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and multisoliton solutions
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Higher-order and multicomponent generalizations of the nonlinear Siclyer equation are important in
various applications, e.g., in optics. One of these equations, the integrable Sasa-Satsuma equation, has particu-
larly interesting soliton solutions. Unfortunately, the construction of multisoliton solutions to this equation
presents difficulties due to its complicated bilinearization. We discuss briefly some previous attempts and then
give the correct bilinearization based on the interpretation of the Sasa-Satsuma equation as a reduction of the
three-component Kadomtsev-Petviashvili hierarchy. In the process, we also get bilinearizations and multisoli-
ton formulas for a two-component generalization of the Sasa-Satsuma eqfiagoviajima-Oikawa-Tasgal-
Potasek modgl and for a (2+1)-dimensional generalization.
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[. INTRODUCTION SSNLS as a reduction of the three-component Kadomtsev-
Petviashvili(KP) hierarchy, and then we also obtain general
One of the most interesting applications of solitons is inmultisoliton solutions.
the propagation of short pulses in optical fibée an over-
view, see Ref[1]). The basic phenomena are described by A. Gauge transformation
the nonlinear Schdinger equation, but as the pulses get )
shorter various additional effects become important. In Ref, N order to understand the complex structure of &9, it
[2] Kodama and Hasegawa derived the relevant equatiol§ IMPortant to isolate the gaugphasg invariance and fix
with higher-order correction terms, the generic form of suchi"® gauge. First, let us recall that the NLS part of Ef).
an equation igin the optical fiber setting the roles of time (-€- if 8i=0) is invariant under the combined gauge-Galilei
and space are usually reversed transformation
r)=evTvdlay(x 1) x=71-2v¢ t=£ (2
0+ @10+ @ola|?q+i[ B10,..+ B2l al?a.+ Bsa(|al?) /] 9 Yo v £ @

-0 (1) The full equation(1) is not invariant under Eq2), but if we
' try the transformation

where theq; , B; are real constants argpa complex function.
The first three terms form the standard nonlinear Sainiger
equation(NLS) and theg; terms are the perturbative correc-
tions. Usually, one chooses the scaling so thgt2a;. In ¢; real constants, 3
this paper, we assumg, #0.

Our main concern here is the bilinearization and multi-
soliton solutions of the Sasa-Satsuma equat®8BNLS [3],
which is a particularly interesting integrgble example in the €3~ Ci(—2a1+3B1Cy), Co=ci(—ai+c181), (4
above class. In this section, we discuss some basic properties , ) ) ) ) .
of Eq. (1), its integrable special cases and their multicompo-Nen Ea.(1) is form invariant the equation foy(x,t) is as in
nent generalizations. In particular, we show that many previEd- (1) with 8; unchanged, but the; change according to
ous attempts to solve these equations have produced only _ _
rather trivial solutions, in which the complex and multicom- ay—a;=a;—3P1C;, axy—az=az—fB2€1. (5
ponent freedom has been “frozen.” The reason for this turns
out to be in the incorrect bilinearization that was used inWe can therefore use this transformation to put=a,
those papers. The correct bilinearizatignesented in Sec. Il =0, provided that
with detailed derivation in Sec. )ifollows once we identify

q(¢, =€ edy(x,t), x=r1+c3t=¢,

we find that if

3Braz= Pray. (6)
*Electronic address: c.gilson@maths.gla.ac.uk [In the usual normalizationr;=3%, a,=1 (6) meansp,
TElectronic address: jarmo.hietarinta@utu.fi =6p,.] In all integrable casegalong with some noninte-
*Electronic address: j.nimmo@maths.gla.ac.uk grable cases appearing in the literajuig). (6) is satisfied,
$Electronic address: ohta@math.kobe-u.ac.jp and we assume it from now on.
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On the basis of the aboveye fix gaugg3) by requiring  which reduce to SSNLS under the above reduction; and a
that @;=0 in the equatiorand compare results only in that mixed case,

uniquely defined gauge.
quely gaug Case 413,14

B. Integrable cases

a a
_ 2 2 _ * * _
The integrability of the class of equatiot$) has been Gt Auooct 2(|ql| 102" dax 591(01 1t 02 420 =0,

studied by a number of authors using Painlemsalysis

[4-6] and other method¥], with the consistent result that if a 5 5 a . .
B1,B,#0 there are precisely two integrable cases withQztt Qoxxxt §(|Q1| +]a2/%)apct 592091 91x+ A2 G20 =0,
bright solitons. (13

(1) Hirota’s equationHNLS) [8]: B1:8,:83=1:6:3,
> which reduces to HNLS undeq=q;=0Q,,a=3 and to
Gt + Aot 610 °A=0, (@) SSNLS undelg=q;=q3},a=6. In each case, we must, of
) course, adjoin the complex conjugated equations. Cases 1-3
(_2)_ Sasa-Satsuma equatiof6SNLS [3]: B1:B2:Bs  are invariant undeq,«—q% , while case 4 changes to the
=1:6:3, alternative form

G+ Ohooct 60| *axt 30]6%[=0. (8 Case &

. . . a a
Here, the scaling convention mentioned above has been agy, +q,, .+ §(|Q1|2+|Q2|2)Q1x+ §Q1(Q’1‘Q1x+qu§x)=0,
sumed and they; terms eliminated.
Some nonintegrable special cases of EL. have also
been studied in the literature, including,10]: B1:85: a a
—1:6:6, 19,101 125215 Ot Ooxxxt §(|Q1|2+|Q2|2)Q2x+ EQ2(Q1QTX+QSQZX):0-
(14
+ Oyuxt 6(9]G?)=0. 9
A Ghooct 6(]a%]x © Under the reduction,=0, cases 1,2,4 reduce to HNLS and
3 to SSNLS.
C. Multicomponent generalizations

Both HNLS and SSNLS allow various kinds of multicom- D. The modified Korteweg-de Vries limit
ponent generalizations, some of them integrable. The results

A ) ) With complex and multicomponent equations, it is impor-
of a Painleveanalysis[11] can be summarized as follows

tant to make the following observation: we can always make
Case 1 the real, one-component reduction

i(x,t)y=cju(x,t) Vi, 15

1ot Aaxoct 3(| el +|02/?) 014=0, G =euxy 19
whereu is areal function andc; are arbitrary complex con-

Aot T Goxext 3(101) 2+ 102]?) Ao =0, (10 stants. As a result of thigll the equations mentioned before
(and many others, including nonintegrable gnesduce to

which can be interpreted as a real four-component modifie&1e real mKdV equation

Korteweg—de VriesmKdV) equation, reducing to HNLS for

di—a,, efc. U= Uyt KUZUL . (16)
(Note that for case 2, we neét}|=|c,|.) This was observed
Case Z11: already in Ref[4]; see Eqs(21)—(25). A consequence of this
rather simple observation is the following.
aet At 3(192]%+ 02l Gaxt 301(] 621 )« =0, All these complex and/or multicomponent systems always
have multisoliton solutions of the real mKdV type, with fro-
o+ Goxoct 30 Gal2+ 022 dax+ 302(] 41|12 = 0; zen complex and/or multicomponent freedom.

In the usual real one-component case, the existence of

multisoliton solutions is a sign of integrability, but from the
and Case 312]; above we can see that this is not necessar_ily_ true in the com-
plex or multicomponent case. In general, it is essential that

the individual solitons, from which the multisoliton solution

2 2 3 2 2y —
A1t + Guooct 3(/02|*+ {02 %) duct 20a(lda|*+]02]%),=0, is built, are each allowed to have their own freedom of initial
position and overall phase. That is, even if a one-soliton
Qott Aoxxxt 300112+ |02|2) dox+ 302(]q1]%+ | 02]?) =0, solution is of type(15), in the multisoliton case each com-

ponent soliton must be allowed to have its own parameters,
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including the complex coefficied c;. Furthermore, during We note that this has similag;t dependence as E(L9) but

scattering some of these parameters can chftigje

Thus, in practice reductiofil5) trivializes the equation

the functional form is different; also in the limi&—0, i.e.,

x—0, we obtain the real [imit20).

and the resulting solutions are hardly of interest. Neverthe- It turns out that Eq.(21) is still not the most general
less, it seems that several recent studies have fallen into thehe-soliton solution for this system; it is given y= G/F,
trap and produced no solutions with genuine multicomponenivhere

or complex structure. This is quite evident from the proposed

final results: for example, the multicomponent structure is p*

trivialized into a constant factor in R€fL6] [see Eqs(3.15),

(3.16 or (3.20, or (3.29, (3.26, (3.32, (3.33] [10] [see

Eq. (17) or (24) or (27)], and[17] [see Eq.(10) or (13)],

whereas the solutions are obviously résfter the gauge has

been fixed in Ref.[9] (see Sec. I, [18] [see Eqgs(2), (3),
(15), and(16)], and[19] (in Sec. IVk;,»; are real andH/G

a constant Below, we will show that the reason for this

often lies in the incorrect bilinearization that was used.

E. Traveling-wave solutions

Let us now return to the one-component E¢8.and (8)

and consider their one-soliton solutions. For the purpose of
orientation, let us first consider HNL$7). The usual

traveling-wave ansatz

q(x,t)=e/@Fbtro)f x4 dt+ §), (17

wheref is a real functior(soliton envelopg leads to a pair of

real equations, which are compatible, if

b=a(3d—8a?), (18

G=ye’+p*e” +m 2—)/2e2’7“/*+me’7+2’7*
(22
2 2 * %
F=1+2Me”+ﬂ*+ﬂe2”+ ueh*
(p+p*)? 2p? 2p*?
2
ﬂe2(77+77*)
4lpl*
2
e” *e?
=1+3 DA -
p
2 2
(p—p*)e7|” |me”
+3(1712+1pl?) - | 2’, (23
(p+p*)p| 2p !
p—p*
m=(|y|°p—|pl?P*)—1=., (24)
(p+p*)?
n=px—p3t+ 79, p,p, y, and ¥ complex.
(25

and in that case the solution can be parametrized as follows:

c

costic{x+(3a2—c?)t+6}]
(19

x+(a2—3cz)t+ w]

g(x,t)=e'!

We observe that there are four free real parameteasidc,
which relate to the size and velocity of the soliton, and

Comparing with the original one-soliton solutid@1), we
have two extra parameters and p. By #» translation one
finds that onlyp/y matters, and if it vanishes we have the
usual SS solution, so this is a genuine new parameter. This
parameter controls the oscillation, which appears not only in
the carrier but also in the envelofleut in any casé&=1 so

the solution is not singular This solution was already ob-
tained by Mihalachet al.[20] using inverse scattering trans-

which give the constant complex phase and soliton positiong,m ‘pelow we will derive it using the bilinear method. It is

respectively.

If we use the same ansatt7) in Eqg. (8), we find that it

works only under the additional conditia~ 0, leading to

ce®
0t = V2 costic(x—c?t+8)]

(20

Since one parameter was lost, soluti®@0) is not general

not easy to derive such a solution from (aomplex
traveling-wave ansatz, and Hirota’s bilinear method is easier
to use in this case.

F. Outline

In this paper, we first present in Sec. Il the bilinearizations
that work and the one-soliton solution that is obtained by the
expansion method. The detailed derivations and multisolu-

enough. Indeed, Sasa and Satsuma have derived a complgyn solutions are made in Sec. II.

traveling-wave solution to Eq(8), which does not fit the

usual ansatz17) but has the forn3]

2e7c(e?7+ k)

; 2 2
X’t):ela[x+(a —3c)t+ ] '
a e'7+2e?7+ k|2

n=c[x+(3a’—c?)t+4]. (21)

K= —,
a+ic

It is well known that soliton equations can be organized
into infinite hierarchies as described by the Sato théafy
and that particular equations can be obtained from these hi-
erarchies by various reductions. Indeed, one cannot have a
full understanding of an integrable equation before its rela-
tion to integrable hierarchies is described. In Sec. I, we will
give the full picture by showing that the Sasa-Satsuma equa-
tion can be obtained from the general Sato theory as a reduc-
tion of the three-component KP hierarchy. The reduction can
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be made in two different ways producing two different bilin- DfF ‘F=2(B+3)|G|?,
earizations. As intermediate steps of the reduction process,

we get either a (2 1)-dimensional generalization or a com- _ 3, n r_ )
plex two-component generalization of the Sasa-Satsuma [(6=B)Dx+2(A+3)DJG-F=3BD,H-F,
equation.

[(6—B)D3+2(B+3)D{|G*-F=3B8D,H*-F,
Il. DIRECT BILINEARIZATION AND ONE-SOLITON

SOLUTIONS D;G-F=—HF,
One can attempt to bilinearize the generic equation DﬁG* F.— —H*F, (31)
G+ Ohooct 60| %0t Ba(|al?)=0 26

with the standard substitution 5 5 2
DiF-F=3(B+3)|G[%,

G
9=% (27) (D3+D,)G-F=8SG,
whereF is taken to be real anG complex. This leads to the (D3 +Dy)G*-F=—BSG",

equation
D,G-G*=SF, (32
F2[(D3+D,)G-F]-BGF(D,G-G*)—3(D,G-F)
) ) . where the new dependent variable has been célleahd S,
X[DyF-F=3(B+3)[G[*]=0, (28) respectively. Note tha® is pure imaginaryH complex, and
o o _ that HG* —H*G=D,F-S. These splittings are acceptable,
which is quartic inF,G. Here D, and D, are the Hirota pecause they introduce equal numbers of new functions and
bilinear operators. We can see thatdf=0 (which is the  new equations and, furthermore, for integrable equations and
HNLS casg the equation splits naturally into two bilinear sojiton solutions the new functions turn out to be expressible
ones, P3+D,)G-F=0 andDZF-F=2|G|2. In the general in terms of polynomials of exponentials. Thus, for ahyve
case(that includes the SSNLS equation@t3), we could  can give for Eq(26) a bilinear form in terms of three bilin-
take ear equations for three functions, but it should be empha-
sized that the fact that an equation can be written in a bilinear
DiF-F=3(8+3)[G|%, (29 form does not by itself imply that the equation is integrable,
or that the new function§,H are 7 functions, although it is
as one of the equations, which leaves a trilinear equation the case wheB=3.
The one-soliton solution can be obtained as usual by sub-

F[(D3+D,)G-F]- BG[D,G-G*]=0. (30)  stituting the expansions
One might be tempted to require that in E80) the terms F=1+€’F,+€e*Fy+---, G=€G,+€°Gy+- -
in square brackets vanish separately, but this is not correct (33

(as was already noted in Réf]) because it would result in

more independent equations than there are unknowns and &gcompanied by suitable ans&tr S into Eq.(31) or (32),
effect force reduction to the real mKdV equatig@learly — and truncating at some power of the formal expansion pa-
D,G-G*=0+0,(G/G*)=0 and therefore, the phase Gf rametere. For HNLS (8=0), the expansion can be trun-
has nox dependence, and wheB=R(x,t)e'?") is substi- cated by keeping terms up &3, but for SSNLS =3), we
tuted into the remaining equation one finds théf) must be  must go up toe* obtainingF,G as given in Eqs(22)—(25),
constant, i.e., Eq.15).] As a matter of fact, this sort dfrute  with the auxiliary functions

force bilinearizationturns out to be precisely the reason for

the trivialization of the complex multicomponent freedom S=(p—p*)(|11>=|plHe”* ™, (34)
mentioned before. Unfortunately, this incorrect approach has

been used quite frequently, see, e.g., 836 of Ref. [16];

Egs.(9), (29), (44), and (47) of Ref. [10]; Eq. (12) of Ref. H=—yp’e’—p*p*?e”

[22]; Eq. (26) of Ref.[23]; Eqgs.(21)—(24) of Ref.[24]; Eq. m| yp*2 * 2

(7c) of Ref.[18]; Eq. (20) of Ref.[19]; Eq. (43) of Ref.[25]; - 7_e2n+ 7" 4 p_en+27z* , (35)
Eq. (18) of Ref. [26]; Egs.(9) and(16) of Ref.[17]; Eq.(39) 2| p? p*?

of Ref.[27].

The trilinear equatiorf30) can only be split into two bi- which are also polynomials of exponentials. It is not known
linear ones by introducing a new dependent variable. Therehether the expansion can be truncated for any other value
are two acceptable ways to do this, resulting in of B.
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. THE SASA-SATSUMA EQUATION AS A REDUCTION m ¢ o m
OF THE THREE-COMPONENT KP HIERARCHY g=| — , g:’ — ‘?‘ , (44)
=AY -¢' 0
We will next explain how the Sasa-Satsuma equation and
its multisoliton solutions can be obtained from the three-gng
component KP hierarchy by suitable reductions. It turns out
that there ard@wo different reduction routes leading to the m ¢ _ | m x
Sasa-Satsuma equation; both are two-step reductions but the h=| — ’ = = . (45)
intermediate equations are different. We will first describe -xt 0 -¢ 0
the starting pointthree-component KP hierarchand then
the two kinds of reductions. By considering Jacobi determinantal identities involving
f, g, g, h, andh and their derivatives with respect 1 x,,
A. Three-component KP hierarchy and its = functions X3, Y, andz one may compile a complete list of bilinear

. equations that are satisfied by these functions. The bilinear
~ In general, the three-component KP hierarchy h&snc-  equations given below are the only ones from this list that
tions depending on three infinite sets of variables | actually be used in the rest of this paper:
=X,X2,X3, ..., ¥Y=VY,Y2,Y3, ..., andz=z,z,,z5, ..., and
is defined in te:ms. (?f ve(.:tor elge.nfun"c_tlonsﬁ(_x), y), (Di—DXz)g-f=0, (D)2<+sz)g-f=0, (46)
and x(z) and “adjoint eigenfunctions”¢(x), yA(y), and
x(2). We should emphasize that, at this point, these six
eigenfunctions are independent of one another. In general,
they are only assumed to satisfy the linear equatiémisn

(DZ=Dy)h-f=0, (Dj+Dy)h-f=0, (47)

=23,...) (D3+3D,D,,~4D,,)g- =0,
Iy p=yp,  —ix d=(—3)", (36) (D}-3D,D,,~ 4D, )g- =0, (48)
oy =y, —ay = (=) ", (37) (D3+3D,D,,~ 4D, )h- =0,
I X=X — I x=(—3)"X. (39) (D3-3D,D,,~4D, )h- =0, (49

Here, we consider the special case in which only dependence _ _

onX,X,,X3, Y, andzis active and so the vectoes(x,X,,X3) DyDyf-f=-2gg, D,Dyf-f=—2hh, (50)

and $(X,X2,X3) satisfy _
Dy(D{~D,,)g-f=0, Dy(D{+D,,)g-f=0, (51)

I, 0= 05p, Oy, p=5b, Iy, b=~ i, Ox, =05,

(39 D,(D;—D,,)h-f=0, D,D;+D,)h-f=0. (52
and ¥(y), x(2), ¥{y), andx(z) are arbitrary vector func- g s typical for the multicomponent KP hierarchy, this set of
tions of a single variable. equations appears to be overdetermined as it stands, having
A potential matrixm is defined by many more equations than dependent variables. But we al-
_ _ _ ready know that it has a rather general set of solutions given
am=¢e', m=y', Im=xx", (400 above (even containing several arbitrary functions of one
variablg. It turns out that there exist exactly the right num-
which can be integrated to ber of differential relations among these equations to guar-

antee their compatibility. There is some freedom in choosing
— — — the primary or independent equations, one choicé4®,
— t t t
m—c+J ¢¢dx+f (44 dy+j xx dz, (41) (47), (483, and(50) (seven equations for five functions and
two dummy independent variabje3 he remaining equations
wherec is a constant matrix. As a consequence of &), are consequences of these or possibly just restrict some con-

we also have stants of integration. As an example consider E4g8b).
From Eq.(46@, we can determingxz, from Eq. (483, Oxys
Jy,M= ' — oP,, Ty M= ey ' — O P+ D, and from their cross derivatives, we get an equatior.fBut

(42)  now doing the same computation fgrfrom Eqs.(46b) and
(48b), we get thesameequation forf and thus Eq(48h) does

Now define ther functions not add essential information.
In order to write Eqs(46)—(52) in nonlinear form, let us
f=|m|, (43) first introduce the dependent variables
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g — g h — h M(X,~Xz,X3,&,~ 7)=m(X,X2,X3,&,7), (58)
q=?, =% r=?, =7 and
as long as the constant matiixin Eq. (41) is taken to be
symmetric. Hence,
®=1(nf),, W=3(nf),, 53

f(X,—XZ,XS,f,—77)=f(X,X2,X3,§,77). (59)
Converting the bilinear equations into nonlinear form and
eliminating dependence on the auxiliary variakjeone ob-  In a similar way,
tains
g(X, —X2,X3 vfa - 77) = h(XvXZ X3 !ga 77)1
Oxxxt 60 P+ 30( Pyt \I’X)—C{XSZO, _
h(Xy_Xz,stfa_77):9(X1X21X3,§a77)- (60)

Oyt 60Dy +3q(Dyy— V) — Oy =
Ghoo BPrF 3G(Pro= W)~ Gy =0, Next we consider the Taylor expansions of the eigenfunc-

tions with respect tx, and » and obtain

D(X,X2,X3) = P(X,0X3) + X2 r(X,0X3) + O(X3), (61)

while symmetry(56) gives

Fxxx T 61 @y 3 (Pt W) =1y =0,

Tt BT @31 (D= W) =1, =0, (54)

together with B(X,X2,X3) = B(X,0X3) — Xphyu(X,0%35) + O(X3). (62)

= —lqa =1/
®y=-3q9q, ®,=—3rr, By a similar argument

1

V,=—3(q0a—-0a), V,=—3(ra—rr). (55 WY)=WE+0(n), x(2)=x(£)+0(7),

Although this looks superficially like a (81)-dimensional %W:X@)‘FOW), ;(z)= WE+O(n). (63
system, it in fact describes a family of {21)-dimensional

systems. Thg andz dependence arises in such a way that itFor the potentiam, the expansion is
could be replaced by single variable corresponding to any

linear combination o andz M(X,X,X3,&,7) =M(X,0X3,&,0) + Xo( y ' — peby,) (X,0X3)
In the following sections, we will describe a two-stage 2
. - . . . o +0(x5,7). (64)
reduction of this system in which a calculation similar to that 2,

used above will give the Sasa-Satsuma equation. For the r functions, we then get
B. First reduction, step 1 f=1fo(X,X3,&)+ O(X% , X2, %) (65)
The previous set of equations contains two dummy vari-

ables x, and one ofy,z. In this reduction, we will eliminate and
the dummy variables by keeping just the leading terms,in

fo=|mg|, 66
andy—z. We start by considering eigenfunctions and adjoint 0= Imo| (66
eigenfunctions possessing the symmetry wheremy=m(x,0x3,£,0) satisfies
(X, —X2,%3) = (X, X2, Xs), (56) Mox= Podp, Mox,= PoxxPo— PoxPoxt Podox.
and the other eigenfunctions having pairwise identical forms: Mo e= thx '+ xap' (67)
Wa)=x(a), x(a)=¥a). (57)  and¢,= (x,0x5) satisfies the single linear partial differen-
. ) .. tial equation
This reduction may be shown to be a natural generalization
of the three-component version of t@ereduction described Oy o= g (68)
in Ref.[21]. 3
Now we explore the consequences of this symmetry omgq
the 7 functions. Using the independent variables ¢+ ’
andz=¢— 7, symmetry(57) gives 9=0ot+ X202+ 00G,7), h=hg+xh,+003, 7),
_ (69)
Wy)=x(E+m=x(2)],——,,
where
z)= —75)= S
XD =Wé= )=y, me @ m e o
For the potentiain, it is then easy to see that Go= —xt o O -4t o0
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and
My o oy
Mo ¢O,xx t
2= _Xt 0 — |~ %o 0 0 )
-x* 0 0
m & My ¢y oy
h,= _;t |- 0o 7D
A 0

Finally, because of E¢60)

g=ho—xzh,+ O(x5,7), h=go—X,0,+ O(x3,7) -( )
72

The above discussion shows that, up to leading ordexs in

and 7, the original five 7 functionsf, g, h, g, h can be
written in terms of the fiver functionsfy, go, 92, hg, hs
depending only o, x3, and¢.

The final part of calculation is to identify an appropriate

set of five bilinear equations involving these fizéunctions.
Applying the reduction to Eqg46)—(50) gives

Dido- fo=02f0,  Diho- fo=hafo, (73

(D3—4D,,)do: fo=—3D,@2- fo,

(D3—4D, )hg- fo=—3D,h,- fo, (74)
DDy fo- fo=—4goho. (79

Notice that in this reduction, Eq$46) and (47) give Eq.

(73); Egs. (48) and (49 give Eq.(74); and the sum of the

equations in Eq(50) gives Eq.(75).
This set of bilinear equation§3)—(75) is the Hirota form

PHYSICAL REVIEW E 68, 016614 (2003

Mot 12 Py — 41, = —3r 5y, (78)
and Eq.(75) gives
d,=—qr. (79
After eliminatingq, andr,, one obtains
Ot B0, ¢+ 3G P =Tl ,
Foxxt BN x Pyt 3r Dy =ry
d,=—qr. (80

If we now setr=—q*, x3=—t, and usdU=®,, we get a
(2+1)-dimensional Sasa-Satsuma equation

0i+ Oyxxt 605U +3qU,=0,

Ue=(/d[2,. (81)

C. First reduction, step 2

In order to make a dimensional reduction from{2)- to
(1+1)-dimensional, we make a further rotation of coordi-
nates

(82

and then choose eigenfunctions so that thieinctions will

be independent dE. Then bothX andZ derivatives in Eq.
(80) becomex derivatives and we obtain the Sasa-Satsuma
equation with two complex fields

Axxx— quqr_ 3Q(qr)x_ qx3= 0,

M B yAr = 3r(qr)x—ry,=0. (83

of a (2+1)-dimensional Sasa-Satsuma equation. If we de-

fine
q=%, =@, q2=%, r2=&, and
fo fo fo fo
d=3(Infy),, (76)
then Eq.(73) gives
U2=0xx 40Py,  Tp=TyH4rd,, (77)

Eq. (74) gives

Oxxxt 120Dy — 4qx3= - 3qZ,x )

In order to keep the solution structure in this dimensional
reduction, it is necessary to choose eigenfuncti¢nsgs, and
X So that they are separable with a common dependence on
E. A natural way to achieve this is to take

(do)i= )\iepix+ pi3x3_>)\ie(1/2)piEe(1/2)piX+ pi3x3, (84)
U= pue P [ e(UDPiEg= (112piX. (85)
xi = vie Pt p,e(PiEg= (12X (86)

where\;, u;, v;, andp; are constants. As a result of this
choice of eigenfunctions, we have

)\i)\je<1/2)<pi+p,->X+<p?+pf)xS_ (juivi+ viey) e (D@ +pX

(12)p
e =, for
Pi tP;

_ 12)p;E
(Mg)jj=cyj+el2P

016614-7
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wherec;; are constants of integratigif p;+ p;=0, we must X e(1/2prX+ p3xs
choose the coefficients properly so that from E4) we get !
a constant, which can then be absorbed intacthwatrix]. As

a consequence of thé reduction, the matrixc;; has to be )\Me(1/2)pMX+pﬁAx3
symmetric. In order that,=|my| be independent o, we eo %3
must have N} e(1/2P X+ p1 X

)\KA e(1/2)p’;,|x+ Py X3

L bo= ,
[T e®2PiE=const, (89 0
i=1
0
and, for each,je{1,... L},
0
cije” MACiTPI==const. (89
0 0
These are satisfied if and only Elepizo, and for each
i,je{l,... L} eitherc;=0 or p;+p;=0. Consequently,
we takeL =2N and then 0 0
0 0
Pnti=—Pi Vi=1,...N, 0 0
= piepx | and x= pel2pX |,
Cij = §i+N,jCi_ 5i,j+NCj Vi ,j E{l, ce ,2\1} (90) MMe(llz)pMX yMe(]-/Z)pMX
_ _ . Vf e(l/z)p’{ X Mf e(l/z)p’lk X
Finally, we show how to obtain solutions of the usual
Sasa-Satsuma equatidB), in which r=—-q*, where *
stands for complex conjugation. In order for this to come ,,;\*Ae(llzm’{ﬂx Mae(m)p;}x
about, we must havé, real andh§ =—go, h5 =—g,, and (92

SO0 we must impose the relations

where we have changed the notati??m];or_coefficients in order
% _ _ * _ to conform with Eq.(91). Since thee!*'<Px= factors in Egs.
bo =P, ¥ =Px. X"=Pi, (1) (84)—(87) will everﬂually cancel out with the above chgices
we do not include them in these formulas, but in order to
compensate this omission we must replagbsp, by
whereP is a permutation matrix. The simplest realization of (29x)"#g, €.9., in Eq.(72).
these conditions is to takkd=2M, choose the permutation Taking all constants of integratianp=1 in Eq.(90) gives
to be the M-soliton solution. In particular, the one-soliton solution
shown in Eqs(22)—(25) is obtained forM =1, A =1, u,
=—p, 11=—7.
If we setxg=—T and following Eq.(82) replaceD, and
D¢ with Dy in the bilinear equationé/3)—(75) they become

O O = O
O O O =
= o O O
o = o O

D%90- fo=0afo, (93

with Mx M blocks, and (D%+4D1)go- fo=—3Dx0>- fo, (94)
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D)Z(fo. fo=4go05 . (95) This leaves us with Eq$46)—(49), (99), (10)—(103).
At this stage, we have not yet carried out a reduction. If
This is the same as Eq31) for =3, if we identify f, ~we now do a second change of variables
=F, go=—G, andg,=H. The multisoliton solutions are

obtained from Eq(87), (66), (70), and (71) with Eqg. (92). x=3(X+E), §=3(X=-E), (104

[But please remember that due to the simplified expressions, . . . o -

we haved]do=(2%)"bo.] we can achieve a dimensional reduction in a manner similar
M .

to the dimensional reduction in Sec. Il C, i.e., by expanding
in », £ and keeping only the leading terms. After also elimi-
nating thex, dependence, and denotirg= —T, we finally

To obtain the alternative bilinear form of SSNLS, we obtain the following set of equations:
carry out the reduction process in a different manner. This

D. Second reduction, step 1

process will take us via a “coupled Sasa-Satsuma equation” (D3+Dy)g-f=3sh, (D3+Dy)g-f=3sh, (105
as opposed to the (21)-dimensional Sasa-Satsuma equa-
tion. 3 B — 3 - =
Dyx+Dy)h-f=—-3sg, (Dy+Dy)h-f=-3sg,
First, we need to introduce two newfunctions (Dx+Dr) 9 (Dx*Dr) g (106)
m m _
né M dx Dyh-g=sf, Dyh.g=sf, (107)
s=|—¢' 0 0| s=|—-¢'" 0 0O  (9¢ -
Xt 0 0 ~# 0 0 Dif-f=—2(gg+hh). (108

In addition to Egs.(46)—(52), we now have some further This is a coupled Sasa-Satsuma equation with complex
bilinear equations satisfied by theséunctions together with ~ fields. The nonlinear form obtained with the substitutions
the original fiver functions(43)—(45):

B — g _h _—h
D,(D2-D,)g-f=4sh, D,(DZ+D, )g-f=4sh, “=F 9T Ty Tr
on
is
D,(D2-D, )h-f=—4sg, D(D?+D, )h-f=—4sg, —
e TR e T (98) dr+dxxx—60dxqdq—3r(qr)x=0,
D.h-g=sf, D,h.g=sf. (99) A7+ Oy 60x0d — 3r(ar)x=0,
Again these equations are not all independent. Altogether F+ T xxx—BrxIT —3q(rq)x=0,
there are seven dependent varialiigs,g,h,h,s,s and two _ o .
dummy independent variables and, therefore, we need nine 1=+ yxx—6rxrr—3q(rq)x=0, (109

independent equations. We can take, e.g., E48), (47), o
(48a), (50), and(99), and then the other equations are con-which was proposed already in R¢fL3]. If we take q=
sequences of thesfdn practice, it is best to keep the full set —q* Y=—r*. we obtain Eq(13).
at one’s disposal.

If we change variables té and » using E. Second reduction, step 2
y=&é+n, z=&—1, (100 The final reduction on this system is a reduction @f

type, this is obtained as in the other bilinearization by iden-
then taking sums and differences of some of the equationsifying

for instance, Eqs(519 and (973, we get some equations

containing only¢ derivatives and others containg deriva- 5=h, h=g, s=-s (110
tives. In the following, we will only use the ones containing
¢ derivatives, they are This gives us the alternative bilinear form of the Sasa-
o o o Satsuma equations:
D¢(D;—D,,)g-f=4sh, Dg(D;+D,,)g-f=4sh, o -
(101) (Dx+Dy)g-f=3sg, (D3+Dy)g-f=—3sg,
(111
DD2-D, )h-f=—4sg, D.D2+D, )h-f=—4sg, _
C o (102 Dxg-g=—sf, (112
DDyf-f=—2(gg+hh). (103 Dif-f=—4gg. (113
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With f=F, g=—G, g=G*, s=S these equations yield Ccomponent KP hierarchy. As a result, we have obtained two
(32) for B=3. The solutions for this alternative form will be Possible bilinearization for SSNL§31) and (32), and for-

the same as in the first case and the nonlinear form of thesl(glé;a%g)r(;f)nﬁﬂéiggg Iml#]tismigont.SO|Uti0n$87), (9231,
equations is Eq(83), with r replaced bya This bilinear ’ " » and - In € reduction process, we have
form of the system requires a single pure imaginary auxiliar)fi‘ls.o obtained two ”?tefme.d'ate equapo(ﬁ;],) and (109, of
variables, while the other bilinearization involves a complex which the (2+1)-dimensional equatiort8l) seems to be
auxiliary field h, and consequently, here we need four bilin- new.
ear equations rather than five.
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