PHYSICAL REVIEW E 68, 016701 (2003
Lattice Boltzmann method on unstructured grids: Further developments
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We discuss further developments of the finite-volume lattice Boltzmann formulation on unstructured grids.
It is shown that the method tolerates significant grid distortions without showing any appreciable numerical
viscosity effects at second order in the mesh size. A theoretical argument of plausibility for such a property is
presented. In addition, a set of boundary conditions which permit to handle flows with open boundaries is also
introduced and numerically demonstrated for the case of channel flows and driven cavity flows.

DOI: 10.1103/PhysRevE.68.016701 PACS nunierd7.11+j, 05.20.Dd, 47.10tg

INTRODUCTION I. UNSTRUCTURED FINITE-VOLUME
FORMULATION OF LBE

Recent advances in lattice Boltzmann research have lead Similar to all its predecessors, the unstructured finite-

to substantial enhancements of the capabilities of the 'attic%lume formulation first put forward by Peres al. [8] be-
Boltzmann (LB) method to handle complex geometries. ging yith the single-time relaxation lattice Boltzmann equa-
While the original LB method was initially constrained to o in differential form:

uniform space-time latticelsl], a severe limitation for prac-

tical engineering purposes, nowadays several extensions ﬁtfi+gi_5xfi=_(fi_f$)/7_ (1)
have been developed which permit to do away with such a
weakness. These include interpolation-supplemented finitgyere f.(x,1)=f(X,0=C; ,t), i=1pb, is the probability of

difference schemdg,3], various types of finite-volume for-
mulations[4,5], LB schemes with local grid refinemef],

as well as microscopic kinetic models in disordered lattice
[7]. A particularly interesting option was recently proposed

by Peng and co-worke{§ 10}, who imported powerful fea- collisions via a single-time relaxation towards local equilib-

;ures of Ir(no_lt_:ir(]a_rnl flndlte-tvolume te(_:hnll;.quest Wlthmdthef I&? rium f{ on a typical time scale [11]. This local equilibrium
ramework. This leads o a very sighiticant upgrade ot theg a(local) Maxwellian expanded to second order in the fluid
finite-volume LB family, namely, the possibility of dealing

. g ! L Y speed:
with unstructured meshes, that is, nonuniform grids in which P

connectivity (the number of links emanating from each
single node of the lattigecan change from node to node.
These unstructured lattice Boltzmann scherideBE for
shor) integrate the differential form of LBE using eell-
vertexfinite-volume technique in which the unknown popu-

lations are placed at the nodes of the mesh and evolve basa—i?(feifi 's the fluid density and=2c;; /p is the fluid speed,

the ing the ed f th di | relaxation timer controls the fluid kinematic viscosity
on the Tluxes crossing the edges of the corresponding elez 7, the specific form of this relation depending on the

ments. Due to specific properties of the cell-vertex methOdaetails of the finite-volume scheme. In order to recover faith-

ology, the resulting finite-volume LB schemes can operate OR| fiq dynamics, the set of discrete speeds must be chosen

unstructured meshes, thereby providing a significant boost of,ch that mass, momentum, and energy conservation are ful-
geometrical flexibility which aligns LB with the most ad- §jjeq [17]. In the present work, we shall refer to the two-

vanced computational fluid dynamics solvers. In this papergimensional nine-speed model defined by the following dis-
we present further developments of the ULBE technique. Inypete speedgL1];

particular, we shall show that ULBE tolerates significant

finding a particle at lattice site at timet, moving along the

%attice direction defined by the discrete speed The left-
and side of this equation represents the molecular free-
streaming, whereas the right-hand side represents molecular

fe=pwi[ 1+ Bc;-u+3(B%c;ci—1):uu], )

whereg=1/c2, c, being the lattice sound speedy/®/in the
present work, andl denotes the unit tensor. In the aboye,

stretching without introducing any appreciable numerical 0, i=0
viscosity effect to second order in the mesh size. This is very - _ :
important for practical applications, since it permits a time- ci={ cos(i—1)n/2], =14
accurate description of transitional flows. A tentative theoret- V2 co§ m/4+(i—5)w/2], i=5,8

ical explanation for this favorable behavior is also presented.

Second, we introduce a set of boundary conditions whictwith weightswy=4/9, w; ,=1/9, ws g=1/36.

permit one to apply the ULBE technique to the case of flows Following Penget al. [8], we discretize the LBE in dif-
with open boundaries. Finally, further directions of future ferential form(1) by introducing a tessellation based on tri-
research are also briefly surveyed. angular elements. To each noBeof the discrete grid, we
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FIG. 1. Geometrical layout of the cell-vertex finite-volume dis-
cretization.

associate a set di=9 discrete population$;(P,t),i=1b
which represent the unknowns of the problem. The sé< of
trianglesT(P), k=1K, which shard® as a common vertex
defines the finite element(P) associated with nodE (see
Fig. 1). Each of theseK triangles is defined by the three
verticesT,(P)=[P,P,,P\.1], K being the connectivity of
the unstructured mesh. To each trianglgis associated a
finite volume Q(P), defined by the union of the two sub-
triangles Q, =[P,E,,C,] and Q; =[P,C, ,Ey.], where
Cy is the center of the triangld, and E,, E,., are the
midpoints of the edgePP,, PP, 1, respectively.

Application of the Gauss theorem to each finite volume
Q. , as combined with a first-order time marching, yields
the following finite-difference equation:

K

fi(P,t+dt)=fi(P,t)+dthl (Pi—Eu), (3)

where the sunk runs over the surfac& (P) obtained by
joining the centers C, with edges E,: 2X(P)
=[E,C1E; . ..EKCkEk.1]. In the aboveVy is the volume
(area in 2D of the control volumeQp=U,Q,, and the
cyclic conditionEg , ;=E; ensures that the control volume
Qp closes up. Finally®;,, E;, denote the streaming and
collisional fluxes of thath population coming from th&th
volume ).

Note that fluxes over the internal eddek, , PC, are not
included because they cancel out identicdily-going flux

from a neighbor volume is equal outgoing flux to that same

volume. Evaluation of the fluxes in Eq(3) requires the
knowledge of the populationfs at the edge and center loca-

tions. These values are obtained by interpolation within the

given edge and triangles, respectively. More specifically,

fi(P)+fi(P

fi(Eg= B, @
fi(P)+fi(Py) +fi(Pys

f.(Co)= (P)+fi(P) + i (P 1). 5)

3

Once these interpolation rules are defined, the calculation of

the streaming fluxes is straightforward. The contribution of

PHYSICAL REVIEW E68, 016701 (2003

P2
P1

FIG. 2. Geometrical representation of the mirror method.
Eikzvglf (f{/r)dvzvglf (f//m)dV
O 0,

+Vp1 | (flIn)dV, (6)
oy

whereV ™ are the volumes of); andf/=f;— %% The re-
sulting collisional flux is computed by calculating the local
nonequilibrium distributiorf; over (), via a linear interpo-
lation:

— VI:/VP ! ! !
k=3 [Fi(P)+fi(E0)+ T (C]
V;/VP ! ! !
+ 3 [ (P)+f(C+ T (Exsn) ] (7)

The resulting finite-volume equation takes the following gen-
eral form:

K
fi(P,t+dt)=fi(P,t)+dthO Sifi(Py.t)

dt <
—— 2 Culfi(P.H= (P, (®)
k=0

where indexk=0 denotes the pivotal poif. The detailed
expressions of the streaming and collision matriggsand
Cik=C 5 are obtained by direct application of the interpo-
lation rules(4) and (7). The result is

S0=0, Sx=¢-Ny/Vp, k=1K 9)

and

Vi +V
Co=1/3, ckz%
P

k=1K.

(10

In the above, we have defined

Ne=[S(AL 1 +A)+ B (A +AD], k=1K,

collisions arises from the integration of the collision term Where,&,f are the vectors normal to the surfa¢kses in 2D

(fi—f5)/ 7 over each volumé), :

E«Ck, CEx+1, With magnitude equal to the sizkength in
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B2 This is slightly more complicated to program than the previ-
ous two, because it requires to account explicitly for edge
fluxes which are not seen by internal nodes. However, the
covolume method supports boundary gradients and it works

W Bl for the generic boundary geometries.
E The above prescriptions cover an important class of
B & boundary conditions, but are not clear as how to handle open

FIG. 3. Geometrical layout for boundary elements. The fluxesPoundaries—a case of great importance for practical appli-

¥, , ¥, across the boundary edgB®8, and BB, need to be ex- cations.
plicitly computed. Indeed, our experiments indicate that none of the three

boundary procedures described above is able of handling

2D) of these surfaces. Similarly},_, associate with sur- 0open flows in a satisfactory wafyo the best of our knowl-
facesE,_,Cy_, andC,_E,, respectively. edge, no open-flow application of the ULBE method has

It is readily checked that the following sum rules hold: been presented to datdo cope with this problem, we have
developed the following procedure.

K K
> S=0, > Cy=1 Vi.
k=0 k=0 A. Inlet-outlet boundary conditions

These sum rules play an important role in the theoretical At both inlet and outlet sections, the computational do-

analysis of the scheme, as detailed in the sequel. main is augmented with on@r more buffers of regular,
straight triangles. The scope of these regular layers is to en-
Il. BOUNDARY CONDITIONS sure that the last-but-one row of nodes faces a corresponding

neighbor along th& direction, so that, by imposing the same

The above procedure applies to both internal and boundyelocity field on these two rows of nodes, a zero-
ary nodes. However, in the case of boundary nodes, the cofengitudinal-gradient boundary condition automatically re-
responding control volumes do not close up, leaving twosults. This very simple recipe is found to yield acceptable
external edges exposed on the boundage Fig. 3 Several results where none of the three boundary conditions de-
strategies can be chosen to deal with these boundary edgeribed above would work, as it will be documented shortly.

fluxes, but three methods have been used sa(ifaequilib- Before doing so, a few theoretical considerations are in
rium method,(ii) mirror method,(iii) covolume method. order.

The equilibrium method consists in setting the edge val-
ues of the populations to the corresponding equilibrium val- B. Theoretical considerations

ues, based on the specified values of the density and velocity
field at the boundary. This method is very simple, but of 10 date, the ULBE scheme has been successfully demon-

limited use, since it cannot handle situations with significantStrated for a number of simple test benchmarks, such as Cou-
gradients at the boundaf@ commonplace in most applica- ©tté flow, driven cavity flow, and othef8-10,13. Among
tions). others, these tests |nd|_cate.d that ULBE exh!blts a_fa|rly low
The mirror method consists in introducing ghost nodes a@Mmount of numerical diffusion, a somehow intriguing prop-
the boundary, which are defined as the mirror images of th€"Y for an unstructured finite-volume method. However, no
corresponding internal nodes, pivoted around the boundarif'€oretical analysis of this property has been presented to
node B (see Fig. 2 Prior to evaluation of the streaming Qate. Here we outline the basic points of this analysis, leav-

fluxes, the mirror populations are fixed by a simple secondind full details to a separate publication.

order interpolation: Thg distinctive mark ohlllfinite-volume formulations' of
LBE is a clear-cut separation between the set of discrete
f(M,)=2f(B)—f(Py). speedsEi ,=1b and the spatial grid, most specifically the

set of nearest-neighbor connectors:
Once this is done, the boundary nd8ean be updated as if .
it were an ordinary internal node. This procedure is very d
transparent and can deal with boundary gradients. However,
it may lead to topological ambiguities for generic bound-
aries, because the volume element associated with a bounkh the limit where these two sets coincide,
ary node does not close up if the boundary is curved.

Finally, in the covolume method, the edge fluxes are

evaluated explicitly by using interpolation at the boundary Eidt:aiv b=K (12)
edges(see Fig. 3

P.—P, k=0K.

f(B)+1(By) we would expect ULBE to reproduce the standard LBE, a

f(Ey) = . . T
(B 2 property calledconsistencyin early finite-volume formula-
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tions[4,13]. Consistency is a comfortable property because iMore precisely, the viscosity of the plain LBE scheme con-
ensures that the finite-volume LBE inherits all the familiar sists of two separate contributions:

(and nice properties of standard LBE in the limit of a uni- 5

form lattice. In particular, the fact that numerical diffusion v=cg(T+7p). (13
amounts to a constant valuel/2 everywhere, permits to

reabsorb it exactly within the definition of the effective lat- In the abovey is the physical contribution due to collisional

tice fluid viscosityr=c2(7—1/2). relaxation, whereasp is a purely numerical contribution due
It is readily shown that this property doast hold for the 0 the second-order expansion of the streaming operator. For
present ULBE. standard LBErp=—1/2, corresponding to a negative diffu-

To see this, it is sufficient to inspect the specific form ofSion. The remarkable point is that this numerical diffusion
the streaming coefficientsS,, Eq. (9). The quantity can be mcorporated W|th|n_ the effective viscosity of thg LBE
S, dt/Vp represents the fractional volume swept by tte qu:d eiccordmg to expressiofi3). On the other hand, since
population along the perpendicular to the surfagein a  dx =c;dt, the scheme is also dispersion-free at all orders.
time lapsedt. Consequently, it is the analog of the Courant-Such useful properties are generally lost in a finite-volume
Friedrichs-Lewy number controlling the numerical stability formulation with arbitrary geometry, where a certain degree
of the scheme %, dt/V<1). of numerical diffusion and dispersion must be anticipated.

In order to recover the standard LBE in the Iimfiitdt To_appre:ciate th[s point quantitatively, one has to solve
= . _ . . . the dispersion relatioi12). A few general remarks can be
=dy, we requireS;pdt=—1, S  dt= ;. It is readily seen ; . : L :

S , . : made without actually solving this equation in detail. By
that this is not the case. Lack of consistency with Standar%ummin the squares of the real and imaginary parts of E
LBE is not necessarily a flaw of ULBE: it simply warns us 9 d ginary p 9:

2 . (12), and taking the ratio of the imaginary to the real part, we

:whoettir?ﬁreﬁe%f g;/eljirggar properties of the standard LBE are ain the following relations:
A complete theoretical analysis of the numerical proper- 2wdt_ _ 2 A2\ 442

ties of ULBE requires a full-fledged Chapman-Enskog pro- € 1+2Cidt+ (S+C)d, (14)

cedure, which is left for a future publication. Much insight dt

can, however, be gained by a simpler approach based on the tg(wrdt) = Si , (15)

inspection of the dispersion relation associated with the 1+Cidt

ULBE scheme. For the purpose of highlighting the role of

grid discreteness on the linear properties of the ULBEWhere we have set

scheme, it is sufficient to concentrate on the collision-free

version gf th_e d|ﬁereht|al L13E(1_). By re_preserﬁmg theﬁden- c=> S.cosh, S= Susinde, d=p-dy.

sity distribution functionf;(x,t) in Fourier series a$;(x,t) k k

~el(Px=o) \wherew is the (complex frequency and the . . .

wave vector, and Fourier transforming the collision-free!n order to appreciate the effects of space-time discreteness

ULBE. we oBtain at various orders, the above relation is best expanded in the

Taylor series of botlut and ¢, .
At zeroth order indt, we obtainw,=0, and no informa-

K tion on wg.
eiwdt— 1+dt2 Sike-ia.ak_ (12) btAt the first order(the one relevant to linear advectipmwe
k=0 obtain

0=Cj, or=S.
In the continuum, these two quantities are related by the
free-wave dispersion relation, By expandingC; and S, to first order in space, the former
gives againw;=0 (owing to the sum ruIeZE:OS“;O),
whereas the latter yields

(l)R:p'C, (.U|:0,

where subscriptR,| denote the real and imaginary parts,
respectively. As is well known, the second-order terms of thévhich identifies the propagation speed of collective motion
form C,p? in the expression oy, associate with numerical as
diffusion whereas the third-order terms @y correspond to
numericaldispersion vi=> s d
Aremarkable property of the standard LBE scheme is that g Tk
the continuum dispersion relation exactly reproduced on
the discrete light conedx; = c;dt, simply because the par- Based on the expression f, Egs.(9), it is seen that this
ticles propagate along the directions of the discrete gridreduces to the standard LBE valeg, only if the tensor
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TABLE |. Percentage error versus grid distortion between Taylor vertex flow
present numerical results and the analytic solution. Co o MSnedes
R R R
5 E W= =TT 7 S T T T
|
0.00 0.017 084 — _JI_
0.15 1.26 *
0.3 1.53 0.6 4 — ——=—
0.4 4.34 |
S i 7
| I
> d N, becomes(proportional t9 the identity. In general, 0'2'__| ; _1 *  ULBE<=0.001 ét=0.02
this is not the case, the propagation speed depends on tt I | * UEXLB:‘:;;"uﬁl #=0.05
local position and contains higher-order contributions in the B el :
wave vectorp (numerical dispersion effedts 12 -10 08 06 04 -02 00 02 04 06 08 L0 12
Proceeding to next order in space, we get a new contribu- wu_
tion to the imaginary part, corresponding(ftumerical dif-
fusion, FIG. 4. Streamwise velocity profile for the Taylor-vortex simu-
lation.

Sos s A. Numerical viscosimeter

As a preliminary step, we show that numerical viscosity
effects are very small, within second-order accuracy in
space. In order to measure the numerical viscosity, we con-
sider a two-dimensional Taylor-vortex configuration in a box
of size W and let it freely decay in time. The numerical
results are confronted with the analytical solution:

U=~ Upa,COS PrX)SIN(poy) e P12,

which is the analog of the;c;/2 term in the standard LBE. U =UmaSiN(P1x)cogpoy)e” YPLEPI,

On a general grid, this diffusion tensor cannot be strictly
homogeneous, nor can it be isotropic. Interestingly enoughn Fig. 4 we show the profilei/u,,,, versusy/W, as ob-
however, it can be close to zero. Consider in fact the distintained by ULBE with p;=0, p,=2x/W, and compared
guished limit in which each subvoluné®, has a mirror part-  with the analytical solution. The grid contains 2145 nodes,
ner ), such thatN,+N,, =0. If this mirror symmetry and therefore second-order effects of numerical viscosity are
holds, the above sum i annihilates the diffusion tensor by expected to be of the order of 1/2145<%0 *. To explore
mere symmetry. It is interesting to point out that the ULBE this regime, we have changed the relaxation parameter
scheme does indeed have mirror symmetry in the limit of ghrough the following sequence=0.01, 0.0025, 0.001, and
regular, uniform mesh with=K. As a result, if mirror sym- dt=20r. On the scale of the picture, all the results appear to
metry is only mildly broken, then numerical diffusion can be be within a few percent of the analytic solution, as computed
correspondingly small. In addition, further cancellations arewith a theoretical viscosity:
expected on a scale larger than the typical size of the ele-
ments, due to spatial averaging over an ensemble of “ran- v=c§r. (16)
dom” elements.

This provides a theoretical clue on the reasons why nuResidual viscosity does not appear to contaminate this rela-
merical simulations with ULBE show a very low degree of tion even withr as low as 0.001, which is a clear indication
numerical diffusivity. One may wonder whether the collision of second-order accuracya numerical viscosity v,
operator is going to change this picture. A similar analysis on~ 1/2000 would yield a 30% errprThis confirms previous
the collision matrixC;, shows that this is not the case. Ow-
ing to the sum rulex,C,=1, discretization effects on the TABLE Il. Percentage error versus number of elements of a
collision operator do alter the bare valwg=1/7, but only at  regular grid between the numerical results and the analytic solution.
second order ip (hyperviscous effecjs

Elements €
IIl. NUMERICAL RESULTS 1024 0.071
4096 0.017
In the present section we provide a numerical demonstra- 6400 0.011

tion of the ideas discussed above.
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FIG. 5. Grid for the forced Poiseuille flow with periodic bound-
ary conditions.

claims[9] and extends them to a second-order regipre-
vious work used7r>0.01, too high to be conclusive on
second-order effecks

To gain a better understanding of this matter, a new series
of simulations of the vortex Taylor with increasing degree of
distortion has been performed and the relative error as com-
pared to the exact solution is provided for each distorted grid

(see Table)t Starting from a structured layout of nodﬁ@,
n=1,N, a distorted configuration is generated by changing

the node locations by random displacements x/,=X,

+Fn. Distorted configurations are classified according to
their “distance” from the structured one, defined &
=maxd|l,/lm—1[}, wherel ,, andl/, denote the lengths of the
links of the regular and distorted configurations, respectively.
The error relative to the exact solution, defined as
=30l (Up—u*®Y/up,.l, as a function ofs is reported in
Table I.

This table shows that the numerical er(not entirely due
to diffusion but also due to higher-order effects, such as dis-
persion remains within a few percent up to fairly substantial
degree of grid distorsions. In addition, we have also mea-
sured the error scaling with the number of elements, as
shown in Table II.

These data confirm that the error decreases linearly with
the number of elements, hence quadratically with the linear
size of the mesh cell.

d=0.03
Exact solution

for
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FIG. 7. Computational grid for the impulsively started Poiseuille

flow with open outlet.

B. Driven channel flow

As a first test case for open flows, we consider a two-

dimensional channel flow driven by a constant volumetric

ce. Boundary conditions are no-slip at top and bottom

walls and periodic at inlefor outley. The flow is forced to a
maximum speed),= 0.4, while the other parameters are
=0.1, dt=0.01-0.03. The grid contains 2360 elements,
covering a domain of length =96 and widthW= 32 (see
Fig. 5 corresponding to a Reynolds number=RE)00.

The steady-state longitudinal velocity profile is shown in

FIG. 6. Parabolic profile for forced Poiseuille flow with periodic

boundary conditions.

Fig. 6, from which quite good agreement with analytical re-
sults is apparent. For this test case, both mirror and covol-
ume boundary conditions were found to yield results in good
agreement with the analytical solution. However, flow peri-
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Re = 1000 Re=100
2145 nodes ] ' ) 1 1 1
} + + + + + | | | ,
w-4r_ -t 1 | “'__'l'___‘[af___]'__ ° mM(Gh“f"’“’l')
| | et | 5 BEM (Aydinetdl)
| [ A ") + BEM (Aydin et al.)
o —L_ 1= 1] 0T
! [ | 7 | | ™| ——ULEE
i | | | !
0.6 » ULBE:t=01 dt=005 | — N "‘0'__| ___‘{____*l‘__ \-:'____}‘___ I__
x  ULBE:t=0025dt=005 | % | | | +\ | |
= 044 Exact Solution - — - —— _:.__ Ol A
| | | [N | |
| | | [ | ! | AN II{ |
02 —t———Ad————t—— ===t w2—t———d Al
| | | | | | | ‘q & |
| | | | | | | I
owt—--— ——+————r———+4— 03 | | | ] | |
I I I | | I T v I d T v ) ¥ L) v T
T T T T Y v Y g T T T 0.0 02 04 0.6 0.8 1.0
00 02 0.4 06 08 1.0 %L

) . . ) o FIG. 10. Centerline longitudinal velocity profile for the cavity
FIG. 8. Parabolic profile for the impulsively started Poiseuille oy at Reynolds number 100.

flow with open outlet.

odicity at inlet and outlet rules out a number of practicalSPonding to the Reynolds number R&yH/v=72. The

applications, and more realistic boundary conditions need t§0mputational domain is covered with 2360 elements and

length dt=0.05, spanning a time lapse of 9000 time units,
corresponding to almost nine recirculation times. The steady
parabolic profile is shown in Fig. 8, from which a very nice
Next we focus the important case of flows with open out-agreement with the analytical solution is observed.
lets. The flow is initially at restzero speedand is impul- The use of regular buffers at the inlet and outlet was
sively started by forcing a parabolic profile with maximum found to be instrumental to achieve these results. It should
speedUy at the inlet section. At the upper and lower walls, glso be mentioned that a few adjustments of the grid were
no-slip boundary conditiongzero-speed boundary condi- required before the correct result could be obtained. These
tions are imposed with the standard covolume method. At th@djustments amount to choosing the right thickness and num-
outlet, the condition of zero-longitudinal gradients is im- per of elements in the inlet and outlet buffer regions. Further

posed via the covolume method with regular outlet buffersyyork is surely needed to make the open-boundary conditions
as discussed in Sec. ||(‘See F|g 7 The numerical param-  more robust and gnd insensitive.

eters areW=32, L=96, U,=0.08, =0.025-0.1, corre-

C. Impulsively started channel flow

0 D. Cavity flow
U =
y =0 Finally, we present a test in which the nonlinear compo-
nent of the Navier-Stokes plays a major role. This is the
/S LS 4 standard lid-driven cavity flowsee Fig. 9. Boundary con-
Re=100

NNSNNN
19
<

u = u =0 4 BEM (Aydinetal)
v = / v =0 o FDM (Burggraf et al.)
% ——ULBE
___L__J___+___L_
I | l
?ﬁk - | | | |
4 b ]
Y N
d4——+——t——+———
T S S = i e S R
U | ‘ﬂ‘b—- |
w 004 —— A ———f—— = — = —— T
] | | | | ] ]
v L) v ] ' ) A ) d T T ) v T
u =Uw £H.4 0.2 00 02 04 0.6 08 19
v =0 WU,

FIG. 9. Sketch of the geometry for the driven-cavity flow simu-  FIG. 11. Centerline transversal velocity profile for the cavity
lation. flow at Reynolds number 100.
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RE=1000
o4-——i o —I-—ULBEI =
- T a1 T .
| e N |° | o FDM (Ghiaet al.)
LT, i
°-2‘——1|’1'i'——1t——."'-71l——' & BEM (Aydinetal)
2 | "t I I
¥ | S |
L e e e B T
o | | [ T |
= I | | e S
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| | I | P, faol
T I R S B e
| | | | | e |
06 Y —
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FIG. 12. Centerline longitudinal velocity profile for the cavity

flow at Reynolds number 1000.

ditions are as follows: at fixed walls we use the covolume
method with zero speed in the local equilibria. Moving walls

are handled the same way, but with a prescribed nonzero FIG. 14. Flow streamlines for the cavity flow at Reynolds num-
speedU,y in the local equilibria. As usual, an ambiguity ber 1000.
arises at the corner points, which belong to both fixed and

sliding walls. In the standard LBE, either choice is applicable e have

repeated the same simulations at Re

and would yield reasonable results because three out of fout 100, 400, 1000, with the numerical parameters 0.1,
diagonal speeds do not propagate inside the computationgk=0.01, and 3598 nodes, and using the covolume boundary
domain. Of course, accuracy depends a great deal on th@ndition. We found that the best results are obtained by

details of the corner boundary condition and affects thesxcluding the corners, namely, removing a single triangle at
maximum value of the Reynolds number which can be reli-ogch of the four corners.

ably simulated. In finite-volume implementations the situa-

Although this provisional solution might result in local

tion is more delicate, because all populations contribute t@jistortions of the secondary vortices at-RE000, it shows

the incoming fluxes from the boundari¢$0]. Recipes to

nonetheless encouraging results. In particular, owing to the

deal with corners are given and numerically demonstrated gfexipility of the unstructured grid, one can arguably mini-
Re=100, 400, 1000 in Ref12]. The results show a deterio- mijze the aforementioned distortions by reducing the size of
ration with the Reynolds number, as witnessed by the smallhe corner element to be removed.

scale wiggles well apparent in the velocity profiles at Re  The transverse profiles of the longitudinal and transverse
=1000. More robust strategies to deal with corners argelocitiesu(y), v(y) at the centerlinc=L/2, are shown in

clearly

needed.

4 . , , t t ! }
-__I___I___)‘,___I___I___L___I___I__
T |

Figs. 10 and 11 for the case R&00. From these figures
nice agreement with previous literature data, including finite-
differenceq 14] and boundary-element methodks], is ob-
served. A similar statement applies to the case-B@0, not
shown here. Finally, the longitudinal and transversal velocity
profiles for the case Re1000 are shown in Figs. 12 and 13.

|
o.s-_JD_ngil___J.__J__

0.6-— ——:JE‘ _-l.___:__

——ULBE

o FDM (Ghiaetal)

These pictures show no sign of numerical wiggles, witness-
ing an interesting improvement over previous literature data.

|
|
_Jl | | | 4 BEM (Aydinetal) [— We also display the steady flow field configuratiétg. 14),
g_‘ | | "q:L | | | | | ) ) ) )
04— ———F—— B iy S TABLE Ill. Cartesian coordinates of the three main vortices at
: : : ' : : I : Re=1000. ULBE, present method; Refl4], finite-difference
o2t+————F—— __ﬂ?__k__+___|___{__ method; Ref[15], boundary element method; Réf.6], standard
| | | | S | | | | LBE.
| | | | b oo | |
00— ——fF—— 4 —— o —— =g —
} ] | | | [ E— \ortex position ULBE Refs[14-16
04 02 0.0 02 04 0.6 08 1.0 -
WU Primaryx/L,y/L 0.565,0.386  0.555-0.5557,0.389-0.395
Left x/L,y/L 0.051,0.959 0.051-0.953
FIG. 13. Centerline transversal velocity profiles for the cavity Rightx/L,y/L 0.893,0.883 0.891-0.875

flow at Reynolds number 1000.
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e ——r = Before concluding, we wish to emphasize that the present
‘ e ' results have been obtained by using unstructured grids with a
—7 A A substantial degree of local distortion, as evidenced by the
7o — T T inset of Fig. 15.
/ |
A F— )

SUMMARY AND FUTURE DIRECTIONS

This work presents a series of results. First, it provides

f i e further numerical evidence that the unstructured finite-
NN K N~ T volume LBE proposed by Pergj al. introduces fairly small
[ N I N ! ',r numerical viscosity, actually compatible with second-order
B 1 X accuracy. A semiguantitative theoretical explanation for this
T T TN nice behavior is also proposed. Second, we have shown that
A | J N/ A= the above conclusion seems to hold also in the presence of a

[ substantial stretching of the grid. Third, a boundary condi-
7 —| 7 A tion, which extends the viability of ULBE to an important

-+ e class of open flows, has been presented and numerically
- ey demonstrated. Finally, we have shown that cavity flow simu-
< , ! lations can be taken to relatively high-Reynolds numbers
with no sign of numerical instabilities, by simply rounding
off the corners of the computational domain.

Despite these encouraging results, much remains to be
done to put ULBE on a firm basis for complex physics and
engineering applications.

First, more systematic and robust procedures to deal with
a wider class of boundary conditions need to be developed.
These include flows with open boundaries, as well as corners
between rigid and sliding walls. A full-fledged theoretical
analysis of the numerical properties of ULBE makes also an
important subject for future research. Furthermore, the com-
putational efficiency of ULBE versus standard LBE as well
as state-of-the-art finite-volume techniques needs to be as-
sessed. It is clear that ULBE is computationally more expen-
sive than the traditional LBEon a single-node bagide-
cause both streaming and collision operators are nonlocal.
On the other hand, it is clear that ULBE is not meant to be a
replacement of the standard LBE, but represents an addi-
tional option which is increasingly valuable with rising geo-
metrical complexity. However, the elegance of the method,
FIG. 15. Unstructured grid for the cavity-flow calculation. The combined with its outstanding geometrical flexibility, holds

inset shows a close-on of the grid, which reveals a significant dispromise to significantly advance lattice Boltzmann research
tortion of the geometrical elements. in the years to come.

——

from which the existence of a primary and two secondary

vortices is clearly observed. Quantitative data regarding the ACKNOWLEDGMENTS
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