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Spiking patterns emerging from wave instabilities in a one-dimensional neural lattice
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The dynamics of a one-dimensional lattice~chain! of electrically coupled neurons modeled by the FitzHugh-
Nagumo excitable system with modified nonlinearity is investigated. We have found that for certain conditions
the lattice exhibits a countable set of pulselike wave solutions. The analysis of homoclinic and heteroclinic
bifurcations is given. Corresponding bifurcation sets have the shapes of spirals twisting to the same center. The
appearance of chaotic spiking patterns emerging from wave instabilities is discussed.

DOI: 10.1103/PhysRevE.68.017201 PACS number~s!: 82.40.Bj, 05.45.2a, 87.18.Sn, 89.75.Kd
m
in
ro

lin
e
m
sis
re
ne

lin
a
o
in
ns
e

d
po
di

o
h

ni
t

er
d

D
o

on
sp
is
ve
he

s

ne
e

e
e
nd
e

e of

e

ur-
e
oth-

on
The propagation of nonlinear excitation in neural asse
blies is one of the fundamental problems for understand
information transfer in nervous systems. A single neuron p
duces an excitation pulse~action potential or spike! that is
transmitted to the others by means of synaptic coup
~chemical or electrical! @1,2#. The electrical coupling can b
described by a linear resistance, then the neuron asse
can be modeled by an array of nonlinear units with a re
tive ~diffusive! type of connection. The simplest architectu
for studying the excitation transmission may be a o
dimensional ~1D! lattice ~chain! of ‘‘reaction-diffusion’’
type. Many interesting properties of reaction-diffusion~RD!
systems may emerge from complex dynamics of trave
waves. Recent studies have reported that a variety of sp
time structures originate from interactions and instabilities
traveling waves including elastic collision and backfiring
nerve fibers@3#, self-replication of pulses and fractal patter
in a Gray-Scott model@4#, wave emitting fronts and puls
turbulence in chemical reaction of CO oxidation of Pt~110!
surface@5#, spiral wave breakups modeling fibrillation an
arrhythmias@6#, complex patterns generated by spatiotem
ral intermittency@7#, and other space-time phenomena in
verse nonlinear media@2,8–10#.

In this paper we report on wave patterns in a 1D lattice
electrically coupled spiking neurons modeled by FitzHug
Nagumo units with modified excitability@11#. In particular,
we assume the existence of three fixed points with defi
properties~Fig. 1!. At variance with the classical single-poin
FitzHugh-Nagumo model, this modification provides the c
tain shape of the excitation threshold given by the sad
separatrix@11–13#. As noted in Ref.@5#, the three fixed point
local dynamics may yield a complex wave behavior of R
systems. Indeed, by studying homoclinic and heteroclinic
bits in a moving frame we shall show that their bifurcati
parameter sets are highly nontrivial representing a set of
rals twisting to a codimension-2 point. Then, we shall d
cuss how the interplay between unstable traveling wa
may lead to fractal-like spiking patterns in the lattice. T
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dynamics of theN-unit lattice of electrically coupled neuron
is described by the following system:

uj̇5 f ~uj !2v j1D~uj 2122uj1uj 11!,

v j̇5e@g~uj !2v j2I #,

j 51,2, . . . ,N. ~1!

The uj variable describes the evolution of the membra
potential of the neuron andv j describes the dynamics of th
outward ionic currents~the recovery variable! @8#. The func-
tion f has a cubic shape,f (u)5u2u3/3, and the functiong is
taken piecewise linear,g(u)5au if u,0 andg(u)5bu if
u>0. The parametersa and b control the shape and th
location of thev nullcline, hence the exitation threshold. Th
parametere defines the time scale of the excitation pulse a
the parameterI is a constant stimulus. The dynamics of th
single neuron@D50 in Eq. ~1!# is illustrated in phase plane
~Fig. 1!. The parameters are taken to provide the existenc
three fixed points O1(u(1),v (1)), O2(u(2),v (2)), and
O3(u(3),v (3)). The pointsO1 andO3 are stable and unstabl
foci, respectively, the pointO2 is a saddle with the incoming
separatrix defining the excitation threshold. Then, if a pert
bation of the rest stateO1 is large enough, i.e., lies below th
separatrix, the system responds with an excitation pulse,
erwise it decays to the stable rest pointO1 ~Fig. 1!. Note that
the modified FitzHugh-Nagumo unit of network~1! can be

FIG. 1. A qualitative view of the phase plane of the neur
model with modified excitability. Units are arbitrary.
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implemented with an analog electronic circuit@14# and dis-
play a required excitable behavior~Fig. 1! in a certain range
of experimental parameters.

Let us look for a steadily translating solution of Eqs.~1!
in the form uj (t)5u(j),v j (t)5v(j) with j5t2 j /c being
the coordinate moving with the velocityc. Then, in the long-
wave approximation from Eqs.~1! we obtain the following
ordinary differential equation system:

u̇5y,

ẏ5k~y2 f ~u!1v !,

v̇5e~g~u!2v2I !, ~2!

where the dot denotes differentiation with respect toj and
k5c2/D. System~2! has three fixed pointsO1(u(1),0,v (1)),

FIG. 2. Bifurcation curves for homoclinic~solid curve! and het-
eroclinic ~dashed curve! bifurcations. The enlarged picture show

the curves near the center of the spiral in the coordinate systeē

5226(e2e* )1219(c2c* ),c̄52219(e2e* )1226(c2c* ). Pa-
rameter values:a50.5,b52, I 50.2,D51. Units are arbitrary.
01720
O2(u(2),0,v (2)), andO3(u(3),0,v (3)). PointsO1 and O3 are
the saddle foci with two-dimensional stable manifold a
one-dimensional unstable manifold. The fixed pointO2 has
one-dimensional stable manifold and two-dimensional
stable manifold.

To define excitation pulses propagating along the r
stateO1, we search for homoclinic orbits with respect to th
fixed point O1. They represent nontrivial trajectories th
asymptotically approach the fixed point withj→6`. In the
parameter space of system~2!, these correspond to bifurca
tion of codimension 1. The bifurcation curve calculated n
merically in the parameter plane (c,e) is shown in Fig. 2
~solid curve!. The curve represents a spiral with focus po
(e* ,c* ). For our choice of the parameters:e*
50.522 760 187 andc* 50.900 411 224. In the calculation
we have observed up to five rotations of the curve. Then,
e5e* there exists a countable number of possible excitat
pulses traveling with velocities accounted by the inters
tions with the spiral curve. The profiles of the homoclin
orbits, hence the profiles of traveling waves, at each turn
the spiral become more and more complicated. Approach
the center of the spiral, the orbits display an increasing nu
ber of rotations in the neighborhood of the fixed pointO2.
The profiles calculated numerically at the lower turn a
near the center are illustrated in Figs. 3~a! and 3~b!, respec-
tively. Note that the closer the parameters are to the cen
the longer time the trajectory spends in the neighborhood
point O2. This fact indicates the existence of a heteroclin
contour~cycle! in the phase space of system~2!, correspond-
ing to the center of the spiral and to the bifurcation of co
mension 2~Fig. 4!. The contour is formed by a commo
one-dimensional manifold of the pointsO1 andO2 and by a
robust intersection of their two-dimensional manifol
@15,16#. Note that the saddle values of the saddle focusO1 ,
s5l(O1)1h(O1), wherel(O1).0 is its real eigenvalue
and h(O1),0 is the real part of the complex pair, take
positive values for parameters of the bifurcation curve. Th

:

l-
FIG. 3. The profilesu(j) and
y(j) of various homoclinic and
heteroclinic orbits. Parameter va
ues: a50.5,b52, I 50.2,D
51,e5e* 50.52276. ~a! c
50.893, ~b! c50.90041, ~c! c
50.902, ~d! c50.900 42. Units
are arbitrary.
1-2



-
nic
n
it
ar
R

e

its

ab

e
im
ni
r

n

he
e
in
nt
t

on

in
he

e

ed

o

,

rs,
ts

-
of

ce

n
oli-

ty
tate

ve
ble.

jec-

the
e of
lu-
at-

y
ons
tion
the
olu-
the

em
r-
tic
at-
ble
tor

l
-

BRIEF REPORTS PHYSICAL REVIEW E68, 017201 ~2003!
according to the Shilnikov theorem@15#, there exists a count
able set of saddle periodic orbits and multiloop homocli
solutions in the neighborhood of the homoclinic bifurcatio
It ensures the existence of complex multihump profiles w
an arbitrary number of humps. Note that simil
codimension-2 contours have been observed in other
systems with a three-point kinetics@5#.

Let us now search for wave fronts or traveling interfac
between the rest stateO1 and the excited stateO3. In terms
of Eqs.~2!, such solutions are defined by heteroclinic orb
‘‘linking’’ the fixed points O1 andO3. Such an orbit repre-
sents a trajectory that simultaneously belongs to the unst
manifold of O1 ~approachingO1 with j→2`) and to the
stable manifold ofO3 ~approachingO3 with j→1`) in the
phase space of system~2!. Indeed, such orbits also exist. Th
interesting fact is that their bifurcation set represents a s
lar spiral curve twisting to the same center as for homocli
bifurcation ~Fig. 2, dashed curve!. It corresponds to anothe
heteroclinic contour existing at the point (e* ,c* ) ~Fig. 4!.
This contour is formed by a common one-dimensional ma
fold of the pointsO1 and O2 and by the trajectory on the
robust intersection of the two-dimensional manifolds of t
points O2 and O3. Similarly, at each turn of the spiral th
number of oscillations of the trajectory near the fixed po
O2 increases, and by approaching the center the time spe
its neighborhood tends to infinity. Typical profiles of the he
eroclinic orbits taken from the upper turn of the bifurcati
curve and near the center are illustrated in Figs. 3~c! and
3~d!, respectively. Therefore, fore5e* system ~1! has a
countable set of wave front solutions, steadily translat
with velocities corresponding to the intersections with t
spiral bifurcation curve.

To study wave stability let us check the stability of th
three spatially homogeneous steady states,Oi„uj (t)
5u(n),v j (t)5v (n)

…, n51,2,3, whose coordinates are defin
by corresponding fixed points of the local system~Fig. 1!.
Solving the linear stability problem for the perturbations
the form u2u(n),v2v (n);ept1 iu j we obtain from Eq.~1!
the following dispersion relation:

p21@e2 f 8~u(n)!14D sin2~u/2!#1e@D sin2~u/2!

1g8~u(n)!2 f 8~u(n)!#50.

It is easy to show that the steady stateO2 is always unstable
and the stability condition for statesO1 and O3 is e.e1,3*

FIG. 4. A qualitative view of the phase space of system~2! for
(e5e* ,c5c* ). The heteroclinic cycles. Units are arbitrary.
01720
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5 f 8(u1,3), respectively. For our choice of the paramete
e1* '0.15 ande3* '0.96. Then, the two spiral bifurcation se
shown in Fig. 2 are located betweene1* and e3* . In this
region, the rest state of the chain,O1, is stable and the ex
cited stateO3 is unstable. The latter ensures the instability
all the wave fronts. It leads to wave emitting front~WEF!
propagation@5# when the interface emits a periodic sequen
of pulses traveling backward~Fig. 5!. Note that in numerical
simulations we provided sufficiently smooth profiles~more
than ten points per a hump! to satisfy the predictions made i
the long-wave approximation. Each pulse represents a s
tary excitation of the stable rest stateO1 described by the
lower branch of the bifurcation spiral@Fig. 3~a!#. Simulations
have shown evolution stability of such solutions fore
,ecr , ecr'0.566. However, we may expect the instabili
of the solutions spending a long time near the unstable s
O2 @Fig. 3~b!#. Simulations of Eqs.~1! with the initial con-
ditions corresponding to different homoclinic orbits ha
shown that, indeed, such solutions are evolutionary unsta
Then, for e.ecr the solitary pulses of simple shape@Fig.
3~a!# also lose the stability. For such parameters the tra
tory spends more time near the unstable stateO3, hence the
pulses become more longer near the top. As a result
system evolves to a wave emitting interface. The existenc
a large number of traveling wave solutions and their evo
tion instability may lead to complex space-time wave p
terns~Fig. 6!. The pattern is formed by~i! the pulse emitting
fronts ~WEFs! and ~ii ! pulses that due to the instability ma
create WEFs. Then, pulses and fronts annihilate in collisi
and the units return to the rest state until the next excita
comes. As a result, we obtain a triangularlike pattern in
space-time diagram. Note that there are no stable wave s
tions and the pattern appears as an interplay between
evolutionary unstable waves. In other words, the syst
‘‘jumps’’ from one unstable wave to another. In such inte
pretation, the dynamics of the network is similar to chao
attractors of low-dimensional systems. The attractor ‘‘
tracts’’ the trajectories from outside, while there are no sta
trajectories inside. Then, the ‘‘skeleton’’ of a chaotic attrac

FIG. 5. ~a! Wave emitting front~WEF! in the 1D lattice of
neurons~1! emerging from wave instabilities forN51000. The
interface between black and white colors is drawn at the leveuj

50. ~b! A spike train at the unitj 51 created by the WEF. Param
eter values:a50.5,b52, I 50.2,e50.54,D51. Units are arbi-
trary.
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is formed by a countable number of unstable or saddle p
odic orbits. In the case of Eqs.~1!, such a skeleton of a
self-sustained space-time pattern is formed by a large n
ber of unstable traveling waves.

The spiking pattern in Fig. 6 displays a self-similari
with multiscale triangles similar to Sierpinsky gaskets c
ated by self-replicating pulses in the Gray-Scott model@4#.
The triangles are formed by the unstable pulses and fr
that have about the same velocities~Fig. 2!. The fractal di-
mension of the spike distribution~black points in Fig. 6! in
the lattice calculated by box counting method isD f
51.73–1.75. Note that at the single-cell level, each neur
like unit exhibits a chaotic sequence of spikes~action poten-
tials! resulting with variable interspike intervals@Fig. 7~a!#
@17,18#. Its probability distribution for the boundary unit,j
51, is shown in Fig. 7~b!. There is a nonzero probability t
have spikes in a wide range of intervals. Then, the histog
has two maxima. These correspond to the characteristic
scales of the two main instabilities@~i! front ~WEF! instabil-

FIG. 6. Spiking pattern in the 1D lattice of neurons~1! emerging
from wave instabilities forN51000. Parameter values:a50.5,b
52, I 50.2,e50.57,D50.5. Units are arbitrary.
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ity and ~ii ! pulse instability creating WEF# responsible for
the fractal spiking pattern in the neural lattice.

We have shown how the 1D neural lattice displays se
sustained spiking patterns emerging from an interplay
tween unstable nonlinear waves. Such patterns appear w
out any stimulus and can be treated as an ‘‘eigenstate’’ of
neuron assembly. The local oscillations represent chaotic
quences of pulses which, however, are organized in a fra
triangularlike space-time pattern. Note that the interspike
terval has two maxima indicating, in essence, the presenc
two ‘‘eigenfrequencies’’ in the system. In conclusion, w
hope that our study will be helpful in understanding the d
namic origin of complex spiking patterns responsible
various information processing functions of the brain.
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FIG. 7. ~a! A spike train at the unitj 51 corresponding to the
fractal pattern.~b! Interspike interval probability distribution. Units
are arbitrary.
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