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Periodic solutions for systems of coupled nonlinear Schiinger equations
with three and four components
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Periodic solutions for systems of coupled nonlinear Sdimger equation§CNLS) are established by the
Hirota bilinear method and elliptic functions. The interesting feature is the choice of theta functions in the
formulation. The sum of moduli of the components or the total intensity of the beam in physical terms, will
now be a rational function, instead of a polynomial, of elliptic functions. Each component of the CNLS may
have multiple peaks within one period.
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Systems of coupled nonlinear ScHiager equations In hydrodynamics, CNLS systems arise in the propagation
(CNLS) arise in various fields of applications, e.g., hydrody-of surface and internal wave packgt$|. The induced mean
namics and opticg1l]. In the present work, we consider flow must be computed before the coefficient of the cubic
CNLS of the form nonlinearity for each waveguide is established. This mecha-
nism will provide the coupling. From the perspective of op-
tics CNLS models are relevant in the propagation of multi-
mode, incoherent, spatial solitons in noninstantaneous Kerr
media, where diffraction and light-induced waveguiding ef-
fects are in balance. In one theoretical model, the total inten-

n=12,...N. (1)  sity is the superposition of the contributions from all the
relevant modes in the nonlinear waveguide. Analytically, the

The focus here will be on periodic waves. Periodic wavesself- and cross-phase nonlinearities are replaced by a linear
for the single-component regime, or tNe=1 case of Eq(1)  term. When this term is the square of a hyperbolic secant or
have, in fact, been studied intensively earlier. By employingsquare of a Jacobi elliptic dn function, calculations have
special transformations, elegant, exact solutions of the ordibeen performedl16,17.
nary, uncoupled nonlinear Schiiager equation have been  The Hirota form has been proven to be effective in ob-
derived[2—4]. These expressions can describe periodic waveaining solitary and periodic waves for evolution equations,
trains, as well as wave patterns generated by modulationaind will be employed here. The goal of the present work is to
instability, periodic evolution of bright solitons on a continu- derive some further solutions of CNLS systems using a dif-
ous wave background, and in a special regime, collision oferent choice of theta functions in the bilinear formulation.
dark solitary waves. Details of the calculations are similar to earlier wo[Rs18]|

Let us now turn our attention to the fully coupled system,and will be omitted. Basically, for each component, a single
Eq. (1) (N greater than 1L Analytical solutions of Eq(1) as trilinear equation is considered instead of two uncoupled bi-
single or products of Jacobi elliptic functions have been detinear equations. A proper ansatz of theta functions is as-
rived earlier in the literature for both the regimes of anoma-sumed and the Hirota derivatives are handled by identities of
lous and normal dispersion,= + 1 or —1, respectively, and theta functions. An interesting feature here is the choice of
all interaction coefficient®,,, being +1. These explicit ex- theta functions in the bilinear formulation. This results in
act solutions in terms of products of Jacobi elliptic functionssolutions in terms of rational functions, instead of just poly-
are available for CNLS systems ranging from two to sixnomials, of Jacobi elliptic functions.
component$5-9. In fact, a general algorithm based on an  CNLS of three componen&xpressions and definitions of
ansatz of Lamefunctions has been formulated. Physical elliptic and theta functions can be found in the literature
properties of the waves, e.g., the frequency and the wav§l9,20,9. The Hirota forms of the solutions in terms of theta
number, can be solved as a system of algebraic equation&inctions are
Reductions to the known solutions can be established di-
rectly for a small number of componerits0,11. Recently,
the case of3,, being allowed to be both positive and nega-

L azwn
at nox?

N
Z ﬂmn’pmlpa) ¥n=0,

g1=Aq[Cc105(ax)— 65(ax)]6,(ax),

tive has been considergd2,13. The Lameand elliptic 5 5 )
functions are shown to be applicable as well. The eigenvalue 92=Ag C205(aX) — O5(ax) ] O(aX),
spectrum and Bzklund transformation of Eq(1) have been
der|ved[14_], aqd thus such CNLS systems are of fundamen- U5=As83(ax), = 03ax)82(ax),
tal theoretical interest. 3)
exp( —iQt
. wm:M, m=1,2,3.
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The choice here is to allow for different theta functions in 4 B3
rather tharg, alone. These solutions of the CNLS system are ,8§=§B§+ 6r2, ,8§=§ +6r2, B, arbitrary,
more compact in terms of the Jacobi elliptic functions:
2
dré(rx) ]sn(rx)exp —iQ;t) zﬂ
l/’lel\/E(l_kz)m[Cl_ (1-K)™ dan(rx) : Bio="g

4
@ (B is the long wave limit ofB;.) The remarkable point is
dr(rx) ] en(rx)exp(—iQ,t) that one of the componerit&q. (10)] is a dark solitary wave,
¢//2=A2\/E{cz— (1—Kk3)T2 dn(rx) , (5 even though Eq(1) is in the anomalous dispersion regime.
This solution is consistent with that found in REE3]. The
. reasoning is that in the long wave limik{1), Eq. (7)
3:A3 dn2(rx)e>;p(1/2 1Qs0) , (6)  reduces to a polynomial again (dr-sechzk—1).
(1-k%) CNLS of four componentsSimilarly a solution for the
c. is a root of case of four components is
1
36?— 26 TP— 120 01 =Aq[C163(ax) — 8,65 ax) 63(ax) — 3(ax)],
andc, is a root of g2= Azl C205(ax) — 8,65(ax) B3 ax) — f3(ax)],
a2 2cC 10 3= As[Ca05( ax) — 05(ax)101(ax) O5( ax),
N
9a=AglCs05(ax) — B5(ax)]61(ax) O, ax),
In contrast to the previous studi¢48,9], the present .
choice of theta functions fof [Eq. (3)] allows a one- F= By ax) 63(ax) _ ImeXp(—iQpt)
parameter family of solutions in the amplitudes. More pre- 3 4 ' m f '
cisely, there are onlywo equations constraining the three
unknownsA, A,, Az, m=1,2,3,4.
C2AZ—ca\1— szgz 2r2k\1—K?, Similarly to the previous case, the four amplitude parameters

are determined from th#hree constraints

V1-K?AZ—AZ=KAS.
oo VIZRAGHAD

. . C . L A2+ A2
The sum of intensities, which is related to the refractive in- 1772 K2 '
dex, is
2(1+c3\1—K?
> . 2r(1-K) , 251A§+252A§+[#— 1%5
D Ymit=————+ B +6r2dré(rx),  (7) k
m=1 dré(rx)
2(1+c4V1—Kk?) )
Co(2y1—k2+Cy)A3  cy(2+cy1—K?)AZ * 2 1/A2=0,
Bl: Kk - K . (8)
2 272 2 272
c3V1l—k“A3 ci;Vv1—k°A
The angular frequencies are C2AZ+c2pz- 2 2 o 2 t=or2f1-k2,
— 2 1 _12_v2(E__ 2\ _
1=60,r"V1=k"=r7(5-4k%) =By, with auxiliary constants defined below. This is thus a one-
QZ=602r2m—r2(5—k2)— B,, parameter family of solutions. The const&yt given by
A2
Qg=—4r%(2—-k?—B;. B,= —2c151Af—2c252A§+[c§(2—k2)+2c3\/1—k2]k—23
The long wave limit k— 1) produces, not surprisingly, soli- A2
tary waves +[c3(2—k?) +2¢,\1— K] k—;‘ (12)
1= B tanrx sechrx exd i (Bo+r2)t], 9
will be related to the total intensity or “refractive index”
2 ) through
=B, =—sech rx |exp(iBqt), (10
° . 2r3(1-k?)
* = +B,+12r%dr?(rx). (13
3= By sech rx exdi(Bo+4r)t], (12) m§=:1 Ymt/m dré(rx) 2 (rx). (19
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RN e,
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FIG. 1. Square of the modulus of the amplitygg|? versus the FIG. 3. Square of the modulus of the amplitgg|? versus the
coordinatex, Eq. (14), k=0.98, ;= —4.63,c,=—2.06,r=1. coordinatex, Eq. (15), k=0.98,c;=2.18,r=1.
This form of the intensity is different from the cases studied 1 4(17—17K*+4k* 6
earlier in the literaturg16,17). In terms of the Jacobi elliptic ~ 256°+40 V1—k*+ NS 8%+ 1K
functions the components are, fo=1,2, 1-
+8| V1—-K*+ ! =0
S8n dr?(rx) Ji—k2)
n=An|Cn— -k
The angular frequencieQ,, are
drif(rx) ] (1—k?)Y4exp(—iQ,t)
TR dn(rx) - 19 0,=—B,—9r%(2-k?) - 105,r2J1- K2, n=1,2.

The other components,= 3,4, are

dré(rx) ) snrx)en(rx)exp —iQ,t)

¢, andé,,, n=1,2 are related by
¢n:Ank( Ch— (1_k2)1/2

dn(rx)
Sn (15
C = H
" 58, +4(V1—K2+11—K?) wherec,, are roots of
, 1
where 6, is selected from the roots of 502_2( 1—K2+ )C_ 1=0
V1-k?
kAl I

60

2.5 5 7.5

Coordinate x Coordinate x

FIG. 2. Square of the modulus of the amplitge|? versus the FIG. 4. Square of the modulus of the amplitda|? versus the
coordinatex, Eq. (14), k=0.98, 5,=—0.099,c,=0.004 88,r = 1. coordinatex, Eq. (15), k=0.98,c,=—0.092,r=1.
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and the angular frequencié€k, are tions, such CNLS waves are relevant in fluids with multiple
5 5 5 5 layers. The physical significance in optics hinges on the fact
1 =—Bp+10c,rv1-k*=4r(2-k%), n=34. that the total intensity of the beam is a more complicated

i function than cases treated earlier in the literafdg17,21.
2 p— 1
Graphs for the square of the mod|ifi,|*, n=1,2,3,4 are In consideration of self-trapping of mutually incoherent

S*.‘OW” n F|gs.. 1-4, where, in gene.rall, multiple peaks 0CCUl ave packets in photorefractive media, the total intensity is a
within one period. The long wave limits can be taken, and

. ; N e critical factor in the response of the systgh,17]. This type
S?“ttr?rry om eril rnetsu't'ngeta"ﬁi V‘r’"'wberks'mi'r']artgo tnf ©25 of total intensity for the solutions here, Eq9) and (13),
0 €€ components and earlier works € literatu epermits two different local maxima per period, and thus en-
[18,9], and hence will be omitted.

In conclusions, periodic waves for CNLS systems with hances our capability in modeling wave dynamics in physics.
three or four components are established by a different Partial financial support has been provided by the Re-

choice of theta functions in the bilinear formulation. Besidessearch Grants Council through Contract Nos. HKU 7066/
the theoretical importance in the context of evolution equa00E and HKU 7006/02E.
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