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Manifestation of riddling in the presence of a small parameter mismatch between coupled system
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Riddling bifurcation, i.e., the bifurcation in which one of the unstable periodic orbits embedded in a chaotic
attractor becomes unstable transverse to the attractor, leads to the loss of chaos synchronization in coupled
identical systems. We discuss here the manifestation of the riddling bifurcation for the case of a small param-
eter mismatch between coupled systems. We show that for slightly nonidentical coupled systems, the transverse
growth of the synchronous attractor is mediated by transverse bifurcations of unstable periodic orbits embed-
ded into the attractor. The desynchronization mechanism is shown to be similar to the case of chaos-hyperchaos
transition.
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Consider two symmetrically coupled identical syste
dx/dt5 f (x) and dy/dt5 f (y) and x,yPR n, which evolve
on an asymptotically stable bounded chaotic attractorA,

dx

dt
5 f ~x!1C~y2x!,

dy

dt
5 f ~y!1C~x2y!. ~1!

Complete synchronization occurs when the coupled syst
asymptotically exhibit identical behavior, i.e.,ux(t)2y(t)u
→0 ast→`. The synchronous behavior takes place on
synchronization manifoldx5y, which is invariant in the
phase space of the coupled system~1! and has half the di-
mension of the full system. The synchronization loss in s
tem ~1! is initiated with the riddling bifurcation@1# when the
first unstable periodic orbit~UPO! embedded into chaotic
attractorA loses its transverse stability.

While the mechanisms of desynchronization are stud
in more details for coupled identical systems, the followi
question still appears to be important: how desynchron
tion and, in particular, riddling bifurcation, manifests itse
qualitatively and quantatively if the coupled systems are
completely identical. Sooner or later this question aris
having in mind practical applications of the synchronizati
theory or robustness of the results obtained for identical s
tems.

In this Brief Report we discuss the manifestation of t
riddling bifurcation for the case of a small parameter m
match between coupled systems. We give evidence tha
slightly nonidentical coupled systems, the transverse gro
of the synchronous attractor is mediated by transverse b
cations of unstable periodic orbits embedded into the att
tor. The desynchronization mechanism is shown to be sim
to the bifurcation of chaos-hyperchaos transition@2#. We also
note that the parameter mismatch leads to the increas
transverse instabilities after the riddling bifurcation.

Without loss of generality, a small difference betwe
coupled systems can be incorporated in Eq.~1! as

dx

dt
5 f ~x!1a~x!1C~y2x!,

dy

dt
5 f ~y!1C~x2y!, ~2!
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wherea(x) describes parameter mismatch.1 For sufficiently
small a, system~2! is not, in general, topologically equiva
lent to system~1! in the neighborhood of the synchronou
attractor@3#, unless system~1! is structurally stable.2 Never-
theless, one can prove~see Ref.@4#! that the attractor of
system~2! is located in a small neighborhood of the hype
plane x5y. Moreover, for sufficiently smalla, transverse
stability of nondegenerate orbits embedded inA is preserved
for perturbed system~2!.

It is also meaningful to speak about transverse and lon
tudinal stability of saddle periodic orbits embedded in attr
tor A since a sufficiently small mismatch will cause on
small perturbation of the local unstable and stable manifo
Hence, we are still able to distinguish two directions: ‘‘tran
verse’’ and ‘‘longitudinal.’’ As a result, the moment of rid
dling bifurcation of system~1! will correspond to the loss o
transverse stability of some saddle orbit for system~2!.

Therefore, the moment of riddling bifurcation will corre
spond to the loss of transverse stability of some orbit emb
ded in the attractor. Here, of course, the situation may a
when the above mentioned orbit leaves the attractor be
its transverse destabilization, as it was described in Ref.@6#.
In this situation, we may consider the remaining orbits th
lose transverse stability with decrease of a coupling coe
cient. In general, for nonidentical systems, we are dea
with a chaotic attractor which is no longer located in low
dimensional synchronization manifold but remains in t
neighborhood of it. Moreover, periodic orbits embedded in
this attractor are proved to loose transverse stability with
decrease of coupling@7#. Therefore, we have the same sit
ation as for chaos-hyperchaos transition@2,5# where the
growth of the attractor is mediated by doubly unstable orb

1Linear diffusive coupling scheme~2! is one of the simplest con
figuration which arises, for example, when a diffusion process
involved and some of the componentsxi andyi denote concentra-
tions. In this case, terma(xi2yi) gives a diffusive current~similar
situation is considered in Ref.@11#!.

2This is the case, for example, when the synchronous orbi
system~1! is normally hyperbolic torus or a periodic orbit wit
multipliers different from~1! in modulus.
©2003 The American Physical Society02-1
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embedded in it. It was shown in Ref.@2# that this growth can
be either smooth or abrupt depending on the type of ‘‘r
dling’’ bifurcation.

In the following, as the numerical example, we consid
two coupled Ro¨ssler systems:

dx

dt
5 f ~x!1ā1C~d!~y2x!,

dy

dt
5 f ~y!1C~d!~x2y!,

~3!

whereC(d)5diag$d20.6,1.0,23.1d10.7%, ā5(0,0,a),

f ~x!5@2x22x3 ,x110.42x2,21x3~x124!#T.

The mismatch is introduced via parametera.
It was shown in Ref.@9# that the corresponding system

identical coupled oscillators, i.e.,a50, loses complete syn
chronization with the decrease of parameterd. In particular,
the riddling bifurcation occurs atd50.241 when the embed
ded period-1 cycle becomes transversely unstable via su
critical transverse period-doubling bifurcation. Atd'0.192
the blowout bifurcation takes place when transve
Lyapunov exponent of the synchronous attractor beco
negative. Note also that using numerical simulation
coupled identical systems we were unable to detect bu
from the synchronization manifold for parameter valuesd
P(0.22,0.24), i.e., where synchronous attractor has alre
lost its transverse stability but is still weakly stable.

In the case of systems with the mismatch, the above m
tioned transverse period-doubling bifurcation persists and
a50.003 it takes place atd50.24. Numerically computed
Lyapunov exponents for system~3! are shown in Fig. 1. In
interval I, the chaotic attractorA is located in the neighbor
hood of manifoldx5y. We observe the growth of the secon
Lyapunov exponent, which is connected with the riddli
bifurcation atd50.24 and initiation of the chaos-hypercha
transition. As it was shown in Ref.@2#, this transition is me-
diated by the transverse destabilization of UPOs embed
in the chaotic attractorA. In interval II, system~3! has the
stable hyperchaotic attractor with two positive Lyapunov e
ponents. Atd'0.21 chaotic attractorA becomes unstable
and disappears. The evolution of system~3! switches to the
limit cycle ~interval IIIa! and torus~interval IIIb!.

FIG. 1. Lyapunov exponents of system~3! vs. d; a50.003: ~I!
interval in which chaotic attractorA is located in the neighborhoo
of manifold x5y, ~II ! interval in which hyperchaotic attractor ex
ists, and~III ! interval where the chaotic attractorA loses stability
and solution switches into stable limit cycle~IIIa! and torus~IIIb !.
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Figures 2~a–c! shows the behavior of synchronization e
ror x1(t)2y1(t) for different values ofd. We can observe
transverse bursts for the parameter values after the mom
of riddling bifurcation@Figs. 2~b,c!#. More detailed informa-
tion about the transverse size of the attractor can be see
Fig. 3, where the maximum amplitude of bursts detec
during time intervalT5200 000 versus coupling coefficien
d is shown. It can be seen that the attractor already gro
rapidly in transverse direction after the riddling bifurcatio

Figures 4~b,c! shows the Poincare´ map3 of system~3! for
d50.22 ~after riddling! and Fig. 4~a! for d50.25 ~before

3The location of the Poincare´ plane was chosen by setting the ba
point at some point after sufficiently long integration interval a
the normal vector to be directed along the flow.

FIG. 2. Behavior of synchronization errorx12y1 for a
50.003; ~a! d50.25, all UPO are transversely stable,~b! d
50.23, period-1 UPO is transversely unstable; and~c! d50.22.
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riddling!. Local directions of stable and unstable manifol
are indicated.

In the case of the ideal coupled systems the chaotic att
tor A located at the invariant manifoldx5y can have locally
or globally riddled basins of attraction.A is an attractor4 with
locally riddled basin if there is neighborhoodU of A such
that in any neighborhoodV of any point inA, there is a set of
points in VùU of positive measure, which leavesU in a
finite time. The trajectories which leave neighborhoodU can
either go to the other attractor~attractors! or after a finite
number of iterations be diverted back toA. If there is neigh-
borhoodU of A such that in any neighborhoodV of any point
in U, there is a set of points of positive measure, that lea
U and goes to the other attractor~attractors!, then the basin
of A is globally riddled.

Let us consider the parameter values of two coupled s
tems which correspond to the moment after riddling bifur
tion: d150.1, d251.0, andd3521.62. For these paramete
values, period-1 UPO is transversally unstable. Moreover
follows from the analysis in Ref.@9#, for the case of identica
systems (a50), the basin of attraction of attractorA is glo-
bally riddled with the points diverging to infinity.

In the case of a small parameter mismatcha
51024, . . . ,1022), one can observe that for all initial con
ditions system trajectories eventually escape to infinity. T
time intervals before escaping,Tesc, strongly depend on the
initial conditions. In order to investigate the probability
the escape, 100 initial conditions are chosen in the vicinity
attractorA located in the neighborhood of the manifoldx
5y and time intervalsTescare averaged for each given valu
of the mismatch parametera:^Tesc&5(1/100)( i 51

100 Tesc(xi).
The relation̂ Tesc& versusa is shown in Fig. 5. Similarly to
the cases considered in Refs.@5,8#, it is natural to expect the
following scaling relation:

^Tesc&~a!;a2g.

Least squares fitting gives coefficientg522.7. Note that as
a decreasesTesc increases significantly, suggesting that

4Here we assume the attractor in the sense of Milnor@10#.

FIG. 3. Transverse growth of the attractor with decreasing od;
a50.003.
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the limit of identical coupled systems (a50), there exists
the riddled basin with the zero measure of points escapin
infinity.

In Ref. @8#, scaling laws were obtained for the averag
switching time for on-off intermittent behavior in the case
maps with symmetry. It has been shown that algebraic r
tion

^Tesc&~a!;a2g

holds, wherea is a parameter of distance from the bifurc
tion point andg is some constant. In Ref.@5# we have also

FIG. 4. Poincare´ map of system~3!: ~a! d50.25, period-1 UPO
~indicated with the cross! is transversely stable;~b! d50.22,
period-1 UPO~indicated with the cross! is transversely unstable
and ~c! enlargement of~b!. Also, some low-periodic orbits are
shown, which are transversely stable. The location of the Poin´
plane was chosen by setting the base point at some point
sufficiently long integration interval and the normal vector was
rected along the flow.
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shown that the same law takes place in the case of symm
increasing bifurcation in two identical coupled Rossler s
tems.

In the present Brief Report, nonsymmetrical systems
studied and the scaling laws are obtained versus mism

FIG. 5. Averaged time before escaping to infinity,^Tesc& vs.
mismatch parametera.
ni
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parameter. The scaling relation in Fig. 5 indicates that
mismatch parameter essentially influences the on-off in
mittency phenomena in coupled systems: time switching
creases exponentially. It is interesting to note that a sim
effect ~with a similar scaling law! has been observed in th
case when noise is added to the system with symmetry
shown in Ref. @8#. Physically, the constant factor22.7
means that the probability for the orbits to come to the
caping region~from which they may quickly go to infinity! is
of order ofa2.7.

In conclusion, we investigated the effect of riddling bifu
cation on the chaotic attractor of the coupled systems w
the parameter mismatch. After the onset of bifurcation,
system trajectory shows intermittency-like behavior w
bursts away from manifoldx5y. These bursts grow rapidly
resulting in the growth in size of the chaotic attractor. Co
trary to the case of the coupled ideal systems, we have
observed globally riddled basins of the chaotic attractor
cated in the neighborhood of manifoldx5y. The observed
phenomena seem to be typical for a wide class of coup
slightly nonidentical systems.
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