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Manifestation of riddling in the presence of a small parameter mismatch between coupled systems
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Riddling bifurcation, i.e., the bifurcation in which one of the unstable periodic orbits embedded in a chaotic
attractor becomes unstable transverse to the attractor, leads to the loss of chaos synchronization in coupled
identical systems. We discuss here the manifestation of the riddling bifurcation for the case of a small param-
eter mismatch between coupled systems. We show that for slightly nonidentical coupled systems, the transverse
growth of the synchronous attractor is mediated by transverse bifurcations of unstable periodic orbits embed-
ded into the attractor. The desynchronization mechanism is shown to be similar to the case of chaos-hyperchaos
transition.

DOI: 10.1103/PhysReVvE.68.017202 PACS nunider05.45-a

Consider two symmetrically coupled identical systemswherea(x) describes parameter mismatcRor sufficiently
dx/dt=f(x) anddy/dt=f(y) andx,ye R", which evolve small a, system(2) is not, in general, topologically equiva-
on an asymptotically stable bounded chaotic attraétor lent to system(1) in the neighborhood of the synchronous

attractor[3], unless systerfl) is structurally stablé.Never-
dx dy theless, one can provisee Ref.[4]) that the attractor of
azf(X)‘f‘C(y—X), a=f(y)+C(x—y). (1) system(2) is located in a small neighborhood of the hyper-
planex=y. Moreover, for sufficiently smalk, transverse
stability of nondegenerate orbits embedded\iis preserved
Complete synchronization occurs when the coupled systentsr perturbed systen?).
asymptotically exhibit identical behavior, i.gx(t) —y(t)| It is also meaningful to speak about transverse and longi-
—0 ast—c. The synchronous behavior takes place on theudinal stability of saddle periodic orbits embedded in attrac-
synchronization manifoldk=y, which is invariant in the tor A since a sufficiently small mismatch will cause only
phase space of the coupled systéthand has half the di- small perturbation of the local unstable and stable manifolds.
mension of the full system. The synchronization loss in sysHence, we are still able to distinguish two directions: “trans-
tem (1) is initiated with the riddling bifurcatiofil] when the  verse” and “longitudinal.” As a result, the moment of rid-
first unstable periodic orbitUPO) embedded into chaotic dling bifurcation of systentl) will correspond to the loss of
attractorA loses its transverse stability. transverse stability of some saddle orbit for syst@n

While the mechanisms of desynchronization are studied Therefore, the moment of riddling bifurcation will corre-
in more details for coupled identical systems, the followingspond to the loss of transverse stability of some orbit embed-
question still appears to be important: how desynchronizaded in the attractor. Here, of course, the situation may arise
tion and, in particular, riddling bifurcation, manifests itself when the above mentioned orbit leaves the attractor before
qualitatively and quantatively if the coupled systems are notts transverse destabilization, as it was described in [ff.
completely identical. Sooner or later this question arisesin this situation, we may consider the remaining orbits that
having in mind practical applications of the synchronizationjose transverse stability with decrease of a coupling coeffi-
theory or robustness of the results obtained for identical syseient. In general, for nonidentical systems, we are dealing
tems. with a chaotic attractor which is no longer located in low-

In this Brief Report we discuss the manifestation of thedimensional synchronization manifold but remains in the
riddling bifurcation for the case of a small parameter mis-neighborhood of it. Moreover, periodic orbits embedded into
match between coupled systems. We give evidence that fahis attractor are proved to loose transverse stability with the
slightly nonidentical coupled systems, the transverse growtdecrease of couplinfi7]. Therefore, we have the same situ-
of the synchronous attractor is mediated by transverse bifuration as for chaos-hyperchaos transitifhy5] where the
cations of unstable periodic orbits embedded into the attraggrowth of the attractor is mediated by doubly unstable orbits
tor. The desynchronization mechanism is shown to be similar
to the bifurcation of chaos-hyperchaos transifigh We also
note that the parameter mismatch leads to the increase ofii inear diffusive coupling schem@) is one of the simplest con-

transverse instabilities after the riddling bifurcation. figuration which arises, for example, when a diffusion process is
Without loss of generality, a small difference betweeninvolved and some of the componentsandy; denote concentra-
coupled systems can be incorporated in 8g.as tions. In this case, term(x;—Y;) gives a diffusive currentsimilar

situation is considered in Rdf11]).
2This is the case, for example, when the synchronous orbit
—f(X)+ &(X) + C(y—X) d—yzf(y)+C(x—y) 2) system(1) is normally hyperbolic torus or a periodic orbit with
Toodt ' multipliers different from(1) in modulus.

dx :

dt
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FIG. 1. Lyapunov exponents of syste®) vs. d; a«=0.003: (I) t
interval in which chaotic attractok is located in the neighborhood b
of manifoldx=y, (Il) interval in which hyperchaotic attractor ex- ( ) 0.1 - T : T
ists, and(lll) interval where the chaotic attractdrloses stability
and solution switches into stable limit cydl#la) and torus(llib).
embedded in it. It was shown in R¢2] that this growth can o
be either smooth or abrupt depending on the type of “rid- ' 0
dling” bifurcation. =
In the following, as the numerical example, we consider
two coupled Resler systems:
dx — dy . . . . .
a:f(x)+a+c(d)(y_x), a:f(y)JfC(d)(X_Y), '0'10 10000 20000 30000
t
3
(©) o2 . .

whereC(d)=diag{d—0.6,1.0--3.1d+ 0.7}, «=(0,0.),
f(X)=[ —Xp,—X3,X1+ 0.42,,2+ X3(x;—4)]".

The mismatch is introduced via parameter

It was shown in Ref[9] that the corresponding system of
identical coupled oscillators, i.e;;=0, loses complete syn-
chronization with the decrease of parametein particular,
the riddling bifurcation occurs at=0.241 when the embed-
ded period-1 cycle becomes transversely unstable via super-
critical transverse period-doubling bifurcation. &t0.192 02 s L s ! .
the blowout bifurcation takes place when transverse 0 10000 t 20000 30000
Lyapunov exponent of the synchronous attractor becomes
negative. Note also that using numerical simulation of FIG. 2. Behavior of synchronization errox;—y; for «
coupled identical systems we were unable to detect bursts0-003; (&) d=0.25, all UPO are transversely stabléh) d
from the synchronization manifold for parameter valges =0-23, period-1 UPO is transversely unstable; érjdi=0.22.
€(0.22,0.24), i.e., where synchronous attractor has already
lost its transverse stability but is still weakly stable. Figures Za—9 shows the behavior of synchronization er-

In the case of systems with the mismatch, the above memor x,(t) —y,(t) for different values ofd. We can observe
tioned transverse period-doubling bifurcation persists and fotransverse bursts for the parameter values after the moment
a=0.003 it takes place ad=0.24. Numerically computed of riddling bifurcation[Figs. 2b,c)]. More detailed informa-
Lyapunov exponents for syste(8) are shown in Fig. 1. In  tion about the transverse size of the attractor can be seen in
interval |, the chaotic attractok is located in the neighbor- Fig. 3, where the maximum amplitude of bursts detected
hood of manifoldx=y. We observe the growth of the second during time intervalT =200 000 versus coupling coefficient
Lyapunov exponent, which is connected with the riddlingd is shown. It can be seen that the attractor already grows
bifurcation atd=0.24 and initiation of the chaos-hyperchaos rapidly in transverse direction after the riddling bifurcation.
transition. As it was shown in Reff2], this transition is me- Figures 4b,0) shows the Poincammap of system(3) for
diated by the transverse destabilization of UPOs embeddedl=0.22 (after riddling and Fig. 4a) for d=0.25 (before
in the chaotic attractoA. In interval Il, system(3) has the
stable hyperchaotic attractor with two positive Lyapunov ex-
ponents. Atd~0.21 chaotic attractoA becomes unstable  3The location of the Poincaggane was chosen by setting the base
and disappears. The evolution of systé®h switches to the point at some point after sufficiently long integration interval and
limit cycle (interval Illa) and torus(interval Ilib). the normal vector to be directed along the flow.
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FIG. 3. Transverse growth of the attractor with decreasind; of
a=0.003.

riddling). Local directions of stable and unstable manifolds
are indicated.

In the case of the ideal coupled systems the chaotic attrac-
tor A located at the invariant manifold=y can have locally
or globally riddled basins of attractioA.is an attractdtwith
locally riddled basin if there is neighborhood of A such
that in any neighborhood of any point inA, there is a set of
points in VNU of positive measure, which leavés in a
finite time. The trajectories which leave neighborhaddan
either go to the other attractdattractor$ or after a finite
number of iterations be diverted backAolf there is neigh-
borhoodU of A such that in any neighborho&tof any point

in U, there is a set of points of positive measure, that leaves 2.1F0
U and goes to the other attract@ttractors, then the basin :
of Ais globally riddled = 12

Let us consider the parameter values of two coupled sys-
tems which correspond to the moment after riddling bifurca-
tion: d;=0.1,d,=1.0, andd;= —1.62. For these parameter
values, period-1 UPO is transversally unstable. Moreover, as
follows from the analysis in Ref9], for the case of identical
systems &=0), the basin of attraction of attractéris glo-
bally riddled with the points diverging to infinity.

In the case of a small parameter mismatclx ( FIG. 4. Poincarenap of systen{3): (a) d=0.25, period-1 UPO
=104 ...,10 ?), one can observe that for all initial con- (indicated with the crogsis transversely stabletb) d=0.22,
ditions system trajectories eventually escape to infinity. Thaeriod-1 UPO(indicated with the crogsis transversely unstable;
time intervals before escapin@s., strongly depend on the and (c) enlargement of(b). Also, some low-periodic orbits are
initial conditions. In order to investigate the probability of shown, which are transvers_ely stable. The Ipcation of the Roincare
the escape, 100 initial conditions are chosen in the vicinity oPl2ne was chosen by setting the base point at some point after
attractorA located in the neighborhood of the manifotd sufficiently long integration interval and the normal vector was di-
—y and time intervald ... are averaged for each given value "¢¢ted along the flow.
of the mismatch parameter:(Tos0 = (1/100)2 1% TosdX)). S _

The relatior( T.so) versusa is shown in Fig. 5. Similarly to  the limit of identical coupled systemsx(=0), there exists
the cases considered in RelfS,8], it is natural to expect the the riddled basin with the zero measure of points escaping to

following scaling relation: infinity. . .
In Ref.[8], scaling laws were obtained for the averaged

switching time for on-off intermittent behavior in the case of
(Tesd(a)~a™ 7. maps with symmetry. It has been shown that algebraic rela-
tion

-2.14

A L I .
-2.14 -2.12 2.1 -2.08
X

Least squares fitting gives coefficiept —2.7. Note that as (Tesd(@)~a""
a decreased ., increases significantly, suggesting that in es

holds, wherex is a parameter of distance from the bifurca-
“Here we assume the attractor in the sense of Mi[d6}. tion point andy is some constant. In Reff5] we have also
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15r parameter. The scaling relation in Fig. 5 indicates that the
. mismatch parameter essentially influences the on-off inter-
. slope =-2.7 mittency phenomena in coupled systems: time switching de-
. creases exponentially. It is interesting to note that a similar
h effect (with a similar scaling lawhas been observed in the
10F -, case when noise is added to the system with symmetry, as
\'\-& shown in Ref.[8]. Physically, the constant factot 2.7
\’\ means that the probability for the orbits to come to the es-

€8¢
(3

ln<T >

caping regior(from which they may quickly go to infinityis
of order of a?”.
e DT S— In conclusion, we investigated the effect of riddling bifur-
Ino cation on the chaotic attractor of the coupled systems with

the parameter mismatch. After the onset of bifurcation, the
system trajectory shows intermittency-like behavior with
bursts away from manifold=y. These bursts grow rapidly,
resulting in the growth in size of the chaotic attractor. Con-
shown that the same law takes place in the case of symmetriyary to the case of the coupled ideal systems, we have not
increasing bifurcation in two identical coupled Rossler sys-observed globally riddled basins of the chaotic attractor lo-
tems. cated in the neighborhood of manifoid=y. The observed

In the present Brief Report, nonsymmetrical systems ar@henomena seem to be typical for a wide class of coupled,
studied and the scaling laws are obtained versus mismatcalightly nonidentical systems.

FIG. 5. Averaged time before escaping to infini{fiesy Vs.
mismatch parameter.
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