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Summation of perturbation series of eigenvalues and eigenfunctions of anharmonic oscillators
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A perturbation approach to compute the bound states of the @olger equatiorHW =EW¥ with H°
+\V and ¥|,_...=0 is studied. The approach involves solving the corresponding Dirichlet problem
HrVr=ERr¥R on a finite intervall —R,R] by the Rayleigh-Schutinger perturbation theoryRSPT). The
method is based on the fact thBg, Vg converge toE,¥ as R—«. The model problems to study the
summability properties of the RSPT seriE$Q=2f:0Eg‘)}\k are the anharmonic oscillatord = p?+ x?
+Ax2M| with M=2,3,4 for which the RSPT produces strongly divergent s&ies;_,EM\X. The summa-
tion of the latter series with large for the octic case is considered as an extremely challenging summation
problem, in part, since it was rigorously proven that the Pagioximants cannot converge and the two-point
Padeapproximants, which combine information of the renormalized weak coupling and strong coupling ex-
pansions, give relatively good results. The calculations of this work show that the ordinargadgimants
from the sole un-normalizeBg series for the octic oscillator give accurate results with small or latgéhe
coefﬁcientsEg‘) are calculated with the eigenvalue series of an opetdtgy, whose resolvent converges to
that of Hgr asn—o. The Padepproximants of the RSPT eigenfunction seﬂas=2[f:0¢g‘))\k also provide
accurate results for the octic oscillator.
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. INTRODUCTION whereHg=HX+\V is the operator defined by the Dirichlet

L e : : boundary conditionsl'g|,— .gr=0. The basis of the DWFA
The Rayle|gh Schmiinger perturbation theor§R$P'I’) 'S s that the eigensolutionBg, ¥ converge toE, ¥ asR
one of the main methods to solve the quantum eigenproblem

- i " ; —o [27-31. The results of Sec. IV show that the RSPT
HV=EWV, \Iflxzio?—o', whoenH can be partmoned into an yields eigenvalue series
unperturbed HamiltoniarH” with known eigenvalues and

eigenfunctions and a perturbativhH=H%+\V [1-7]. The * (0 K
RSPT yields formal series in powers of the coupling param- ER()\)ZKZO ER’NY, (1.2
eter\, -

which can be summed more effectively than se(eg).
- Since the seminal work of Bender and WL8-2Q, the
E(N)~ Z ECONK. (1.))  anharmonic oscillatorsH=p?+x2+Axx*™ (M=1,2,...)
k=0 have provided the examples of strongly divergent eigenvalue

. . . . . series because the coefficieE& of series(1.1) behave like
There is an extensive literature on the summation of thl%[M_l]k)llkllz ask—c. In the quartic and sextic cases, it

serieq2,5-20. The Padapproximants have become a stan-aq proved that the Pad@proximants are able to sum series
dard tool to sum the slowly convergent or divergent Seriegy 1), put they are numerically useless for lang€8,15—17.
[14-20, and recently nonlinear sequence transformationg, the octic case, it was proved rigorously by Graffi and

have been used for the summation of strongly divergent segrecchi[32] that the Pad@pproximants cannot sum the ei-
ries[9-12. The Serieg1.1) is called weak coupling expan- genvalue series. Some renormalization schemes produce ei-
sion since it is an expansion around=0, but if such a genvalue series that can be summed by Rempeoximants or
series has to be summed in the strong coupling regime thgonlinear sequence transformationa iis small[12], but the
problem encountered is that the summation methods onlgummation in the strong coupling regime is considered a
work for small or at the most moderately laryg8,11-13.  challenging probleni8,11-13.

The main approach to compute the eigenvalues in the The transformation of a Hamiltonigd into an equivalent
strong coupling regime has been the substitution of the4* having advantageous properties in the troublesome
Hamiltonian H by means of the normalization techniques strong coupling regime can pose some problems, e.g., the
[7,14,21-25 or the variational perturbation methodi86]  renormalization schemes of SymanZiks] or Vinette and
which produce an equivalent Hamiltoni&h* with a better  Cizek [21,22 produce eigenvalue series for the anharmonic
eigenvalue series. The method studied in this work, whiclpscillators which converge for large but the eigensolutions
will be referred to as the Dirichlet wave functions approachof the zero-order problem are unknown. There are alternative
(DWFA), belongs to this class of methods. It involves solv-approaches for the computation of the coefficients of the cor-
ing the eigenproblemHR¥g=Ez¥y for |[x|<R(<®), responding eigenvalue seri¢83—24, but the problem is

open in general. The DWFA yields one way to compute the
coefficients of serie$1.1) when the eigenstates ¢f° are
*Electronic address: manp@xanum.uam.mx unknown, a rigorous proof is given in Rg¢B3].

1063-651X/2003/6@)/01670313)/$20.00 68 016703-1 ©2003 The American Physical Society



MARCO A. NUNEZ PHYSICAL REVIEW E68, 016703(2003

The zero-order Dirichlet problem is solvable in some
cases[34], but in general its eigensolutions are unknown.
This problem is solved with the substitution of the operator
Hy by its projectionHg,= Hgn+ AVgr, ONn the space gener- w0
ated by a suitable orthonormal deig -, . The eigenval- W)~ S KON,
ues ofHg, are obtained with a formal series k=0

SONEDIN =N
k=0

(2.7

These series will be referred to & series and¥' series,
respectively. The main result about the convergence of these
series can be summarized as follojts2]. Let H be a Hil-
bert space with nornj.|, and T(\)=Ty+AV be a self-
adjoint operator irf{. If there are constants b=0 such that

ERn<>x>=k§O ESINK, (1.3

whose coefficient€) converge to those of serigs.2) as
n—o, Hence the properties of seri€k.2), (1.3) are essen-
tially the same for large, and the coefficient&® of the
series(1.1) can be estimated bg{ 's with largeR, n. The
results given by the ordinary Padpproximants for the octic
oscillator show that seried.2), (1.3) have good numerical
properties.

IVullz=allull ¢+ bl Toull 5

holds for “all” u, then the eigenvalues and eigenfunctions of
T(M\) can be represented by analytic functions in the neigh-
borhood ofA =0. In this caseV is referred to as aegular
perturbation ofT,, otherwiseV is calledsingular perturba-

A dual approach was studied bvyi?ﬁk et al. [13],_ who tion of Ty. The models of singularlyopertuzrl\sl:)ed' Hamoiltonzians
showed that the normalization scheme of Vinette amzbic arezthe anharmonic oscillators=H"+\x"" with H"=p°
[20,21] provides both the weak coupling and the strong cou-+ X~ andM=2,3, ... [18-20. In this case, th&' series is
pling expansion§10] which can be summed simultaneously 8symptotic as\—0 [1,2,8|, but this property does not guar-
with the expectation of obtaining better results than a sumantee that the eigenvalug'(\) can be obtained from the
mation method that uses information from one expansioncoefficientsE™ because different functions may have the
This expectation is supported by the results given by théame asymptotic series. E*'s satisfy a “modified strong

two-point Padeapproximants for the octic anharmonic oscil- @symptotic condition of orde,”

lator [13], which is considered as an extremely challenging

summation problem for large [8,11-13. In Sec. IV, it is
shown that the ordinary Padepproximants from the sole
un-normalized and weak coupling serids3) give eigenval-
ues as accurate as those reported in Red] for the octic

n

Ei()\)—go EN<Co" q(n+ 1)\, (2.2

then E'(\) is uniquely determined by the sdE};_,

oscillator, a result that emphasizes the good summability2,8,43. This condition is satisfied by thE' series of the

properties of seriefl.2), (1.3).

anharmonic oscillator§2,8,45, but for the general Hamil-

There are relatively few works that consider perturbationtonian H=p?+V°+\V the correctness of Eq2.2) is an

calculations of the eigenfunctiori4,2,35—42. Recent ap-
proaches such as multiple scale perturbation thggry3g,
optimized perturbation theorfy39,4( give good estimations

of the eigenfunctions for the quartic anharmonic oscillator,

but in general the calculation of the trde, is not easy even
if the eigenvalue seriefl.l) is well behaved. Variational or
perturbation methods can yield wave functiohg that con-

verge in the norm to the tru& whereas the expectation

value (¥, ,x*MW ) diverges with someM [42—44 as
n—oo. The set of Dirichlet wave function§¥g}r-o con-
verges in nornj27,28 and is uniformly bounde@9,30 so
that the calculation ofV; with large R yields an accurate

estimation of. The results of Sec. V show that the DWFA
produces eigenfunction series with properties as good as

those of the eigenvalue seri€k?2), (1.3).

Il. FORMAL RESULTS

Consider the Hamiltoniat (\)=H%+\V with H?=p2
+VO whereV°, V are continuous functions of. If the

open question.
The basis of the DWFA is the solution of the equation

Hr\)WR(N,X) =ER(N)WR(A,X) 2.3

with |x|<R, Hg(\) being the Hamiltonian defined by the
Dirichlet boundary conditions¥;=0 at x==R. If the
lower part of the spectrum dfi(\) consists of isolated ei-
genvaluesE®(\)<E(\)<---, the eigenstates of(\)
converge to those dfl(A) asR increases,

lim [[WR(A,x) =¥ (X, %)|[=0,

R—x

lim ER(A\)=E'(M),

R— o

(2.9

where we define?,=0 for |x|=|R| and||.| denotes the
norm of L, [27,28. This result together with theniform
boundednessf the set{ Wi}r-o guarantees the correct con-
vergence of¥' toward V' asR—c [29,30. Numerical re-

eigenfunctionsl® of H® form a complete basis of the space sults [31] suggest that the convergence ratelof can be

Lo(—,%), which will be denoted byL,, the RSPT pro-
ducesformal series of theth eigenvalueE'(\) and eigen-
function W'(\,x) of H()\),

characterized by the relationship

[ k=P~ 10| xg¥' -],
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where yr(x)=1 for [x|<R and yg=0 otherwise. Thus, for
practical purposes the calculation BE(N), Wk(\,x) on a

PHYSICAL REVIEW E 68, 016703 (2003

\IfiR()\,x), of Hg because the resolvent operatortbg,(\)
converges to that ofHg(\) in the operator’s norm as

suitable intervall — R,R] provides accurate estimations of —« [27,28; hence we get

E'(\), ¥'(\,x). Additionally, the eigenvalues obey the

variational inequality{29,30
E'(\)<ER(\)<Ep,(\) for R’<R. (2.5

Let LY denote the Hilbert spade,(— R,R) and let(,)r, |..|r

lim || @R X) = WR(NX)|[g=0,

n—o

lim EL(\)=ER(\).

n—oo

(2.10

be its inner product and norm. From a theoretical point Ofjy harticular, fora =0 the eigensolutions of the zero-order

view there are some advantages in solving E33) by

RSPT. The basic premise of the RSPT is that the eigenfun

tions of the zero-order operatblﬁE Hg(0) form a complete

basis ofLY. This premise holds true because the resolvent of

Hg(\) is a compactoperator inLEz for any pair\, R when
VO, V are continuous. In contrast, the operatdrin L, with

V0= —e I has a finite number of bounded eigenstates and

the RSPT is not applicable. In the context of perturbation

methods, the remarkable feature of the DWFA is that the

singular perturbationsv of H® are regular perturbations of
HZ. In fact, if V is continuous it satisfies

IVulr=<ag|ullz+brlHRUR

with ag=maxyg|V|, bg=0; that is,V is aboundedoperator
in LY. Hence the analytic perturbation thedt,2] guaran-
tees that both th&y and V', series,

ER(M) =2 ERNK,
k=0

‘If‘R(x,x>=k§0 PEOONK, (2.6)

converge for smalk. In contrast, the eigenvaILIE'R()\) may
not be uniquely determined by the $&*};_, when it does
not satisfy Eq.(2.2).

The exact solution of the zero-order Dirichlet problem,

(2.7

W (x=+R)=0, is known in some casd84] but in gen-

HOWL(x)=ERLWO(x),

Cproblem,
HRnPhRy(X) = ERn®@hn(X), (2.1
converge to those dfi%,
lim ||k = PE(x)||r=0,
n—oo
limEL =EL. (2.12

n—oe

The application of the RSPT to E€R.8) yields the formal
series

iRn(x):gO ExAK,

R X) = 2 RO, (213
whose convergence is guaranteed for smatdlince the per-
turbationVpg,, is a bounded operator ddf

Ill. RELATIONSHIP BETWEEN SERIES

Let us consider the relationship between the formal series
(2.1) and (2.6). According to the RSPT in order to compute
series(2.6), one has to solve the zero-order probl&hy) for
all j=1,2,...,with normalized¥?'s. Let Ex*=C=gL "0
and y==wL="% SinceWw¥s form an orthonormal basis
of LR, every eigenfunction series coefficiet< has the
Fourier series

eral this problem has to be solved numerically. In this work,

the Dirichlet problem(2.3) is replaced by am-dimensional
problem,

HraM) oA ) =ER (M PRy(AX), (2.8
whereHg(\) is given by

Hra(A\)=H% + A Vg, (2.9

with  H%,=PrH3Prn, VrRi=PriVPgrn, Where Pg,

=3n-1lerm{@rn is the projection operator on the di-
mensional space generated by the firglements of an or-
thonormal basis{orm(X)}io_, of LY which satisfies the
boundary conditiongg(*=R)=0. The main idea behind
this procedure is that for large the eigenstateE'R_n()\),
®L(N\,x) of Hg, are essentially equal to thosEg(\),

yR=2 cf¥l, k=01,..., (3.1a
i=1

wherec;*~%=§; andcj_;=0 fork=1. The remaindec}“’s
are calculated together with the eigenvalue series coefficients

EX with the formulas
Ex=V|&t,
ek, = (Sk=Vik Y (ER-EY), (3.1

where the quantities

k=1
' R
S}k= E: ElR,k kC}k ’
k'=0
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Vikot= » N ER VLY, (319
j'=1
are obtained from the Fourier series
Vl/lkklzé:l V},k—lq,jRo,
k—1 ®
Sikzkgo Eipékik,d/iFie(,:jZl S}k‘l“-RO. (3.10

The computation of coefficien&'*, '¥(x) of series(2.1) is

carried out with formulas(3.19—(3.1d where EL, iF?,

(W10 VLo, are replaced b, 0, (Wi vwi'0) re-

PHYSICAL REVIEW E68, 016703 (2003

lim EX =EkX,

n—oo

lim (X)) =(x), k=0,1,... . (3.9
s

The solution of then-dimensional probleni2.8) by RSPT
has some advantages. The zero-order prolfedt) can be
solved completely since it has a finite number of solutions
Ekn, @K, which can be computed with the standard numeri-
cal software. Since there are jusfunctions®L),, the infi-
nite serieg3.1a8— (3.1d are replaced by the finite ones and,
therefore, the coefficientsl,, ¢k, can be computed up to
the desired ordek. It could be expected that it is necessary
to carry out calculations with largeto get accurate estima-

tions of EL(\), andWL(\,x) but the numerical results given

spectively. The convergence of the first three quantities tope|ow show that this is not the case for anharmonic oscilla-

ward the latter three d&8— « leads to the convergence of the
coefficients of serie$2.6) toward those of serie@.1).

The convergence gy, WK to E'°, ¥I° follows from
Eq. (2.4) with A=0, but thesoleconvergence o toward
W¥i% in the L, norm [Eq. (2.4)] doesnot guarantee the cor-
rectness of equation

lim (W10 VL0 = (wi0 vi'0) (3.2

R— o

for V=x2M. The examples of wave functionk,, that con-
verge in theL, norm to the correc®, whereas the expecta-
tion value(¥,,xM¥ ) diverges for some power operator
x?M asn—, are given in Refs[42—-44. The additional
condition to guarantee the convergence(®f, x>MW ) is
the uniform boundednessf the set{¥ .}, _, in the x space
(see Refs[42,44 or Sec. V for details The set of Dirichlet
eigenfunctions Wk(\,X)}r~g is uniformly bounded by the
asymptotic form of the corresponding!(\,x) for A=0
[29,30 and therefore Eq3.2) holds true. Thus we have the
equations

lim Ex=E'X,

R— o

lim ()= y'*(x), k=0,1,... . (3.3

R—

There is a similar result between serigss) and(2.13. The

coefficients EX., ¢ (x) are computed with formulas
(3.18-(3.1d), Whe_reEiO,. 10 (wl0 L%, are replaced
by E., ¢, (PR VDL, respectively. Since/ is a
bounded operator im?, the sole convergence of the se-
quence{®L1* | in theLY norm[Eq. (2.12] guarantees the

jo j'0
convergence of @k, V®L g,

lim (@, VPR r= (VK VTR )r.

n—o

This result and the convergence BE,, 10 to EX, w10

tors when a trigonometric basis is used.

The Egs(3.3) and(3.4) are independent of the singular or
regular character of the perturbativna proof of such equa-
tions with tools of functional analysis is given in RE33]. If
Ngrin» Meri» and Ag; denote the convergence radii of the

kn» Er, andE' series, respectively, we can surmise the
following result:

lim Ngrin=Neris

n—o

lim )\ERi: )\Ei .

R—

(3.9

If V is a singular perturbation, we hawe:gin,Ngri— NEi
=0 asn,R—oo, although the continuity o¥/(x) guarantees
that\ggrin, Aggri are nonzero for anRR sinceV is a bounded
operator inLY. In this case, the sequencfBi(\)}k_o,
{ER(\)}i_, of the partial sums

K
EiRKn()\) = kgo Eil%n)\k'

K

Ei,f()\):kgo EKNK (3.6)

converge toEL () and ER(\) for |A|<\ggrin and ||
<\gRi, respectively.
IV. SUMMATION OF EIGENVALUE SERIES

To begin consider the calculation of the ground state for
the quartic oscillatoH = p?+x?+ \x* with the trigonomet-
ric basis

_sin(mqrx/R)

VR

The set{n}m—3 produces accurate estimatioB,, ®,
of the first eigensolutiongY , WY of H (2.7) with several

ORm m=1,2,... . 4.0

[Eq. (2.12] lead to the convergence of the coefficients of theR values, larger setspy}m_, yield the same results. Table |

i ik ;
rn andV¥ i, series,

reports some coefficiensy, for R=1, 2.1, 2.5, 5, 10. The
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TABLE |. Coefficients EiF'énzso for the ground state ofl =p? TABLE Ill. Partial SUmSEiRK’n:3O()\:1) for the ground state of
+x2+1x% In this table and the following ones, the notation] ~ H=p?+x2+Ax*.
meansx 10™
- - - - - K Ei2}.<0n Ei2}.<2n Ei253 n
k  Ef E3n Ex'sn Esy Eiln 0 1.075 1.035 1.024
0 30] 1[0] 1[0] 1[0] 1[0] 10 1.398 1.399 1.394
5 1[-10] 1[0] 2[0] 2[2] 2[2] 20 1.398 1.389 1.169
10 §-—21] 2[—3] —1[1] —4[7] —5[7] 30 1.398 1.394 2.357
15 3 —31] —2[—4] —9[1] 3[13] 1[14] 40 1.398 1.393 —-1.01
20 3F-41] -7[-5] 821  —4[19] —1[21]
25 2{-51] —1[-5] 1[4] 5[25] 6[28] _
30 2A-61] -3[-7] -1[5] -6[31] —8[36] cording to this table, eigenvalugx(1) has to be estimated
35 2A-71] 3[-7] —2[6] 7137 2[45] with R=2.8 to getE'(1) with seven exact figures, while the
40 1-81] 9[- 8] 1[7] —-8[43] —1[54] partial-sum sequendEp(1)}k_o converges foR<2.0.

K/2

2 ak)\k

K/2

1+ >, bk (4.2
k=1

An alternative way to computér(\) with a “large” Ris
) the application of summability methods to t&g , series. In
coefficients withR=1 behave likeEy,~10 %%, and this  this work, we use the diagonal Padpproximants
suggests that thé&g,, series has the convergence radius
Aerin~ 10. However|EX | increases rapidly aR goes from EiPK
2.110 10 andkis increased. Table Il reports the rafig/E™ n (M=
with the coefficienE’ of the E' series and we see thBt,
tends toE'* asR increases. This confirms the convergence ofobtained from the partial sumE A(N) with K=2,4, .
the coefficientsEX,, EXX toward E* asn,R increase{Eqs.  [46]. LetRF, | be the largesR forwhlch the Padeequence
(3.3) and(3.4)] and supports the expectation that the conver{EX¥(\)} converges to a useful estimation BE(\). The
gence radilegin, Aeri tend to thatkg; of the E' series[Eq.  following heuristic argument suggests tiR{t , is larger than
(3.9]. The quartic anharmonic oscillator hkg;=0 [15,18  R,; . Figure 1 shows a qualitative graphRfs the conver-
and thereforé\ggin,Agri—0 asR,n—, although the ana- gence radiug gg;, of the Ei;, series withk ¢;=0 [Eq. (3.5)].
lytic perturbation theory guarantees thegrin, Neri @€ et NPy, denote the maximun for which the Padese-
nonzero. . : . . quence{Ef(\)}« converges. If the Padepproximants ex-
Toiestlmate the e|genvaIu§()\)_ with the_ Dirichlet val- tend the convergence radius of a series, thgg,, is greater
uesEgy(1), these have to be estimated W'th a Ial@eTh_e than\gg;, for eachR and therefore the graph vas )\ER-
above results show that th#;, and Ei series diverge with n
is qualitatively as Fig. 1 shows. We see thaf B (\)}k
large\, R so that, apparently, there is no advantage in Comconverges with a given,, the sequenceéE'PK()\)} also
puting such series. However, we can take the following apd hal R h i K
proach. Instead of making calculations with laig¢o com- oes with a largeR, hence we ge
puteE'(\) for any\, we fix \ and compute the largeRtfor RP ~R..
which the partial-sum sequendEp,(\)}k_o converges. A TN
This R value depends om, i, n, and will be denoted by Finally, if R?, is large enough, the sequenfBIZ(\)}«
Ryjp - The valuesEg, (A =1) reported in Table lll show that ¢onverges to a reliable estimation Bf(\). As we shall see
{ERntk—o converges wittR=2.0, henceR,;,=2.0. Table IV pelow this is the case fox from the weak to the strong
reports exact eigenvalu&(\) calculated variationally and  coupling regime of the quartic, sextic, and octic oscillators.
shows their convergence towaEl(\) asR increases. Ac- The calculations were done with 32-digit precision.
Following with the ground state of the quartic oscillator,
TABLE Il. Ratio Elé(n/Elk betweenE',fn’s of Table | and the Table V reports the Pédapproximantgzirfl(igo()\) with \
coefficientsE'® of the corresponding' series. =

TABLE IV. EigenvaluesEiR()\) for the ground state ofi =p?

k EY, Ebn Ebsn Es Bl +x2+axt

0 40l L L ! L R A=0.1 R A=1

5  5[—13] 2[—4] 1[-2] 1 1
10 —9[—29]  —3[—11] 2[—-7] -1 1 4.5 1.065285509547 2.8 1.392351935104
15  3-45 —2[—-18 —8[—-13 3[-1] 1 5.0 1.065285509544 4.0 1.392351641530
20 —2[—62] 5[-26] -6[—19] 3[-2] 1 9.0 1.065285509544 5.0 1.392351641530
25  3-80] —2[—34] 2[-25]  7[-4] 1 A=10 A=100
30 —3[-98 4] — 44 1-32] 7[-6] 1 2.0 2.449174298327 1.5 4.999417547532
35  §-117 1-52] -1[—39] 3[-8] 1 2.5 2.449174072118 2.0 4.999417545137
40 —1[-135 -7[-62] —1[—-47 7[-11] 1 3.0 2.449174072118 2.5 4.999417545137
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FIG. 1. Qualitative graph oR vs the convergence radidggin
and\ g,

=0.1, 1, 100 and increasirigvalues. In order to exhibit the

PHYSICAL REVIEW E68, 016703(2003

TABLE VI. First and last Padeapproximants of sequences
[ERK_45(\)}g for the ground state off = p2+x2+ Ax*.

K A=100 K A=500
R=1.40 R=1.10

56 4.99941770295 56 8.4616426903

70 4.99941770294 70 8.4616426904
R=1.45 R=1.15

38 4.99941756608 62 8.461642638

40 4.99941756607 70 8.461642635
R=1.50 R=1.20

38 4.9994175479 68 8.46164264

40 4.9994175476 76 8.46164269

ex 4.9994175451 8.461642629

@Accurate eigenvalueg'(\).

cause of rounding errors. The convergence pattern allows us

to determine the accuracy ()\) s when they are seen
as estimations ofEg(\) or E ()\) For fixed R and A,
'PK“"“()\) and E'PKmax()\) differ in the last figure, hence

convergence rate, we report the first and the last elements tifiey coincide wrthER(x) except in such a figure. Consider

a sequencd EX(\)}x of approximants, which have the
same figures except the last one. The Pagproximants
E'PK(\) from the E' series are reported witke. For \
=0.1, there is convergence witk=5, 10, and therefore
RP,=%. The Padeapproximants reported fox=1, 100
show that the convergence rate{&y ()\) _, is slower as
R and \ increase. Foin=1, the sequencéE'PK(x)}
converges withR<4.5, hence we geR., =4.5, which |s
large enough to estimate€ (1) with 11 exact figures. Fox
=100 andR= 1.4, the sequendE (\)}1, converges to
an estimation ofE'(\) with six exact figures, whereas the
Padesequencd EPK(\) 12, from the E' series has a null
accuracy.

The calculations fokh =100, 500 are given in Table VI.

the bestEj(\)’s for eachR value and the sama. As
expected, they obey the variational inequali®y5) asR in-

creases and consequently each value is an upper bound of

E'(N),

E'\<ERKON<ERS(\) for R'<R.

The convergence pattern allows one to get the accuracy of

eachEZX()\) when it is seen as an approximationEi{\).

For example, ERn 30(500) with R=1.10, 1.15, 1.20 has
seven exact figures d'(500), a result confirmed by com-
parison with the exadt'(\) grven at the bottom of Table VI.
These results show th&b RP.. is _Iarge enough to estimate
E'(\) and (i) both theE, and E; series can be summed

We report the first and the last elements of a sequence ghuch more effectively than the' series to provide accurate

|PK

EIPK

calculatrons beyon ., yield (\)’s which oscillate be-

TABLE V. First and last Padapproximants of the sequenceBin_so(\)}e.

n (N)’s, which have the same figures except the last onegstimations ofE'(\) with A from the weak to the strong

coupling regime.

S AEPEOONE for the

ground state off =p?+x%+Ax*. E'PX(\) corresponds tee.

K A=0.1 K A=1 K A=100
R=5 R=3.5 R=1.4

22 1.065285509544 38 1.392351641529 34 4.9994175

40 1.065285509544 40 1.392351641529 40 4.9994177
R=10 R=4.5 R=1.7

36 1.065285509544 38 1.3923516415 32 4.9992

40 1.065285509544 40 1.3923516415 40 4.9994

oo [o2] oe}

38 1.065285509544 38 1.39235 36 3.33

40 1.065285509544 40 1.39235 40 3.42

ex 1.065285509544 1.392351641530 4.9994175

@Accurate eigenvalue'(\) from Table IV.
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TABLE VII. PadeapproximantER K_ () for the ground state TABLE IX. PadeapproximantsEq K_ g, for the ground state of

of H=2"Y(p?+x?)+ 1 x*. H=2"Y(p?+x?)+\x5.
K A=1 K A=10° A=1 A=10°
R=3.5 R=0.9 K R=2.1 K R=1.05
66 0.803770651234 50 6.69422085 50 0.82068517861 72 2.833101931
78 0.803770651234 80 6.69422085 68 0.82068517861 80 2.833101931
ex 0.803770651234 6.69422085 ext 0.82068517857 2.833101930
6.694268 2.833%
6.6942208% _
6.69422088 @Accurate eigenvalueg'(\).

bTwo-point Padeapproximants from Table VIII of Ref13].

@Accurate eigenvaluel'(\). _ o _
bpadeapproximants from serig@.4), values from Table Ill of Ref. [9-12), the effective characteristic polynomials method

[13]. (ECPM), or the two-point Padeapproximants[13]. The
°Effective characteristic polynomials from serigs4), values from  n-dimensional version of the DWFAEQs. (2.9), (2.9)] is
Table IV of Ref.[13]. similar to the ECPM since it starts from an orthonormal set
“Two-point Padeapproximants from Table VI of Ref13]. {®,}"_, in L, to compute the eigenvalues by means of the

secular problenP,(E) =de{(®, ,H® ,)—E?,,|=0, where

Tables VII-IX give a summary of calculations for the the original HamiltoniartH =H%+ \V is replaced by an other
ground state oH=2"(p?+x?)+\V with V=x*% x5 x®  H* that leads to an effective characteristic polynomial
and\=1, 1_03. We report the first and the last elements of ap? (E) which produces more accurate eigenvalles.
sequencédEp <(\)}x of Padeapproximants, which have the  As an example of the renormalization techniques, we
same figures except the last one, and the eEaCt) was have the scheme of izzk and Vrscay[22], which was
estimated variationally. The results for the sextic case arevorked out in detail by Vinette andigzk [21], and Weniger
interesting because they provide accurate approximations @k a|. [12]. The scheme uses the variabtes (1— x) ¥
E'(\) for small or large\ whereas the Padapproximants \ith
from the E'(\) series have a useless convergel&&5,17.
The results for the octic oscillator are remarkably accurate )\Ek(l_K)—(MH)/ZB'\—Al
and surprising since they show that the Paggroximants
are able to sum thEy and Ey,, series from the weak to the and By=M(2M —1)11/2M~1 to transform the problemp?
strong coupling regime, whereas Graffi and Grec3t] +x2+ MM Wi =EW! into the equation
proved rigorously that the Pad@proximants cannot sum the

correspondingE' series for any\>0. H()Wi(k,X)=E (k)P (k,%), 4.3
The RSPT produces weak coupling eigenvalue series
which can be summed for small. The main approach to | pare A(k)=[p2+ X%+ k(XM/By —x?)], Ei(x)=(1

solve the problem with larggd has been the substitution of
the original HamiltoniarH by anotherH* with eigenvalue
series having better numerical properties. In this kind o
methods, we have the DWFA studied in this work, and the o

renormalization techniques which can be complemented with Ei(x)= E cik ik (4.4)
summation techniques such as nonlinear transformations k=0

—k)Y2E'(\), and ¥i(k,x)=T(\,x). The coefficientc’®
fof the formal series

TABLE VIIl. Pade approximantsEfs r_s,(\) for the ground  grow similarly to the coefficient&® of the E' series for the
state ofH=2"1(p?+x?) +Ax°. guartic, sextic, and octic casgk2]. However, the results of

Ref.[12] show that theE' series can be summed more effec-

K A=1 K =10 tively than theE' series for smalik. Cizek and co-workers
R=2.4 R=1.0 [13] combined the ECPM and the Pasemmation to com-
52 0.804965976056 70 3850869184  Pute the ground state of the quartic oscillator with Bieand
72 0.804965976058 90 3.850869184 E' series. Table VII reports these values for10°, and
ext 0.804965976012 3.85086918 2  shows that their accuracy is similar to that of the Page
3.85080 proximantsEpgr (\) [47].
3.850869 If both the weak coupling and the strong coupling expan-
sions are constructed in terms of a same coupling parameter,
@Accurate eigenvalueB'(\) from Table IV. we can use summation methods that combine the informa-
PEffective characteristic polynomials, values from Table V of Ref. tion from such expansions to produce, at least in principle,
[13]. better results than a summation technique that uses informa-

“Two-point Padepproximants, values from Table VIl of R¢fL3].  tion from one expansiof¥8]. This is the case of anharmonic
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oscillators. Following Wenigdrl0], the renormalized Hamil- |E'F‘;/n|<|Eg<n|<. .. <|E¥ for R'<R. 4.7
tonianH(«) can be partitioned as follows:
. o L This behavior can be attributed to the fact that the matrix
H(x)=(p*+x*MBy) + (1= ) *=x*"ByY) (45  elements VI = (W% vWwi0, are basically increasing
functions ofR but convergent tg 1%, VWi’ asR,n—o,
of course[Egs. (3.2—(3.4)]. For instance, in the casd®
* =p?2, V=x2, the trigonometric basis yieldgl ~R?. Ac-
El(k)=> I'k(1—k)k, (4.6)  cording to Eq.(4.7), we can say that the converger(céver-
k=0 gence rate of theE, series is fastefslowe than that of the
E' series and, therefore, ttiEk | series can be summed more
effectively than theE' series, a result that can be extrapo-
lated to theEy series.

henceE'(«) has the series

which converges in the neighborhood ¥ 1, or, equiva-
lently, the series

i _ —-1/2 ik k
E'(N)=(1-k) IZ,O I'(1-«) V. SUMMATION OF EIGENFUNCTION SERIES

o ) If Vis a regular perturbation dfi®, the ¥' series con-
converges foI_Iarge\ [.10], that is, it is a strong coupling verges in the, norm: that is, the sequen¢§"K()\,x)}°§:O
expansion of£'(«). This series poses the problem of com- of the partial sums
puting the coefficient§' since the eigenstates of the unper- .
turbed Hamiltonianp?+x2“B,,!, are unknownI'¥’s are . :
given by the divergent series that can be summed with the \PIK()"X)ZKZO PrOON (5.
nonlinear sequence transformatiofi®]. Cizek et al. [13]
used these coefficients together with those of the weak cowonverge toW'(\,x) in the norm for smallk, || ¥ —¥i||
pling expansion(4.4) to sum the series with the two-point —0 [1,2]. This convergence does not guarantee the correct
Padeapproximants. Tables VII-IX report some results from calculation of¥'(\,x) since the sefWK(\,x)}%_, has to
Ref.[13] for \=10%, and we have a surprising fact that their pe uniformly bounded in the space. To define such a con-
accuracy is equal to or lower than that of the ordinary Padeept, let us denote the expectation valfigS f) of a symmet-
approximantsEg; (\) even when the latter were obtained ric operatorS by S(f) and consider that wave functiofiéx)
from the (un-normalizedl weak coupling,, series, a result are rapidly decaying wher®(f)={(f,x¥f)< holds for all
that emphasizes the good properties of Ejg, series. k=0. Let() denote a bounded region afXf be its comple-

The convergence of the Padequencd E'P¥(\)}« from  ment. We say that the sg¥ } is uniformly boundedUB) if
theE' series for the quartic and sextic anharmonic oscillatorghere is one rapidly decayin¥ such that the inequality
is guaranteed by the fact that the coefficieBt§ are essen- |¥,(x)|<W¥g(x) holds on a regio)® for largen whereQ¢
tially the coefficients of a Stieltjes series is independent ofn, otherwise {¥,} is nonuniformly

. boundedNUB). If {¥,}_, converges toV in theL, norm

0~ (1), ?nd is UB, the sequenda™ (¥ ,)}i_, converges tocM(W)
4=o or all M=0. Thus one can say thdt,, has a correcglobal
convergence on the wholespace as— o, but if {¥,};_;

for which there is a unique(t) such thatuq=[t%p(t)  is NUB the sequencéx(W¥,)}_, does not converges to
[2,8,15. However, Graffi and GrecchB2] proved that for the correct value for some! [42,44).
high-order oscillators the measupgt) is not unique and, The boundedness property is a suitable criterion to char-
therefore, the sequend&'"(\)}« does not converge. The acterize sequencesV,} calculated with the variational or
Stieltjes-series grgument cannot be applied to prove the coperturbation methods. fomim_, is a complete basis set of
vergence of PadapproximantsEg,(\) (4.2 because the the Sobolev spacd/s ,, the sequencEd,}*_, of the varia-
sign of the coefficientE',{‘n is not alternant as Table | shows. tijonal wave fUﬂCtiOﬁS@nZEnmzlcanm, converges to the
The convergence may be explained by the Pealgecture  correctW in the energy nomi50], but in Ref.[44], it was
[16] which concerns the convergence of the diagonal PadBroved tha{®,}_, can be NUB and yield incorrect expec-
approximants to analytic functions, but no proof yet exists. Ifiaiion values. On the other hand, in REf2), it was shown
this conjecture is correct, the approximaig, (\) cOn-  that thew' series can yield a NUB sequence of the partial
verge uniformly toEg(\) for small\ since the analytic per-  sums{Wwk1%_ even whenV is a regular perturbation of
turbation theory guarantees thak(\) is an analytic func- HO,
tion of A [49]. _ If V is a singular perturbation, the main rigorous result

The excellent numerical convergence{@i <}« for the  about thel' series is its asymptotic natuf#,2]. This means
quartic, sextic, and octic oscillators may be attributed to thehat ¥'(\,x) may not be determined uniquely by the set of
smallness of the coefficienBf,. In all the cases studied coefficientsy/*(x). Additionally, in Ref.[42] we saw that
here,|[EX | with k=1 increases monotonically and tends tothe W' series can be characterized by the nonuniform bound-
|[E'| asR increasegsee Table), edness of the partial-sum sequed&(\,x)}x_o. These
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' TABLE X. Functional Padeapproximants for the ground state
o—t — — ~ of H=p2+x2+\x*. The ratios® </ xTe, WPK/xZ with K
=40, n=30 are reported¥'PK corresponds tR= .
7 1 A=1 W& =1.0165062
_ R x=0 x=3.5
;;‘0‘ 1 4 0.8347097115 5.3407[19 8]
= % 0.884708 -1.9-8]
& ext 0.8347097115 5.3407L7 8]
S 15 i
A =100 VX% =1.118208
x=0 x=1
20 R= 25 5 7 10 A 15 1.16709754 0.01979228
k=10 o 1.07 0.09
ext 1.16709758 0.01979230
® 1 2 8 4 5 s 7 8 s 10 1.70° 0.0188%°

@Accurate eigenfunctio’(\,x).

FIG. 2. Graph ofx vs logd ¢ ,—sf #'¥| with k=10 for the
byvalues taken from Table | of Ref39].

ground state o = p?+x%+ Ax*.

two problems are solved by the DWFA. Since the set of The ®k,, series are summed by the so-called functional

Dirichlet wave functions{Wr(\,x)}r-o is UB and con- Padeapproximant§16]

verges to‘l{i()\,x) in the L, norm [29,30, it is enough to

estimate W(\,x) with “large” R. The computation of _ K2 K72

Wh(x,x) with [x|<R eliminates the nonuniform bounded- ~ ®gn (\,X)= kZO ag (XN / 1+k§_‘41 b (X)AK],

ness problem since it is a problem on an unbounded region
of the x space. On the other hand, since singular perturba- ) ) K .
tions of H such as/=x2V are regular perturbations ef%,, ~ Which arelobtalnde}:i frzo;rn the [aaegt"’_"rl lsallﬂﬂ%n()\,)()t V‘;'r:h a

iK o ; givenx value andK=24, . .. . Table X reports the ra-
the sequence’s (A x)jk—o of the partial sums tios ®IPK/ XK, wiPK/ XX at somex values forn=1, 100
andn= 230, K=40. The normalization constagky, is com-
puted by the Padesummation as is explained below;
WiPK(\,x) is the Padeapproximant from theb' series and
the exact¥'(\,x)’s are estimated variationally. We see that
CI)'anK()\,x) 's are very accurate, whered&PX(\,x)’s have a

N M (iK1 )
\PR”R_ﬁ [1’i2]' Hence th? squﬁn_({ex (WR)}k-o CON poor or null accuracy. This result is reflected in the graphs of
verges tax" (V) for M=0 sincex" is a bounded operator X VS |0910|q)ianK|/‘I’aSv logyo| W'PK|/¥ . plotted in Fig. 3 for

in ,|-2R- These results are easily extended to the sequence_ 140 \where
{®K Ve, of the partial sums

K
‘If‘é(x,x>=k§0 PN (5.2

converge toWk(\,x) in the norm for smallx, ||WK

K ,

3t L
. "

RN =2 prOONS (5.3 A

k=0 25+ : 4
. *

from the®y,, series corresponding to Hamiltonigty, (2.9). 2r A =100 PR 1
Let us see some numerical examples. 15k [ * |

Consider the ground-state calculation fét=p?+x?
+Ax* with the basispg, (4.1). Figure 2 shows the graph of
x vs logid ¢/ /| for k=10 andR=25, 5, 7, 10; the ob- |
served cusps are due to the zeros of the functions. We se
that ¢, tends uniformly toy/* asR increases and similar o
results are obtained with oth&rvalues. This confirms the
convergence of coefficieniglk,,, i toward /¥ asR,n— o
[Egs.(3.3—(3.4)]. Hence we can expect a poor convergence -
of both the®y,, and ¥ series ak,n increase. Instead of
summing these series with largewe fix A and estimate the ™% 0z o4 os o8 i 12 14 1s
largestR for which the summation of the series yields a
useful estimation of’'(\,x). The following results show FIG. 3. Graphs ofx vs logid @i |/W 55 and logg¥'P¥|/¥ .
that R estimated with eigenvalue calculations can be used. for the ground state ofl = p?+ x?+ Ax* with R=1.05, n=30.

-05
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TABLE XI. Padeapproximantscy h_s, for the ground state of
Hg=p?+x2+ Ax* with A\=500, R=1.15, 56<K=<60.

(x) (x%) (x*
1.280573 4.547445-2] 5.580462— 3]
ex 4.547445—2] 5.580462— 3]

&/alues from the accurat®#'(\,x).
W as(\,x) =exp(— N Y2x|3/3)

is the asymptotic form of the exadt' [38]. In agreement
with the uniform boundedness of the SEVL(A\,X)}r=0
[29,30, CDianK()\,x) remains bounded by, asK increases.
The “largeness” ofR=1.05 guarantees thélipf’nK()\,x) is an
accurate estimation o¥'(\,x) on[0,R] except in a small
vicinity of x=R where ®°X(\ x) satisfies the Dirichlet
boundary condition. _

The convergence of the sequengir

flected by the Padapproximants

/

obtained from the firsK terms of the expectation value se-
ries

(N, X)}k is re-

K/2
> al\k
k=0

K/2

XM= 1+k2l by Ak

© k
Dl (2 (™ i gim )x
k=0 \ m=0

Table XI reports< =2 =||®IPK||2 and the ratioy</x2 for

M=2,4 and\=500. We see thaxy’s coincide with the
values from the exacP'(\,x) estimated variationally.

The calculations for the ground state &f=2"1(p?
+x%) + AV with V=x°x® and\ =1, 1C are given in Tables
XIl and XllI; the exact¥(\,x) andW¥'(\,x) are calculated

variationally. Table Xl shows th@kPnK()\,x) 's are accurate

TABLE XII. Functional Padeapproximants for the ground state
of H=2"1(p2+x®)+\V with V=x° x& The ratio ®*¥/ 1%
with K,,;»<K=<90 andn=30 is reported.

A=1 A=10°

V- e o s
x=0 0.877379780 1.31546068

0.877379789 1.31546068
x=.5 0.710919869 0.33010483

0.710919869 0.33010483
x=2 6.40764—4]

6.40768—4]2
V=x8 PIPKI A Do
x=0 0.885440760 1.2230217

0.885440760 1.223021%
x=1 0.312207486 2.68-5]

0.31220748% 2.70-5]2

@Accurate values of eigenfunctiofi’'(x,x).

PHYSICAL REVIEW E68, 016703(2003

TABLE XIII. Padé approximantsy «_ s, for the ground state of
H=2"%p?+x?)+AV with V=x8x8 The valuesxy, °¢ and
XK IxSK with M=2, 4 are reported.

A=1 A=10°

v=x* Lav rRon
(x% 1.070075 1.185283
(x?) 0.238707 4.592118-2]
(x* 0.150127 5.432953-3]

V=x° RS 1n R oa
(x% 1.067079 1.131956
(x?) 0.225647 6.033521-2]
(x* 0.130854 9.163312-3]

estimations of’'(\,x) except in the vicinity ofx=R. The
graph ofx vs the ratio® |t /W, is plotted in Fig. 4 for the
octic oscillator with\ = 10°. We observe a uniform conver-
gence of @K (X, x)}x towardWi(\,x). Table XIlI reports
the Padeapproximantscai which coincide with the values
from the exact\l_fi(k,x). These results show that the Pade
approximants® i ¥(\,x) provide accurate estimations of
Wi(\,x) for A from the weak to the strong coupling regime.
Recent perturbation approaches consider the calculation
of eigenfunctions. Table X reports the estimations of
WP'(\,x) obtained with the so-called optimized perturbation
theory for the ground state ofl=p?+x?+Ax* with A
=100[39,40. A comparison between these values and the
PadeapproximantsIb'Ff’nK()\,x) shows that the latter are sig-
nificantly more accurate. The multiple scale perturbation
theory[37,38 was successfully applied to the eigenfunction
calculations of the quartic anharmonic oscillator, but its ex-
tension to the sextic and octic oscillators is not easy since the
method involves the solution of nonlinear operator equa-
tions. A renormalization scheme was used in Réfl] to
estimate the eigenfunctions with a series that converges in

— - K=10 4
= K=20
* K=30 .
— K=40 [

06

041

021

0 L 1 L L L L L 1 ) L
0 0.1 02 0.3 0.4 0.5 0.6 0.7 08 09 1
X

FIG. 4. Graph ofx vs ®XK/ Wl for the ground state oH
=2"Y(p2+x?) + \x® with R=1.05, n=30.
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the norm, but the boundedness property of the corresponding, an n-dimensional versioH%,,, whose eigenstate&h, .,
partial-sum sequence was not investigated. ¥k, converge to those df$ [27,28. These methods and the

RSPT producéEg,, andﬁf‘Rn series whose coefficients con-
VI. DISCUSSION verge to those of th&g, and W, series[Eq. (3.4)]. Thus,
. . the DWFA gives a general approach to compute the coeffi-
The DWFA has some advantages from a theoretical pOInTct:ients of theE' and V' series when the eigenstates of the

of view. The basic premise of the RSPT is the completenesan erturbed Hamiltonian are unknown. For instance, the co-
in L, of the eigenfunctions oH%=p?+V?°, this excludes P : X

potentials such ag®= —e X while the RSPT is applicable efficients of some strong coupling series such as (B,

to the Dirichlet eigenprobler2.3) because the compactness whose calculation has been the subject of several studies
genp ' P [10,22—-28, can be computed with the series of the corre-

of the resolvent ofH.R ggarantges th_at its elgenfunc_tlons sponding operatoH s ,.
form a complete basis df; . If V is a singular perturbation, The main result of thel! series whenV is a singular

the eigensolution&'(1), W'(\,x) may not be determined (roqyja) perturbation is the asymptotic natufonvergence
unlquely by their formal series. Thls'problgm of UNiQUENess;, the |, norm) [1,2]. The calculation of the trud(\,x)
which was solved for the anharmonic oscillators, is open forrequires a UB partial-sum Sequer{GEiK()\ x)}«, but it can
a continuous and singular perturbatignin contrast, such a o NUB even ifV is regular[42]. The c’alcula’ttion of the
problgm d|sa%pears with the DWFA sinvias a regular per- Dirichlet eigenfunctionslfk()\,x) eliminates the nonuniform
turbgtlon ofHg. - ik i boundedness problem. The functional Paagproximants
Since the coefficientBgy, converge tg asn—c (34, @IPK() x), which yield accurate estimations ¥f (\,x) for
the resuilts ot_)tamed with tH('eRn series can be extrapolated the sextic and octic oscillators in the strong coupling limit,
to the E, series. The numerical results show that #i§,  show the excellent properties of thiek and W', series. To
series can be summed much more effectively than Bhe the best of our knowledge, perturbation calculations of these
series. By simplicity, theEg,, series were summed with the wave functions have not been reported in the literature.

ordinary PadeapproximantsEianK()\). The Padet;onjecture In principle the equatiotH¥'=E'¥' can be solved by
may be an explanation for the convergence of Pamjeroxi- means of am-dimensional problem such as E@.8). This

mantsEX X (\) for small\, but the excellent numerical re- approach, which is called “variation-perturbation” theory

sults can be attributed to the “smallness” of coefficieBt§,  (see, e.g., Ref4]), involves solving thex-dimensional prob-
[Eq. (4.7)]. Itis a surprising result th& L *(\)’s give accu-  lem (HJ+\V,)®,=E;®| by means of a perturbation
rate estimations of'(\) for anharmonic oscillators with method, ~where H%=P.H°P,, V,=P,VP,, P,
small or large\. The results for the octic oscillator are par- =37 _;|¢n){¢ml, and{emn}m-, is an orthonormal basis of
ticularly remarkable since in this case the Pagproximants  L,. Since the operatdv,, is bounded irL,, the formal series
E'PK(\) from the E' series do not converge for any>0
[32]. o w
Renormalization methods give a way to compute eigen- iy ) — iky K gy _ iky k
values in the strong couplir?g regime%/ The re%ormaﬁqzed En(M) Zk Enh" Palh) ; ok
Ijamiltonianﬂ (4.3 is interesting because, as was shown by
Cizek et al.[13], it produces both the weak coupling and the have a nonzero convergence radius for anigut these series
strong coupling expansions which can be summed simultégr the functionsd!, may have bad numerical properties as
neously with the two-point Padgpproximants to obtain ac- ., et us consider the convergence arguments behind
curate eigenvalue'(\) for small or large\. Itis surprising  gqs, (3.2 and (3.3. The uniform boundedness of the set
that the ordinary PadapproximantsElt <(\), which were {wi%*  and itsL, convergence guarantee the convergence

obtained V\_/ith a sole .wea.k coupling gxpansiop frqm theofm,jo x2M\1f1'0> to(\Iij xz'\"\lfi°> asR—. In contrast
“un-normalized” Hamiltonian Hg,, Yyield estimations R R /R : ' ’

of E'(\) as accurate as those obtained bye® et al. [13]. the variational _seque_rlt{d)go}ﬁzl can be NUB and therefore
This result emphasizes the good properties ofthgandEl,  the quantity(®}’, v/ ®) can converge to a wrong limit or
series. Of course, such properties can be exploited with othélivergen—co even wherV is a regular perturbation. In this
summability methods. For instance, if the DWFA is appliedcase, the coefficient&X and, consequently, thE] series
to HamiltonianH (4.3), one can expect that the correspond-ItSelf do not converge as—c. The examples of variational
ing two-point approximants will yield better results. sequences for whicl(ldbgo,xz'\"fb'n 0) diverge with M=6
The methods that replace the original Hamiltonlarby  are given in Refs[43,44. If {®1%}*_ is UB, {E¥}"_, con-
an otherH* with better eigenvalue series can lead to a zeroverges toE'¥, a result that can be used to compute the coef-
order problem with unknown eigenstates, as occurs with théicientsE'® when the eigenstates b° are unknown, and the
partition (4.5) of HamiltonianH (4.3), and the DWFA is not  properties(good or bag of both theE, andE' series will be
an exception. Although the eigenstatesHff are known in  similar asn increases. On the other hand, the calculation of
some casef34], in general such eigenstates have to be esti®,(\,x)’s does not guarantee the calculation of the true
mated numerically. We can apply other methods such a¥'(\,x) since the sef®}(\,x)}7_,, which is a variational
finite-element or finite-difference methods which replat% sequence itself, may be NUB4].
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The formal results of the DWFA are independent of theproperties of the series given by the DWFA turn out to be
basis sef ormm—1 Used to solve the Dirichlet proble(@.3),  very good, even for the strongly anharmonic oscillators. This
but the numerical results obtained with the anharmonic osis clearly illustrated by the Padaimmation of the series for
cillators can be attributed in part to the use of the trigonothe un-normalized octic case, which is known to be notori-
metric basis(4.1). The numerical efficiency of the DWFA ously difficult and many standard resummation techniques
depends of the basis sgbrmi 1, Which should be chosen fail in this case.
according to the problem in question. Recent perturbation (iv) To date, the DWFA is the unique approach that, in
methods deal with the one-dimensional eigenfunction calcutigorous mathematical terms, guarantees the calculation of
lations[37—40, but their extension to the high-dimensional the UB sequences of approximating wave functions and,
problems is not trivial. The DWFA provides eigenvalues andtherefore, the correct calculation of wave functions. Some
eigenfunctions and, from a theoretical point of view, its ex-renormalization schemes convert a singular perturbation

tension to many particle problems is easy. problemH®%+\V into a regular oné4°+ XV, but this does
not guarantee the correct calculation of the exact eigenfunc-
VIl. SUMMARY tion ¥' since theW' series can be NUB even when it con-

We have observed the following points. verges in the norm of 5(—o,).

(i) The DWFA converts the singular perturbation prob- (v) The forzmal 595““5 of this E,’aper consid_er the general
lemsH=H°+\V into the regular ones and, therefore, solvesprOblemH =P HVEEAV, whereV’, Vare continuous func-

. ; tions but some results can be extended to potentials with
the problems posed by the asymptotic character oEthend . " X
i : : . : 0 Coulomb-type singularities as well as to some many particle
V' series wherV is a singular perturbation df~.

(if) The DWFA provides a general method to compute theoroblems. This will be shown in a forthcoming work.

poefﬂuents of thee' and¥ s¢r|e;[Eqs.(3.3), (3.4).]. This is ACKNOWLEDGMENTS
important when a renormalization technique yields a zero-
order problem whose eigenstates are unknown. | wish to thank Professor Gustavo Izquierdo and Professor

(i) The numerical results show that the convergenceMa. Trinidad Nunez P. for their suggestions and support.
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