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Spiking patterns emerging from wave instabilities in a one-dimensional neural lattice
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The dynamics of a one-dimensional lattiodain of electrically coupled neurons modeled by the FitzHugh-
Nagumo excitable system with modified nonlinearity is investigated. We have found that for certain conditions
the lattice exhibits a countable set of pulselike wave solutions. The analysis of homoclinic and heteroclinic
bifurcations is given. Corresponding bifurcation sets have the shapes of spirals twisting to the same center. The
appearance of chaotic spiking patterns emerging from wave instabilities is discussed.
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The propagation of nonlinear excitation in neural assemdynamics of theN-unit lattice of electrically coupled neurons
blies is one of the fundamental problems for understandindgs described by the following system:
information transfer in nervous systems. A single neuron pro-
duces an excitation puls@ction potential or spikethat is
transmitted to the others by means of synaptic coupling
(chemical or electrical[1,2]. The electrical coupling can be

[]j:f(Uj)_Uj+D(Uj_l_ZUj+Uj+1),

described by a linear resistance, then the neuron assembly ,}jze[g(uj)_vj_”'
can be modeled by an array of nonlinear units with a resis- )
tive (diffusive) type of connection. The simplest architecture i=12,...N. ey

for studying the excitation transmission may be a one-

dimensional (1D) lattice (chain of “reaction-diffusion”  The u; variable describes the evolution of the membrane
type. Many interesting properties of reaction-diffusi®D)  potential of the neuron ang, describes the dynamics of the
systems may emerge from complex dynamics of travelingutward ionic currentgthe recovery variablg8]. The func-
waves. Recent studies have reported that a variety of spactien f has a cubic shap&(u)=u— u®/3, and the functiom is
time structures originate from interactions and instabilities oftaken piecewise lineag(u) = au if u<0 andg(u)=u if
traveling waves including elastic collision and backfiring inu=0. The parameters and 8 control the shape and the
nerve fiberg 3], self-replication of pulses and fractal patternslocation of thev nulicline, hence the exitation threshold. The
in a Gray-Scott modef4], wave emitting fronts and pulse parametek defines the time scale of the excitation pulse and
turbulence in chemical reaction of CO oxidation of120)  the parameter is a constant stimulus. The dynamics of the
surface[5], spiral wave breakups modeling fibrillation and Single neurorfD=0 in Eq.(1)] is illustrated in phase plane
arrhythmiagd 6], complex patterns generated by spatiotempo(Fig- 1). The parameters are taken to provide the existence of
ral intermittency{ 7], and other space-time phenomena in di-three _ fixed  points O;(u®,0™),  0y(u®,v®), and
verse nonlinear medig2,8—10. 03(u®,u®)y. The pointsO, andOj; are stable and unstable

In this paper we report on wave patterns in a 1D lattice offOCi, respectively, the poirD, is a saddle with the incoming
electrically coupled spiking neurons modeled by FitzHugh_separatrlx defining the e_xcr[atlon threshol_d. Then, if a pertur-
Nagumo units with modified excitabilitjl1]. In particular, ~Pation of the rest sta®, is large enough, i.e., lies below the
we assume the existence of three fixed points with definitéepf”lrat_r'x’ the system responds with an e_x0|tat|on pulse, oth-
propertiegFig. 1). At variance with the classical single-point erwise it decays to the stable rest pddyt (Fig. 1). Note that

FitzHugh-Nagumo model, this modification provides the cer-the modified FitzHugh-Nagumo unit of netwotk) can be
tain shape of the excitation threshold given by the saddle
separatriY11-13. As noted in Ref[5], the three fixed point
local dynamics may yield a complex wave behavior of RD
systems. Indeed, by studying homoclinic and heteroclinic or-
bits in a moving frame we shall show that their bifurcation
parameter sets are highly nontrivial representing a set of spi-
rals twisting to a codimension-2 point. Then, we shall dis-
cuss how the interplay between unstable traveling waves
may lead to fractal-like spiking patterns in the lattice. The

FIG. 1. A qualitative view of the phase plane of the neuron
*Electronic address: vkazan@neuron.appl.sci-nnov.ru model with modified excitability. Units are arbitrary.
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FIG. 2. Bifurcation curves for homoclinigolid curve and het-
eroclinic (dashed curvebifurcations. The enlarged picture shows
the curves near the center of the spiral in the coordinate sys_iem:
=226(e— €*)+219(c—c*),c=—219(e— €*) +226(c—c*). Pa-
rameter valuese=0.5,8=2,1=0.2,D=1. Units are arbitrary.

implemented with an analog electronic circl#] and dis-
play a required excitable behavi@¥ig. 1) in a certain range
of experimental parameters.

Let us look for a steadily translating solution of Eq%)
in the formu;(t)=u(&),v;(t)=v(§) with {=t—j/c being
the coordinate moving with the velocity Then, in the long-
wave approximation from Eggl) we obtain the following
ordinary differential equation system:

u=y,
y=k(y—f(u)+v),

)

where the dot denotes differentiation with respecttand
k=c?/D. System(2) has three fixed point®,(u’),0p®),

v=e(g(u)—v—1),
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0,(u®,00@), and04(u®,00®). PointsO; and 05 are
the saddle foci with two-dimensional stable manifold and
one-dimensional unstable manifold. The fixed pdyt has
one-dimensional stable manifold and two-dimensional un-
stable manifold.

To define excitation pulses propagating along the rest
stateO,, we search for homoclinic orbits with respect to the
fixed point O;. They represent nontrivial trajectories that
asymptotically approach the fixed point wigh- + . In the
parameter space of syste®), these correspond to bifurca-
tion of codimension 1. The bifurcation curve calculated nu-
merically in the parameter plane,€) is shown in Fig. 2
(solid curve. The curve represents a spiral with focus point
(e*,c*). For our choice of the parameterse*
=0.522760 187 and* =0.900411 224. In the calculations
we have observed up to five rotations of the curve. Then, for
€= €* there exists a countable number of possible excitation
pulses traveling with velocities accounted by the intersec-
tions with the spiral curve. The profiles of the homoclinic
orbits, hence the profiles of traveling waves, at each turn of
the spiral become more and more complicated. Approaching
the center of the spiral, the orbits display an increasing num-
ber of rotations in the neighborhood of the fixed pa@y.

The profiles calculated numerically at the lower turn and
near the center are illustrated in Fig$a3and 3b), respec-
tively. Note that the closer the parameters are to the center,
the longer time the trajectory spends in the neighborhood of
point O,. This fact indicates the existence of a heteroclinic
contour(cycle) in the phase space of systég), correspond-

ing to the center of the spiral and to the bifurcation of codi-
mension 2(Fig. 4). The contour is formed by a common
one-dimensional manifold of the poin®; andO, and by a
robust intersection of their two-dimensional manifolds
[15,16. Note that the saddle value of the saddle focu®,,
o=\(01)+h(0,), whereA(0O;)>0 is its real eigenvalue
and h(O;)<0 is the real part of the complex pair, takes
positive values for parameters of the bifurcation curve. Then,

FIG. 3. The profileu(¢) and
y(&) of various homoclinic and
heteroclinic orbits. Parameter val-

ues: «=0.5,=2,1=0.2,D
=1,e=€*=052276. (@ <c
=0.893, (b) ¢c=0.90041, (c) c
=0.902, (d) ¢=0.90042. Units
are arbitrary.
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FIG. 4. A qualitative view of the phase space of sysi@nfor 0 200 400 600 - 800 1000

(e=¢€*,c=c*). The heteroclinic cycles. Units are arbitrary. . ) .
FIG. 5. () Wave emitting front(WEF) in the 1D lattice of

according to the Shilnikov theoref5], there exists a count- neurons(1) emerging from wave instabilities fo=1000. The
able set of saddle periodic orbits and multiloop homoclinicinterface between black and white colors is drawn at the layel
solutions in the neighborhood of the homoclinic bifurcation. = 0. (b) A spike train at the unif=1 created by the WEF. Param-
It ensures the existence of complex multihump profiles witheter values:@=0.5,8=2,1=0.2,e=0.54,D=1. Units are arbi-
an arbitrary number of humps. Note that similartrary:
codimension-2 contours have been observed in other RD
systems with a three-point kinetigS]. =f’(u'9d), respectively. For our choice of the parameters,
Let us now search for wave fronts or traveling interfacese} ~0.15 ande; ~0.96. Then, the two spiral bifurcation sets
between the rest sta@; and the excited stat®s. In terms  shown in Fig. 2 are located betweeij and €% . In this
of Egs.(2), such solutions are defined by heteroclinic orbitsregion, the rest state of the chai@,, is stable and the ex-
“linking” the fixed points O; andO3. Such an orbit repre- cited stateQ, is unstable. The latter ensures the instability of
sents a trajectory that simultaneously belongs to the unstablg| the wave fronts. It leads to wave emitting frotWEF)
manifold of O, (approachingO; with §{— —c) and to the  propagatiorf5] when the interface emits a periodic sequence
stable manifold 003 (approachingd; with {— +) inthe  of pulses traveling backwar@ig. 5. Note that in numerical
phase space of syste(®). Indeed, such orbits also exist. The simulations we provided sufficiently smooth profilgaore
interesting fact is that their bifurcation set represents a simithan ten points per a humo satisfy the predictions made in
lar spiral curve twisting to the same center as for homocliniahe long-wave approximation. Each pulse represents a soli-
bifurcation (Fig. 2, dashed curyelt corresponds to another tary excitation of the stable rest stafy described by the
heteroclinic contour existing at the poiné*(,c*) (Fig. 4.  lower branch of the bifurcation spirffig. 3a)]. Simulations
This contour is formed by a common one-dimensional manihave shown evolution stability of such solutions fer
fold of the pointsO, and O, and by the trajectory on the <., e.,~0.566. However, we may expect the instability
robust intersection of the two-dimensional manifolds of theof the solutions spending a long time near the unstable state
points O, and O3. Similarly, at each turn of the spiral the O, [Fig. 3(b)]. Simulations of Eqs(1) with the initial con-
number of oscillations of the trajectory near the fixed pointditions corresponding to different homoclinic orbits have
O, increases, and by approaching the center the time spent ghown that, indeed, such solutions are evolutionary unstable.
its neighborhood tends to infinity. Typical profiles of the het-Then, for e> €., the solitary pulses of simple shapEig.
eroclinic orbits taken from the upper turn of the bifurcation 3(g)] also lose the stability. For such parameters the trajec-
curve and near the center are illustrated in Figg) and tory spends more time near the unstable s&4ehence the
3(d), respectively. Therefore, foe=e* system(1) has a pulses become more longer near the top. As a result the
countable set of wave front solutions, steadily translatingsystem evolves to a wave emitting interface. The existence of
with velocities corresponding to the intersections with thea large number of traveling wave solutions and their evolu-
spiral bifurcation curve. tion instability may lead to complex space-time wave pat-
To study wave stability let us check the stability of the terns(Fig. 6). The pattern is formed bgi) the pulse emitting
three spatially homogeneous steady staté3;(u;(t)  fronts (WEFS and (ii) pulses that due to the instability may
=u™,p;(t)=vM), n=1,2,3, whose coordinates are definedcreate WEFs. Then, pulses and fronts annihilate in collisions
by corresponding fixed points of the local systéfig. 1).  and the units return to the rest state until the next excitation
Solving the linear stability problem for the perturbations of comes. As a result, we obtain a triangularlike pattern in the
the formu—u™,v —v™M~eP*% we obtain from Eq(1)  space-time diagram. Note that there are no stable wave solu-
the following dispersion relation: tions and the pattern appears as an interplay between the
. . evolutionary unstable waves. In other words, the system
p*+[e—f'(u™)+4D sir?(6/2)] + €[ D sin?(6/2) “jumps” fro?/n one unstable wave to another. In such i¥1ter—
+g'(uM—f’(uM=0. pretation, the dynamics o_f the network is similar to chaotic
attractors of low-dimensional systems. The attractor “at-
It is easy to show that the steady sté@tgis always unstable, tracts”the trajectories from outside, while there are no stable
and the stability condition for stated; and O3 is e>¢€f,  trajectories inside. Then, the “skeleton” of a chaotic attractor
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FIG. 7. (a) A spike train at the unij=1 corresponding to the
time fractal pattern(b) Interspike interval probability distribution. Units

are arbitrary.
FIG. 6. Spiking pattern in the 1D lattice of neuraiis emerging

from wave instabilities foerlpOO. Parameter valueg=0.5,8 ity and (i) pulse instability creating WEFresponsible for
=2,1=0.2,¢=0.57,0=0.5. Units are arbitrary. the fractal spiking pattern in the neural lattice.
. . We have shown how the 1D neural lattice displays self-
is formed by a countable number of unstable or saddle perig siained spiking patterns emerging from an interplay be-
odic orbits. In the case of Eqgl), such a skeleton of & yyeen unstable nonlinear waves. Such patterns appear with-
self-sustained space-time pattern is formed by a large nums,; any stimulus and can be treated as an “eigenstate” of the
ber of unstable traveling waves. . neuron assembly. The local oscillations represent chaotic se-
.The sp|k|ng pattern in Fig. 6 d|SP|aY$ a self-similarity guences of pulses which, however, are organized in a fractal
with multiscale triangles similar to Sierpinsky gaskets cre-yiangylarlike space-time pattern. Note that the interspike in-
ated by self-replicating pulses in the Gray-Scott mddé! (o3| has two maxima indicating, in essence, the presence of
The triangles are formed by the_ _un_stable pulses and .front§v0 “eigenfrequencies” in the system. In conclusion, we
that have about the same velociti@sg. 2. The fractal di-  po56 that our study will be helpful in understanding the dy-
mension of the spike distributiofblack points in Fig. in amic origin of complex spiking patterns responsible for

the lattice calculated by box counting method B \arious information processing functions of the brain.
=1.73-1.75. Note that at the single-cell level, each neuron-

like unit exhibits a chaotic sequence of spikastion poten- This research has been supported by the Russian-French
tials) resulting with variable interspike interval&ig. 7(a)] program of joint researcfGrant No. 04610PAand the Rus-
[17,18. Its probability distribution for the boundary unijt, sian Foundation for Basic Researc¢®rant Nos. 01-02-
=1, is shown in Fig. {). There is a nonzero probability to 17638 and 03-02-17135V.B.K. acknowledges the financial
have spikes in a wide range of intervals. Then, the histograrsupport from the INTASGrant No. YSF 2001-2/24and the

has two maxima. These correspond to the characteristic tim@ussian Science Support Foundation. V.I.N. acknowledges
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