ i ~B101r 2!t#, ~9!

c25b2S 2

3
2sech2 rx Dexp~ iB10t !, ~10!

c35b3 sech2 rx exp@ i ~B1014r 2!t#, ~11!
01760
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3
b2

216r 2, b3
25

b2
2

3
16r 2, b2 arbitrary,

B105
4b2

2

9
.

(B10 is the long wave limit ofB1 .) The remarkable point is
that one of the components@Eq. ~10!# is a dark solitary wave,
even though Eq.~1! is in the anomalous dispersion regim
This solution is consistent with that found in Ref.@13#. The
reasoning is that in the long wave limit (k→1), Eq. ~7!
reduces to a polynomial again (dnz→sechz,k→1).

CNLS of four components. Similarly a solution for the
case of four components is

g15A1@c1u4
4~ax!2d1u3

2~ax!u4
2~ax!2u3

4~ax!#,

g25A2@c2u4
4~ax!2d2u3

2~ax!u4
2~ax!2u3

4~ax!#,

g35A3@c3u4
2~ax!2u3

2~ax!#u1~ax!u2~ax!,

g45A4@c4u4
2~ax!2u3

2~ax!#u1~ax!u2~ax!,

f 5u3~ax!u4
3~ax!, cm5

gm exp~2 iVmt !

f
,

m51,2,3,4.

Similarly to the previous case, the four amplitude parame
are determined from thethreeconstraints

A1
21A2

22
A12k2~A3

21A4
2!

k2 50,

2d1A1
212d2A2

21F2~11c3A12k2!

k2 21GA3
2

1F2~11c4A12k2!

k2 21GA4
250,

c1
2A1

21c2
2A2

22
c3

2A12k2A3
2

k2 2
c4

2A12k2A4
2

k2 52r 2A12k2,

with auxiliary constants defined below. This is thus a on
parameter family of solutions. The constantB2 given by

B2522c1d1A1
222c2d2A2

21@c3
2~22k2!12c3A12k2#

A3
2

k2

1@c4
2~22k2!12c4A12k2#

A4
2

k2 ~12!

will be related to the total intensity or ‘‘refractive index
through

(
m51

4

cmcm* 5
2r 2~12k2!

dn2~rx !
1B2112r 2 dn2~rx !. ~13!
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This form of the intensity is different from the cases stud
earlier in the literature@16,17#. In terms of the Jacobi elliptic
functions the components are, forn51,2,

cn5AnFcn2
dn dn2~rx !

~12k2!1/2

2
dn4~rx !

12k2 G ~12k2!1/4exp~2 iVnt !

dn~rx !
. ~14!

cn anddn , n51,2 are related by

cn52
dn

5dn14~A12k211/A12k2!
,

wheredn is selected from the roots of

FIG. 1. Square of the modulus of the amplitudeuc1u2 versus the
coordinatex, Eq. ~14!, k50.98,d1524.63,c1522.06, r 51.

FIG. 2. Square of the modulus of the amplitudeuc2u2 versus the
coordinatex, Eq. ~14!, k50.98,d2520.099,c250.004 88,r 51.
01760
25d3140S A12k21
1

A12k2D d21
4~17217k214k4!d

12k2

18S A12k21
1

A12k2D 50.

The angular frequenciesVn are

Vn52B229r 2~22k2!210dnr 2A12k2, n51,2.

The other components,n53,4, are

cn5AnkS cn2
dn2~rx !

~12k2!1/2D sn~rx !cn~rx !exp~2 iVnt !

dn~rx !
,

~15!

wherecn are roots of

5c222S A12k21
1

A12k2D c2150,

FIG. 3. Square of the modulus of the amplitudeuc3u2 versus the
coordinatex, Eq. ~15!, k50.98,c352.18, r 51.

FIG. 4. Square of the modulus of the amplitudeuc4u2 versus the
coordinatex, Eq. ~15!, k50.98,c4520.092,r 51.
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and the angular frequenciesVn are

Vn52B2110cnr 2A12k224r 2~22k2!, n53,4.

Graphs for the square of the moduliucnu2, n51,2,3,4 are
shown in Figs. 1–4, where, in general, multiple peaks oc
within one period. The long wave limits can be taken, a
solitary waves will result. Details will be similar to the cas
of three components and earlier works in the literat
@18,9#, and hence will be omitted.

In conclusions, periodic waves for CNLS systems w
three or four components are established by a differ
choice of theta functions in the bilinear formulation. Besid
the theoretical importance in the context of evolution eq
s.
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tions, such CNLS waves are relevant in fluids with multip
layers. The physical significance in optics hinges on the f
that the total intensity of the beam is a more complica
function than cases treated earlier in the literature@16,17,21#.
In consideration of self-trapping of mutually incohere
wave packets in photorefractive media, the total intensity
critical factor in the response of the system@16,17#. This type
of total intensity for the solutions here, Eqs.~7! and ~13!,
permits two different local maxima per period, and thus e
hances our capability in modeling wave dynamics in phys
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