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Group delay, stored energy, and the tunneling of evanescent electromagnetic waves
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A general relation between group delay and stored electric and magnetic energies is presented for two-port
networks. It generalizes the results of Dicke to situations where electric and magnetic stored energies differ.
The general result is applied to tunneling evanescent waves in cutoff waveguides. It is shown explicitly that the
group delay is equal to the dwell time plus a self-interference delay which is proportional to the net reactive
stored energy. The Hartman effect, the saturation of group delay with length in cutoff waveguides, is explained
on the basis of saturation of stored energy with guide length. It is pointed out that the anomalously short delays
observed in tunneling experiments are not propagation delays and should not be associated with superluminal
velocities. A strictly luminal energy velocity is derived and a method is suggested for the measurement of dwell
time and energy velocity.
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[. INTRODUCTION waves. The work cited uses a summation of propagating
waves with real wave vectors and appeals to destructive in-

It is surprising that a problem as classical as the tunnelingerference between these propagating waves. While this may
of a pulse of electromagnetic energy through an obstacle in provide a mechanism in regions of allowed propagation, it
waveguide has become the subject of ongoing debate ihas no relevance for regions of true evanescéaag, for a
modern physic§1-3]. Experiments by Enders and Nimtz waveguide below cutoff where there are no propagating
appeared to show electromagnetic pulses traveling wittmodes. Of course the evanescent field does enter the wave-
group velocities in excess of the vacuum speed of light aguide by means of the high-frequenpyopagatingcompo-
they tunneled through a constriction in a wavegUile This  nents at the pulse front at the time of turn on. These compo-
led to notiong[5] and disputation§6—8] regarding the pos- nents are strictly limited by the vacuum speed of light as
sibility of superluminal signaling and information transfer. discussed by Sommerfeld and BrilloJih5]. Once the tran-
Other experiments with photonic band-gap structures alseient front traverses the guide there is no longer propagation,
showed apparent superluminal barrier travef84l0]. It was  only evanescence: exponential decay of storage fields that
found that the traversal time of a pulse across a thick barriemerely stand and wave, akin to breathiei§]. Operationally,
becomes independent of the barrier wifh10], a phenom-  superluminal velocities have been inferred by measuring the
enon called the Hartman effeft1]. These observations as delay time between the appearance of a pulse peak at the
well as the apparent agreement with theoretical predictionsput and a pulse peak at the output of a barrier. We have
have led to a widespread belief that tunneling electromagrecently shown, however, that the peak of a tunneling pulse
netic waves travel with group velocities that exceednd  does not even enter the barrier and hence the input and out-
can even become infinite,12]. Various arguments, mostly put pulse peaks are not related by causal propagéfi6h
based on pulse reshaping, are then advanced to explain wie question then is what is the appropriate time scale with
such anomalous group velocities do not violate causality. It isvhich to characterize the tunneling of electromagnetic waves
widely believed that the entire transmitted pulse comes fronand what is the meaning of the observed delay? The influen-
just the small early tail of the much larger incident pulsetial review article by Hauge and Stgvnefdj/] lists seven
[6,12,13. However, many have also expressed discomfortunneling time definitions of which two, the group delale-
with the current explanations. Landauer states that “at a funfined by the frequency derivative of a transmission phase
damental theoretical level the easy explanation suggested hift) and the dwell timgdefined by an integrated probabil-
unsatisfying.”[3] With regard to the whole pulse being re- ity or stored energyare considered “well established.” They
constructed by the early tail, F.E. Low speaks for many wherdo remain contentious, however, and even the relation be-
he says “how and why it happens is not understood, at leagtveen these two time scales is controversial, with some de-
by me.” [14] nying any connection between thdis].

A fundamental difficulty with these superluminal group In recent papers we have suggested an explanation of
velocities is that the wave vector of a tunneling wave is arthese “faster-than-light” phenomena as the modulation of
imaginary quantity. The group velocity, defined as the dethe stored energy in a cavity by the slow envelope of the
rivative of angular frequency with respect to wave number, iSnput pulse[16,19. We have used the concept of energy
likewise imaginary and devoid of physical meaning. Becausetorage and release to resolve the paradox of the Hartman
the wave vector is purely imaginary for an evanescent wavesffect[19]. In that work, we proved the equality of the group
this also means that the mechanism advanced by Japha addlay and the dwell time for a situation where the barrier was
Kurizki [13] as a universal explanation of “superluminal” surrounded by free space so that the approach to the barrier
propagation cannot possibly apply to tunneling evanescerihvolved nondispersive propagation. For the problem of a
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eh:__,, | Obstacle 4 T wherey= 7/a is the eigenvalue of the transverse moalés
Re™,___ the width of the guidez is the propagation direction, and a
i harmonic time dependence of exfwt) has been assumed.

z=0) z=L The wave functiony satisfies the Helmholtz equation
FIG. 1. Schematic of the process of scattering by an obstacle in d2¢// 5
a waveguide. a2 "B =0, 2

constricted waveguide, which is more analogous to quanturwhere the propagation constafis given by

tunneling, the approach to the barrier occurs in a dispersive s o2 o

waveguide and that can affect the overall delay. In this paper, B==nikg— ", )
we derive an explicit relation between group delay and the . .
stored electric and magnetic energies in a waveguide with y'th ko= w/C. .There is a cutoff angylar frequencgoll
discontinuity. This is an important result that generalizes re-_ yc/ny for which 5=0 ar_1d below which t_he waveguide
lations obtained by Dick§20] and Carlin[21] to situations dpes not support propagating modes. We will assume opera-
in which the stored electric and magnetic energies differ andon above this CUt_Oﬁ fr_equency for the Wavegwdes | and 1il
where the waves beyond the scattering region are dispersivE2nnected to the junction II. For now we will leave the na-

It demonstrates the importance of the net reactive stored efdre of region Il unspecified, beyond requiring that it be loss-

ergy in situations that involve evanescent fields. We shomlless' Our goall IS to callcullate the group dglay a narrowband
Ise suffers in transmission through the junction and to re-

that this expression for the group delay in terms of store UISe€

energy yields the same result as that based on the frequen%;e it to the energy stored.

derivative of the transmission phase shift. It is shown that the

group delay equals the dwell time plus a self-interference IIl. RELATION BETWEEN GROUP DELAY

delay, thus unifying these two tunneling time definitions. The AND STORED ENERGY

Hartman effect for the undersized waveguide is explained on Thq group delay is given by the derivative of the phase of
the basis of the saturation of stored energy with incregsinghe transmitted pulse with respect to angular frequency. To
length. We calculate an energy velocity, show that it iSgpain a relation between group delay and stored energy we
stnqtly subluminal for tunneling pulses, a_nd present a recip@ e 4 variational theorerfalso known as the energy theo-
for its measurement and for the determination of the dwellgqyy \yhich follows from taking frequency derivatives of the
time. complex Maxwell’s equationg23],

9E oH _
_XH*+E*X(9_(1) -ds=4i(U). (4

Il. THE MODEL %
s| dw

When a pulse of electromagnetic energy encounters a dis-
continuity in a waveguide, it is partially reflected and par-|t relates the frequency derivatives of the electric and mag-
tially transmitted. In the process some of the energy may engetic fields on a closed surface to the total time-average
up in higher-order evanescent modes which, being nonpropatored energyU)=(U ) +(U,) within the volume bounded

gating, are confined to the vicinity of the obstacle. Far awayby the surface. The electric and magnetic stored energies are
from the obstacle, its effects can be completely described byiven by

its reflection coefficient, its impedance, or its scattering ma-

trix [22,23. A key simplification is that the scatterer does not we o

alter the polarization state of the incident wave so that one (Ue)= 4 fVE' E* Edv' (U= ZJVH'H* ® do,

may use scalar analysis. Consider a waveguide jundgton (5)
two-port networlk to which is connected two uniform

waveguides filled with lossless, isotropic, dispersionlessexpressions which hold for general dispersive media. The
nonmagnetic material of refractive index (Fig. 1). For  surface integration is carried out over the metal walls of the
simplicity, we assume the waveguides support only thevaveguide and planes=0 andz=L located in waveguides
dominantTE;q mode. This is the situation of greatest prac-1 and Ill. Only the transverse components of the fields con-
tical interest[4]. The electric and magnetic fields for this tribute to the surface integral. On the other hand, the volume

Jw
Jd

mode can be written integrals that yield the total energy include both transverse
and longitudinal components of the electromagnetic field.
E(X,2,0) =9 sin(yX) /(2), (19 With use of the mode fields of Edl), the integrand in
Eq. (4) becomes
. i dy R R
Hi(X,z,0) =X sin( yX) wpg 4z (1b) 2 oralde 9z T 5z ¥ dwoz| (6)
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At the entrance surface the field consists of an incident and
reflected wave Im i(EX H*)-ds=4w((Uy)—(Ug)). (12)
— iBz —ipBz
h=Eo(e™+Re ), ™ Upon inserting the expressions for the fields at the entrance
while at the exit the field has only a transmitted componen@nd exit surfaces, we find

= TEqe'A2. (8) ((Um>_<Ue>).

IMR)=—w P

(13

In terms of their magnitudes and phases, we h&ve
=|R|e'r andT=|T|e'%. For lossless media the magnitudes This expression is reminiscent of the definition of ef a

of the reflection and transmission coefficients satisfy cavity resonator:
|R|2+|T|?=1, 9 _ wX(time-average energy stored in sysjem
while for symmetric barriers, which we will now assume, (energy loss per second in system (14)
¢, — (¢ + BL)= £ /2. Evaluating the surface integrals at
z=0 andz=L, we obtain In Eq. (13), however, the numerator is proportional to the net
) reactive energy stored in the junction while the denominator
AlEo| —9i Im(R)(E— d_ﬁ) +2i,8% is the energy per second incident on the junction. It is in
2w o do do essence an extern@). Indeed the barrier region forms an
dInlR dinlT evanescent mode resonator with a finite decay time. With use
+28||R2 niR| +[T|2 n|T| —4i(U) of Eq. (13) the group delay can now be written
dw dw ' .
dgo (U)  (Um—(Ue) (v
(10 —_rO0_ A/ A A Fe/[Tpl
0= 4o = P = 20, 1. (15

where¢,= BL + ¢; is the total phase of the transmitted wave

andA=ab is the cross-sectional area of the waveguide. TheHere v°

= w/B is the phase velocity in the region outside

1
group delay is the frequency derivative of the phase of thehe jUnF():tiOI’l whilev,=dw/d is likewise the group veloc-
transmitted wave, hence we find ity outside the junction, assuming an infinite waveguide.
From the dispersion relatiof8) we find that these velocities
o déo _(U) N Im(R) (E_ d_ﬁ) (11  are related through
¢ do P, B o do/’
vglvgl=02/ni. (16)

where P;,, = &o|Eq|?Ac?Bl4w is the time averaged incident
power and ImR) is the imaginary part of the reflection co- For the infinite waveguide the phase and group velocities
efficient. Because of the symmetry of the barrier, the reflecsatisfy the inequality;81< c/n1<vgl.
tion group delayr,=d¢, /dw is equal to the transmission Equation (15) relates the group delay to the total time
group delayry . average stored energy and the net reactive energy in cylin-
The first term in Eq(11) is the standard result of Dicke drical waveguides with discontinuities, such as the under-
relating group delay to the total time average stored energgized waveguides used in tunneling experiments. It reduces
in a termination [20,21. The second term is a self- to the well known expressiof20,21] under resonance con-
interference term arising from the overlap between incidenditions when stored electric and magnetic energies are equal,
and reflected waves in the region before the obsfdclé It  which is the case for propagating modes, or when the junc-
depends not only on the reflectivity of the obstacle but alsdion is surrounded by a medium without dispersion, or far
on the dispersion in the connecting waveguides. It vanisheabove cutoff in a waveguide. The junction is inductive if the
if the waveguides are dispersionless since in that case thmagnetic energy exceeds the electric energy and is capacitive
interference pattertenvelope travels with the same velocity otherwise. Increasing the stored magnetic energy compared
as the phase fronts and there is no extra delay. It also varte the stored electric energy will increase the group delay.
ishes when the reflection coefficient is zéed transmission Conversely, increasing the electric energy will decrease the
resonancesor is purely real. Clearly the standard result is group delay. For the cutoff dominant mode, the magnetic
incomplete as it fails to account for this coherent term. Be-energy exceeds the electric enerffylsewhere we consider
cause this term is proportional to the inverse of the propagacapacitive obstacles for which the interference delay is nega-
tion constant, its impact will be substantial near the cutoff oftive.) Above cutoff, the barrier is no longer a barrier but an
the dominant mode where the propagation constant goes taccelerator” since the phase velocity is higher in this region
zero. than outside. Under these conditions the stored electric en-
The imaginary part of the reflection coefficient can beergy can exceed the stored magnetic energy and thus nega-
related to a difference between stored magnetic and electritve delays become possible. This should not be surprising
energies through the complex Poynting theorem for losslessince electromagnetic waves travel faster in lower index ma-
media[23]: terial.

016615-3



HERBERT G. WINFUL PHYSICAL REVIEW E68, 016615 (2003

IV. RELATION BETWEEN GROUP DELAY (PHASE TIME) that the self-interference term here is also proportional to the
AND DWELL TIME free-field Lagrangian for the electromagnetic field.

We now comment on some of the other tunneling time
definitions often mentioned in the literatuf&7]. The in-
plane Larmor timer,, originally defined for tunneling quan-

7q=(U)/Pin. 17 um particles, measures the spin precession in a plane per-

pendicular to an auxiliary magnetic field appended to the

This is a measure of the average time spent by a wave packgarrier [18]. A related approach based on Faraday rotation
in a given region of space. This dwell time is not quite thewas suggested for electromagnetic waj/28]. The Larmor
same thing as the lifetim@ first introduced by Smith. There time, however, has been shown to agree with the dwell time
was a term that Smith eliminated through an averaging prof18] and hence provides no new information’ tiker [18]
cedure because it was Qscnlatory with dls.tance. That termptroduced another Larmor times= m which takes
turns out to be the self-interference term in EGKL) and  into account the rotation of the precessing spin towards the
(15). Because tunneling without distortion requires that agjrectionz of the applied magnetic field. That time agrees
pulse be much longer than the barrier widif], an incident yith another time scaleg, introduced by Bttiker and Lan-
pulse will always interfere with the reflected portion of itself qa,er which requires an extra modulation of the bafi3éy.
in front of the barrief25]. This self-interference gives rise to These two times, however, have been shown to be more the
a pulsating reactive contribution that must be taken into aCphack-reaction of a measurement than an intrinsic tunneling

count when defining an overall delay time. In sum, the grougjme scale and so we do not comment further on thamj.
delay is seen to consist of two contributions. The first term is

the usual dwe!l time. The second term is due to reactwev_ APPLICATION TO TUNNELING EVANESCENT WAVES
stored energy, instantaneous changes in the net stored energy
resulting from self-interference. We can thus write the group The general relations between group delay, dwell time,
delay as and stored energy derived in the previous sections will now
be tested by applying them to the specific problem of the
Tg=Tat i, (18)  tunneling of evanescent waves through a waveguide below
cutoff. We will obtain the group delay by two methods:by

where 74 is the usual dwell time andr is the self- calculating the frequency derivative of the phase shift and

interference delay. This simple result is contrary to the oftertil) Py calculating the time average stored energy and the net
stated view that there is no relation between the dwell timd€active energy.

and the phase timgLg]. When the reflectivity is high the | € barrier regioriregion Il in Fig. D is taken as a wave-
incident pulse spends much of its time “dwelling” in front of guide of the same transverse dimensions as the connecting

the barrier as it interferes with itself during the tunnelingWaveguides Iand IIl. It contains a nondispersive material of
process. If we include this excess dwell time and interpreféfractive indexn,<n; . The frequency of the incident wave
dwell time as a difference between time spent in the presendg chosen so that it is below the cutoff frequency of this
of the barrier minus time spent in its absence, we recover theentral waveguide. In that case, it acts as an attenuator with
lifetime Q as originally intended by Smith. This generalized 2" atténuation constartgiven by

dwell time is identical to the group delay. Although the effect
of self-interference in the tunneling process has been appre-
ciated, it had been thought that its contribution to the overal
group delay could not be disentangléb,2d. Here we have This problem has previously been analyzed by Martin and
succeedeq in disentangling the self-interference delay frorﬂandauer[BZ]. However, we find it useful to repeat the
the dwell time and shown that the group delay has an unaménalysis here since the results [@] contain a few mis-

biguous meaning in terms of energy storage. . . prints. The field inside the barrier is a solution of the Helm-
In Ref.[19], we showed that the group delay was |dent|calhoItZ equation(3) with 82 replaced by— «2. It can be writ-

to the dwell time for a photonic band-gap structUurBG). .
X . n m of forward an kward evan nt waves:
There we assumed that the medium surrounding the PBée as a sum of forward and backward evanesce aves

was dispersionless and had the same refractive index as the ¥, =Ce “*+De"? (20)
average index of the PBG. This led to the vanishing of the

self-interference term. In related work on PBG’s, it has beemmhe constant€ andD as well as the transmission and re-
recognized that there is a term associated with a differencgection coefficients are determined by requiring the continu-
between stored electric and magnetic energ®g. How- ity of y anddy/dz at the boundarieg=0 andz=L. They
ever, those authors associate this term plus the dwell teriire given by

with the inverse of an energy velocity rather than with the

The tunneling literature defines a dwell time[48,24]

k= y? = n3kg. (19

IThe cutoff angular frequency of the barrier ds,= yc/n,.

group delay and hence do not make the link between group C=(1-iBlk)e/2g, (21a
delay and stored energy. A self-interference term similar to
the one we have described here also appears in quantum D=(1+iBlk)e *‘/2g, (21b
tunneling[28]. That term happens to be the Lagrangian that
leads to the Schainger equation. It is interesting to note T=ePg, (22
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R=—i[(«x/B+ Bl k)sinhkL]/2g, (23) The phase of the transmitted wave is

where g=coshkL+iA sinhkL and A= («/B— B/k)/2. The

transmissivity| T|? of the barrier as a function of frequency is do=arg T)+ BL=—tan (A tanhkL). (29
shown in Fig. 2 for several values of the barrier strength

The stop band is the frequency regien<w<w,, where

wr,=(N1/Ny)wy. From this we find the group delay

deg L cofey[w?(B «\2tanhkL n3[p2 )
Tg—m—v—.—él 2 F ; E L _n_i 7—1 SeCHKL , (25)
where
S I 26
COS o= AZtani xL 26
and
v =(c/n)V1-(w;/w)>. 27)
Taking the energy approach, we find
_[£0lEol?A) cos ¢ [ ¥ | k*+ B?) tanhkL o B
<U>—( 7 PR Al ——Lm| -1 sech «L (28)
for the time average stored energy and
_[£0|Eol*A) coS ¢ [ k+ %) tanhkL
<Um>_<ue>_( 4 2 kg P (29
for the net reactive stored energy. Recognizing that the time averaged incident power is
eolEol*Acp
_SolEol ACP (30
n 4k,
we obtain from Eqgs(15), (28), and(29) the dwell time
L [co ¢y [ w? B2\ tanhkL N3/ B2
Td—v—gl T F l+? T_n_f 7_1 sech xL (31
|
and the self-interference time cutoff whereas the dwell time goes to zero. This is because
the incident wave spends all of its time being reflected by the
L [co ¢q wi 2\ tanhxL barrier and nothing penetrates. The times are normalized by
Ti:v_0< 2 )?< + 2] kL (32) 7o=L/c, the transit time of a light front across a distarice
gl

in vacuum. Normalized delays less tharic have been
called superluminal. However, these are not propagation de-

Their sum yields the group delay which is seen to be identi1ays and should not be associated with velocities.

cal to Eq.(25). It is indeed gratifying to find that the group
delays calculated by two such different approaches are in
complete agreement. This highlights the intimate connection
between group delay and stored energy.

Figure 3 shows the group delagolid line), the dwell For an opaque barrier the group delay saturates with in-
time, and the interference delay. It is seen that outside thereasing barrier lengthll]. This phenomenon, termed the
stop band the dwell time is identical to the group delay. TheHartman effect, has been taken to imply superluminal, and
two differ in the stop band where the reflectivity is high. Theindeed infinite velocities of propagation for tunneling wave
interference delay diverges as the incident wave approachemckets[4]. We disagree with this interpretation. The very

VI. HARTMAN EFFECT AND ITS ORIGIN
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FIG. 3. (Color online Dwell time, self-interference delay, and

FIG. 2. Transmissivity of a section of waveguide below cutoff. group delay for a barrier wityL=5n,=3n,=1.

Heren,;=3,n,=1.

fact that the delay saturates with increasing barrier Iengtﬁl—hus;?jriﬁr;min (:ffrec('j[ mna (;uto\tfvx\;]ang;rUIdtair:s trenrtiﬁuléof_
means that it cannot be a propagation delay and should ng?e saturation of stored energy creasing iength. be

be associated with a velocity of propagation. In fact, we havgause.Of the exponential deciiy of the electromagnetic_ field
shown through numerical solutions of the KIein-GordonWlth distance, beyond a certain decay lengtk, Hny addi-

equation that the peak of an incident narrowband pulse doetgonal barrier length adds little to the total integrated stored

not actually propagate from input to exiL6]. Input and energy. It is this stored energy thgt determines the dela){ of
output peaks are not necessarily related by causal propagg‘—e ou_tput peak. An output peak is the_result of the barrier
tion, as pointed out by Btiker and Landauef30]. We can r_eleasmg energy it has stored from the instant the pulse was
explain the Hartman effect on the basis of saturation o{'rSt turned_ on. An anqma}lou_sly short dellay n the appearance
stored energy with increasing length of the barrjés]. of a peak is more an indication of a cavity lifetime than of a

Since the group delay is proportional to the energy stored, iPrﬁggg[ia'c’;s (ﬁéﬁyé;_?ﬁe iﬁ%i?gig}al rree dsigtlitznOI)fNI:g:tzmzrr:d
saturates as the energy saturates. While we originally derive%I P

this result for a photonic band-gap structure, it should hoIqrcnainefr\l;;ggtilézd?rﬁg;%davr\]'g&oggS;V'2%;?,[ 32?:62 ;Or::mgu;
for any barrier in which there is an exponential decay of : y Y y

stored energy density with distance. Here we derive the "mpreceded by a lengthy cavity filling time during which the

iting values of the stored electric and magnetic energies ﬁxponentlal standing wave mode IS set[Gﬁ]. Th's filling
time should be accounted for in any discussion of causal

g;en%ﬂtgfo\gs\aeggfe and show that they explain the Saturar_elationships between input and output pulses. Npte that
From Egs.(28) and (29) we find above the cutoff frequency of the barrier the hyperbolic func-

' tions in the tunneling time become trigonometric functions
and hence there is no saturation with length in that case. In

UoB2y? this allowed region of propagation there are still delays that

LI[nW<U>= k(k%+ B)kS’ (333 can be less thah/c. These occur in the low transmission
parts of the barrier when the guide wavelength is much
greater than the barrier thickness. It is for those regions that

) B UoB%K? the interference explanation of anomalous delays may be ap-
lim ((Umd —(Ve)) =0z e (330 plicable[13].
where Uy=g0A|Eg|%/4. Using these saturated stored ener- VIl. ENERGY VELOCITY
gies in Eq.(16), we obtain in the limitL— oo,
If neither the group delay nor the dwell time can be asso-
s 9 PR ciated with a traversal velocity through the barrier, is there
2 (o) _« 2 (o1 B hysicall ingful velocity that leads t ibl
ri=—o | —| 5, T=—p | —| s, some physically meaningful velocity that leads to sensible
KUg\ @ K°+f Kug \ @) K°+f results? After all, some energy does get transmitted through
the barrier. The output pulse does contain energy otherwise it
> 2 could not be detected. A single purely evanescent mode can-
w1 . . .
Ty=Tq+ Ti=—o(—) (34)  not transmit any time a_veraged power. That is because the
KUgp\ @ electric and magnetic fields are in quadrature (90° out of
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phase. There is, however, a reactive power flow that re- £o|Eol?A s s
verses direction twice per cycle and has no time average W= W{(nﬁ n3)k§ costt k(z—L)

value. So long as the quadrature relationship is maintained o9

there yv_ill be no time average power flow. Th_is is the case in +[(BI)2(k3n3+ v?) + k?]sint? k(z—L)}.

an infinitely long evanescent region. In a finite region, how-

ever, there will be some reflection of the forward attenuatingrhe maximum ofvg occurs where the denominat# is a
evanescent mode at the exit. Because the cutoff waveguidfiinimum, since the numerator is constantzinClearly the
has a purely imaginary characteristic impedance, the refleGninimum of W is atz=L. Hence

tion coefficient will have a phase shift associated with it. The
reflected backward evanescent mode has a phase shift so that NES
the total electric field is no longer in quadrature with the (V8) ma= in
magnetic field. Thus the interference between the forward M Aeg| Eol(nT+n3)/8g|?
and backward evanescent modes gives rise to a nonzero time

average power flow. This power flow is not QUe to a propa- =c % /1—(—w1/w)2sc. (38)
gating wave but can be seen as the beating between two ni+n;

evanescent cavity modes. In addition to the purely reactive

pulsations of energy, there is a time averaged contributiod hus the local energy velocity is always less titancreas-
due to the fact that net energy escapes through the boundaifjg from zero at the cutoff frequency of the external region
during each cycle. This energy is radiated away and does né® c[2n; /(n+n3)] when far above cutoff. Of course, we
return to the source. That energy must be replenished by @annot go very far above cutoff if the wave is to be evanes-
real power flow into the volume. Another way of saying the cent in the barrier region.

same thing is that the wave impedance which is purely Having shown that the local energy velocity is strictly
imaginary for a single decaying evanescent mgkdence subluminal, we now consider the global or average energy
purely reactive acquires a real part when a reflected, phasevelocity defined above. Again, since the numerator is con-
shifted antievanescent contribution is added. This real part aftant,Vg is maximized when the denominator is minimum.
the impedance governs the transfer of time-averaged powétence

from one end of the structure to the other.

The local energy velocity relates to the flow of real power. LP, LP,
It is defined ag15,3 = < _
min | Wdz
0
Pt
UEZW, (350  where the inequality follows from the positive definite nature

of W. Recognizing the last term a®g) o, We can then
state the following inequalities:

where(W) (Jm™?1) is the time averaged energy density in-
tegrated over the cross section aRg=|T|?P;, (W) is the (Vi) o= (02) =< C (40)
constant average power flow through that area. A global or B/ max =1 E B max= e

average energy velocity through the barrier can be defined agys poth the local and global energy velocities are nicely

bounded from above by the vacuum speed of light. In recent
work Diener has proposed an unconventional definition of an

E f LP dz energy transport velocity which seeks to separate stored,

L Jo ! nonpropagating energy from propagating energy in the wave-
ETT (L . (36) guide [35]. We believe that this approach is fundamentally

T JO (W)dz flawed since the energy is stored in the entire electromag-

netic field. One cannot separate longitudinal field energy
from transverse field energy since the field components are

The local and global energy velocities must be bounde@oupled into one electromagnetic wave. _ _
from above by the speed of light in vacuue Here we Figure 4 shows the energy velocity in the barrier region
demonstrate by using the solutions for the fields within theormalized by the vacuum speed of light. The dotted curve is
evanescent region that the energy velocities are indeed sulle group velocityand energy velocityin an infinite length

luminal. The energy per unit length is given by of the external waveguide. It is asymptotic ¢tén,;. The
dashed curve is the group velocitgnd energy velocityin

an infinite length of the central waveguide for frequencies
1 above the cutoff frequency. It is asymptotic ¢on,. The
W= ZJ [e(E-E*)+pu(H-H*)]ds. (37 energy velocity in the finite barrier is much less than the
s speed of light for frequencie®;<w<w, within the stop
band. Outside the stop band the global energy velocity rises
Using the field solutions in the barrier we find to an asymptotic value betweei::rg1 andugz.
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— V-ch propagation. A velocity, on the other hand, assumes that the

ool -- vie|  eeemmmTT phenomenon in question, in this case a pulse peak, actually
- propagates. In doing so, it passes continuously through every
08 point along a trajectory. For tunneling pulses, we have shown
o7} through direct numerical solutions of the wave equation that
05l the pulse peak does not propagate from input to output,
) therefore the notion of group velocity is not relevant. It is
fm 05¢ often said that evanescent waves propagate with superlumi-
o4l nal velocities. That by itself is a contradiction in terms. Eva-
nescent waves, by definition, do not propagate. They are
03r storage fields that oscillate in place. If they are traveling they
oz} cannot be evanescent.

Distortionless tunneling is a quasistatic process where the
pulse length greatly exceeds the barrier leridt6]. This is
- . - - . true in all experiments where tunneling without distortion
1 2 3 4 5 6 7 8 9 . . . . .
FREQUENCY (#) has been observed. It is true in numerical simulations where
! “infinite” tunneling velocities have been claimed. In Ref.
FIG. 4. (Color onling Energy velocity for a tunneling evanes- [36], for example, a pulse of width 37.32 ns was said to have
cent mode(solid curve. The stopband is the frequency range 1 tunneled with infinite speed through a barrier of length 32.96

01E

<f/f;<3.HereyL=5,n,=3, n,=1. mm. Given that the spatial extent of the tunneling pulse was
11.2 m, which isthree hundred and forty times the barrier
VIll. A RECIPE FOR MEASURING DWELL TIME width, it is safe to say that this was a steady state process and
AND ENERGY VELOCITY that the peak was always at the exit as well as at the input. In

L fact, with respect to the barrier, this pulse is not a localizable
The general relation linking the group delay to the dwell ) o ) )
. . object for which one can speak of a transit time. This quasi-
time can be used to measure the energy velocity. The group . ; S . )
. ) ; atic nature of the interaction is also true in other “superlu-

delay is a well defined, measurable quantity for narrowband .~ . . :

ulses that satisfy the conditions for the validity of the grou minal” contexts such as in gain media where a 720-m-long
b Y 9 ppulse was used to probe a 6-cm sam[@é]. This in itself

delay notion. It is determined by measuring the time d'ﬁer'rﬁlises guestions about the possibility of localizing a peak so

ence betwgen an inpqt pglse peak and an output pulsg PeEhad in a sample so small. To what accuracy can such a
In fiber-optic communications, group delay is also routinely easurement be made? In the adiabatic tunneling process

measured by monitoring the phase shift between an OUtthl ere is a long build up time as the front of the pulse fills the

modul_atlon and an input modula_ltlon. The_self-lnterferenc_ebarrier with energy{33]. This filling process takes a couple
delay is also a measurable quantity determined by MEASUNT transit times. As the main part of the pulse arrives it can-

the complex reflection coefficient of the barrig@ine way is X o

. X . not propagate through the barrier because it is below the
by making cw standing wave measurements with a SIcme‘cj:utoff frequency. It can only modulate the stored energy in
line which yields the magnitude and phase of the reflectio N Y- y 9y

coefficient) From these two measurements we obtain thre}he barrier. Some (.)f the stored energy Ieal_<s out and is con-
dwell time asry=7,— 7, . From Eq.(36), the global energy yerted to propagating energy. The output simply follows the
velocity is d= g i ' ' input with a small delay owing to energy storage. Because of
the quasistatic nature of the tunneling process, what is actu-
V= |TI’L 41) ally measured is a phase shift of an amplitude modulation.
Td

Hence a series of cw measurements yields all the informati_on X. CONCLUSION

we need to characterize the dynamic response of the barrier.

We may also define an energy transit time as=L/Vg In summary, we have derived an explicit relation between
=14/|T|?. This is the time it takes for all the energy stored group delay and stored magnetic and electric energies in
in the barrier to leave through the exitzat L, assuming itis ~Waveguide junctions such as the ones used in tunneling ex-
transported with the average energy velocity. This time igperiments. For evanescent modes, the electric and magnetic
much longer than the group delay, which is a lifetime of ~ energies differ. This leads to an additional term in the rela-

stored energy escaping through both ends. tion between group delay and stored energy for waveguide
terminations that was derived by Dicke some time ago. This

additional term is also related to a self-interference delay
experienced by a tunneling pulse. We are thus able to express
We assert that no one has yet measured a superlumintde group delay as a sum of a dwell time inside the barrier
tunnelingvelocity What have been measured are gragp and a self-interference delay, something that had previously
lays The distinction is not just semantic. A delay time by been thought impossible. Both of these delays saturate with
itself makes no assumption about the mechanism responsibtistance because the stored energy densities, being exponen-
for the delay. It could be due to absorption and reemissiortially decaying functions of distance, result in saturated inte-
storage, multiple reflection, transmutation, even perhapgrated energies. Because they saturate with distance they

IX. GROUP DELAY VERSUS GROUP VELOCITY
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cannot possibly be propagation delays, unless we assume thdich can actually be determined experimentally by mea-
waves are smart enough to adjust their velocities so they casurements of group delay and self-interference delay.
cover increasing distances in the same amount of time. The

anomalous group delays seen in barrier tunneling are not LSS

propagation delays but a measure of cavity lifetime. On the This work was supported in part by the National Science
other hand, one can define a strictly luminal energy velocityroundation under Grant No. PHY-0114336.
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