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We study numerically the influence of the frequency dispersion of the dielectric function of metals on the
physical properties of negative-refractive-index metamaterials. A numerical analysis is performed using the
transfer matrix formalism in conjunction with the finite-difference time-domain method. We analyze the de-
pendence of the transmission and absorption properties of a slab of split-ring-type resonators on the parameters
characterizing the frequency dispersion of the metallic dielectric function: plasma frequency and damping
frequency. Then, using these transmission and reflection coefficients, we show that the refractive index remains
negative near the resonant frequency of the rings, despite the presence of frequency dispersion. We also
determine the dependence of the position and width of the band gaps of a slab of such a metamaterial on the
material dispersion. Finally, we also discuss the influence of the shape of the split-ring resonators on the
transmission and reflection coefficients. The calculations are performed for both two- and three-dimensional
structures.
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. INTRODUCTION correspondingqg iS negative. Furthermore, in Refg—9] it
was also demonstrated that a network of thin metallic wires
More than three decades ago, Veselago described theorefjehaves as a quasimetal with a highly reduced plasma fre-
cally the electromagnetic properties of a medium, for whichquency. A consequence of this phenomenon is that the pen-
both the electric permittivity and the magnetic permeability etration depth of electromagnetic waves in such a quasi-
w are negative{1]. Thus, he predicted that this property medium is increased considerably. By combining these two
would lead to very unusual characteristics of the propagatiogtructures, Smittet al. [2] have demonstrated that one can
of electromagnetic waves in such a medium: reverse ofabricate a metamaterial which, within a certain frequency
Snell's law(that is, such media behave as if they had a negarange, has botle and u negative, that is, a LHM.
tive refractive index reversed Doppler shift, backward  Although some of the properties of LHM are still not fully
emission of Cherenkov radiation, negative radiation presunderstood10-14, they offer a rich ground for both theo-
sure, etc. However, since for ordinary materialandu are  retical and, recently, experimental researches. Thus, surface
not simultaneously negative, these theoretical predictionpolaritons of a LHM[15], scattering properties of LHM
could not be verified experimentally until recently. Since insphereq16] or cylinders[17], or the properties of electro-
these media the electric field, magnetic field, and the propamagnetic wave propagation in LHA8] have been studied
gation wave vector of an electromagnetic plane wave form gheoretically, whereas their transmission properties have
left-handed system of vectors, such media have been namegen investigated experimentalt,19].
left-handed materialdLHM). Despite the fact that LHM could have important techno-
Very recently, the fabrication of materials, which exhibit |ogical applications in the microwave regirfentenna, selec-

the properties of a LHM at frequencies in the microwavetive reflective surfacesit would also be important if one
region, has been report¢2-5|. The central ideas that led to could fabricate LHM at infrared or optical frequencies. Al-
the choice of the structure of the metamaterials introduced ithough several candidates for LHM at optical frequencies
Ref. [2] can be traced to the work of Pendey al. [6—8]. have been proposd@0-22, to the best of our knowledge,
Thus, in Ref[6] it has been suggested that, in the microwavethis paper is the first attempt to extend the analysis of the
region, a lattice of metallic split-ring resonatdiSRR with  properties of LHM proposed by Smitt al. at infrared and
characteristic features in the millimeter range behaves as asptical frequencies. There are several reasons why this ex-
effective medium which has a negative magnetic permeabiltension cannot be made simply by scaling down the charac-
ity ue- The main factor which determines this behavior isteristic dimensions of the building blocks of the LHM. First,
that the resonant frequency of these specially designed SR&s the frequency approaches the optical spectrum, the fre-
corresponds to a wavelength that is several times larger thajuency dispersion of the dielectric function of the metal be-
the lattice constant. Thus, the effective medium approximaeomes important and cannot be neglected. Second, it is well
tion is valid and theoretical calculations have shown that thé&nown that as the frequency becomes comparable to the

plasma frequency, surface plasmons are excited, leading to

significant changes of the electromagnetic properties of the

*Electronic address: panoiu@cumsl.msl.columbia.edu metallic structure$23,24].
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z been continuous, the resonant wavelength would have been
equal to their diameter. Thus, one can treat the periodic lat-
Iw [w tice within the effective medium approximation. Moreover,
since the rings are magnetically active, resonant behavior can
(s o ts be induced only bys-polarized electromagnetic waves, that
is, waves with the magnetic field along the ring’s axis.
Theoretical calculations using a nondispersive metal have
o r E 5r 5 shown that a periodic Iz_:tttice made_ f.rom.SRR is characterjzed
g by an effective magnetic permeability given by the following
3 analytic expressiof6]:
FIG. 1. The structure of a hollow squaféeft) and circular Fw?
(right) split-ring resonator with an innefcore radiusr=1 um, Meii=1— — % o (1)
gapg=0.33 um, splits=0.4 um, and widthw=0.33 um. o —wptilo
The importance of this work is twofold. First, as just men- whereF = 7rr?/a? is the fill factor,
tioned, it extends the analysis of the LHM to the infrared and
optical frequencies, a region that could offer important tech- 3lc2
nological applications. Second, since the periodic distribu- wS=— (2
X . . . . 2w
tion of SRR and thin metallic wires can be viewed as a r3in ==
photonic crystal, this work is of interest for the understand-
ing of the physical properties of the metallic photonic band
gap (PBG) materials at optical frequencies. Thus, until re-is the resonant frequency, and
cently, most of the research work on the PBG materials fo-
cused on photonic crystals consisting of dielectrics. How- 2pl
ever, recent research studies have shown that it is possible to =— 3

; ; ) . ol
design metallic photonic crystals with new features: large Ho

lati idth[ 25,2 | issi i
Eg?tzl\éle gf\ﬁig\;\r/]ldstuEfaSéEGEIr,n:ggerleég]ansm|SS|on properties is the resonance width. In Eq&) and (3), a is the lattice

The paper is organized as follows. In Sec. II, we brieﬂyconstant,r is the inner radius of the ringy is the width of

describe the structure of the unit cell of the LHM. Then, inthe rings,| is the distance between adjacent planes of SRR,

Sec. Ill, we introduce two numerical methods, used here: th@"dp iS the resistance per unit length of the rings measured

; - ; long the circumference.
transfer matrix method TMM) and the finite-difference along . .
time-domain(FDTD) method. Furthermore, in Sec. IV we The se(;ond compltznefn';]pf the L:;!M |r.1troduct:1(.adh|n REf.
present our results obtained by analyzing the transmissio onsists of a network of thin metallic wires which acts as a

properties of the LHM. Also, we show how the transmission igh-pass filter: only the frequencies above a cutoff threshold
and reflection coefficients of a slab of material can be used t

ghe plasma frequency of the quasimetal-type mediaem
determine its effective permittivity, effective permeability,

propagate in the material. Since the cutoff frequency corre-
and refractive index and apply this method to the LHM. Fi_sponds to a wavelength several times larger than the period
nally, in Sec. V our results are summarized and discussed.

of the structure, again the effective medium approximation
holds. The effective dielectric function of this quasimedium
can be written a$7,8]

II. DESCRIPTION OF THE UNIT CELL OF THE LHM

The LHM introduced in Ref[2] consists of two inter- . w,Z)
spersed periodic metallic structures. The first one is a peri- €e= 1~
odic lattice of metallic SRR with either a circular or a rect-
angular shape. The geometrical features of such a structure ~ . . ,
are presented in Fig. 1. Note that throughout this paper, th&/Nerew, is the associated plasma frequency of the longitu-
characteristic dimensions of our structures were chosen to b@dnal modes and plays the role of absorption.
near the fabrication limit of current industry patterning tech-
nology, that is, a few hundred nanome?ers._ Ill. NUMERICAL METHODS

Although not unique, the geometry in Fig. 1 has several
features that make it an ideal candidate for the building block In analyzing the transmission properties of a slab of
of a LHM. Thus, the small gap between the two rings create$ HM, we used two numerical methods: TMM and FDTD.

a large capacitance which, combined with the inductance of he first method is extremely useful in determining the scat-
the rings, lowers considerably their combined resonant fretering properties of periodic structures, whereas the latter can
quency. Furthermore, the split of the rings ensures that theffer valuable insights into the time evolution of the solu-
resonant frequency corresponds to a wavelength severdibns of Maxwell's equations in a finite spatial domain. In
times larger than the diameter of the rings. Had the ringshis section, we will briefly describe both these methods.

w(w+iy) @
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A. Transfer matrix method the transfer matrices for subsystems that are as large as pos-

The TMM, which was introduced by Pendry and co- sible; then one determines the scattering matrices for these
workers[30,31, is a powerful tool for calculating the band subsystems; and flna_lly, from.these scattering matrices, one
structure of periodic dielectric materials. This method hag@lculates the scattering matrix for the entire system.
been used for investigating periodic metallic structures both A One final madification of the previous algorithm is needed
at microwave 32,33 and optica[34] frequencies. It consists When dealing with periodic structures with large absolute
of discretizing Maxwell's equations on a lattice containing Values of the dielectric constantas it is the case with me-
the unit cell of the periodic structure and then constructingta"'c structures. In this case, to avoid numerical instabilities,
the transfer matrix that relates the electromagnetic fields df 1S necessary to subpartition even the unit cell and to cal-
the input and output facets of the unit cell. Thus, if oneculate first the transfer matrix for each subpartition.

considers that the output fieldl,, is related to the input field Another advantage of the TMM is that it allows one to
F,, through the relation describe periodic structures made from materials character-

ized by frequency-dependent parameters, i.e., dispersion.
Four=TFin: (5)  This feature is especially useful when investigating metallic
structures at optical frequencies. The reason for this is that
whereT is the transfer matrix of the unit cell, one can easily TMM, unlike other widely used methods, e.g., plane wave

prove that the matrid can be written a$30,31] expansion method, operates at fixed frequencies. Therefore,
even if one deals with dispersive materials, the transmission
ten—te_(t_) Mo, ty_(t_)? and reflection coefficients or the band structure of periodic
= —(t )", t )t (6 structures can still be computed by means of TMM.
The parametet, . (t__) represents the transmission coef- B. Finite-difference time-domain method

ficient of a wave incoming from the leftight) and transmit-

. . FDTD is the second method used here. It was introduced
ted to the right(left), t_, (t._) represents the reflection

. X i . in Ref.[35] and involves solving Maxwell’s equations on a

coefficient of a wave incoming from the leftight) and re-  ghatia| grid that contains the structure of interest. Since the
flected to the left(right), andt, ., t-_, t_., andt._  EPTD method is well known and widely used in many areas
being the elements of the scattering maSithat relates the 4 computational electromagnetic modeling, we present here

incoming and outgoing waves: only those features concerning its application to structures
¢ ¢ containing frequency-dependent materials. For a detailed
B presentation of the FDTD, see REB6].
S . (7)
t, to_ In order to model the frequency-dependent response of

the real material, i.e., the metal in the wires or rings, we
One of the advantages of using the TMM formalism isassume that its dielectric functiaffw) can be described by
that it allows one to decompose large structures, for whichy single Lorentzian,
the transfer matrix could be difficult to calculate, into smaller
ones which can be calculated easily. Then, from these matri- (es— 1) w3
ces, one calculates the transfer matrix for the entire structure. e=l-—F—7—", (€)
The reason why this approach works is that the transfer ma- 0"~ wy+2i dw

rix he followin mposition rule: . . . : .
trix obeys the following composition rule where e is the static value of the dielectric constaay, is

T,=T,T4, (8) the resonant frequency, a_nﬁi is the damping frequgncy. '
Once the frequency-domain representation of the dielectric
where T, and T, are the transfer matrices of two adjacent constant is set by the E¢9), one can easily obtain, by the
layers andT ,, is the transfer matrix of the combined layer. Fourier transformation, the time dependence of t.he suscepti-
However, repeated use of the E@) can soon lead to bility x(t) and, C(_)nsequently,_ the functional relatlo_nsh_lp be-
numerical instabilities. As we add new layers, the numericafveen the electric flux densitp(t) and the electric field
instabilities in the transfer matrix accumulate, leading toE(t). Since the medium is dispersive, this relationship is
massive computational problems. To overcome this promenﬂonlocal in time. The Yee algorithm must then be modified to
instead of using E¢(8) to account for the combined effect of take into account this nonlocal relationship betwea(t)
two layers of the material, we used a similar expression2ndE(t) [36].
except that we construct tiseatteringmatrix of an ensemble ~ However, the physical parameter that is generally used to
of two layers from thescatteringmatrices of each layer. The describe the optical properties of a metal and is directly mea-
advantage of this approach is that the elements of the scagtred experimentally is the refractive indexThus, we took
tering matrix are of the order of unity; consequently, whenit as the basic input parameter for the FDTD based compu-
applied to scattering matrices, this recursive process is njations. The parameteks and 6 are then determined from
merically stable(for details, see Ref31]). The drawback is the Eq.(9) by fixing the refractive index
that computing the scattering matrix of two layers by using (@)
I i i i - alw
the scattering matrix of each layer is computationally an ex . \/m

. . . . . = + | —=
pensive operation. Therefore, in practice one calculates first N(w)=ny(w)+i (10

2
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at some reference frequeney,;. Here,n, and a represent  _ °

the real part of the refractive index and absorbtion, respec-§

tively. Finally, the resonant frequeney, is chosen to be a

certain fraction of the reference frequeneys and its spe-

cific value does not affect the results of the computations as©

long as it is chosen far enough from the reference frequency_g

Wyef [37] 6 10—10
In all the FDTD based numerical computations we used £

FULLWAVE, a commercially available softwaf&8].

_5_

oeffici

10

S

—-15

Tran

10

IV. TRANSMISSION THROUGH A SLAB OF LHM

In this section we present the main results regarding the
transmission and absorption properties of a slab of LHM at 10° . . — —
infrared and optical frequencies. We start by discussing the e
results obtained by the TMM and conclude by presenting -g
both the transmission properties of a full three-dimensional&

(3D) slab of LHM as well as the corresponding structures of §
the electromagnetic field. The latter are obtained by the ¢
FDTD method. 2
@
©

A. TMM based computations T _4 _ (b)

As has been pointed out in earlier studies of the LHM 10 06 08 1' 1'2 1'4 1I6 1.8

based on interspersed SRR and thin wires, the main facto ’ ' m[1d14Hz] | ' '

that determines the properties of the mateteag., the fre-
quency at which it exhibits a negative refractive index, the FiG. 2. The transmission coefficietd) and reflection coeffi-
value of the index, etgis the geometry of the SRR. There- cient (b) for a slab ofM =16 layers of split cylinders. The plasma
fore, we will analyze in detail the relationship between thefrequency iswp=7.5X 10 Hz, the damping frequency= 10" Hz
characteristics of the SRR and the properties of the LHM. (continuous ling y=2x 10'® Hz (dotted ling, andy=4x 10'® Hz

Due to the fact that full 3D numerical simulations using (dashed ling The parameters of the split cylinders are the same as
the TMM are extremely time consuming, we used thisthose in Fig. 1 and the lattice constaniis 5 um.
method to investigate only the 2D case. Thus, the SRR are
replaced by a periodic distribution of infinite split cylinders. taining one unit cell were stacked together to form slabs of
The advantage offered by this choice is that we could use the desired thickness.
much finer computational grid, increasing thus the accuracy As shown in the sketch in Fig. 2, the incident wave was
of the results. Furthermore, as has been proven in [B&f. taken to be perpendicular on the axis of the cylinders. Along
such geometry leads to a similar resonant behavior as in théhe transverse direction, with respect to the incident wave,
case of SRR and the effective permeability is given by ahe slab is infinite since along this direction we imposed
formula similar to Eq«(1). In fact, Eq.(1) has been derived periodic boundary conditions. In this geometry, two polariza-
under the assumption that the magnetic field in a lattice ofions of the incident wave are of interestpolarization when
SRR is identical to the one in a periodic distribution of split the magneticfield is along the cylinder axis angl polariza-
cylinders[6]. When the SRRs are replaced by infinite cylin- tion when theelectric field is along the cylinder axis. It has
ders, the parameters, andI" in Egs.(2) and(3) change to  been pointed out in previous studif 32,33 that only in
wg=3wc?/ w?r® and T'=2p'/uor, wherep’ is the resis- the first case does the material exhibit a negative refractive
tance per unit aregs]. index. We determined the transmission properties of the slab

In order to calculate the transmission properties through &r both polarizations.
slab of such split cylinders, we proceeded as follows. First, Since we deal with metallic structures and the frequency
we chose the unit cell as the domain containing one splits in the infrared to optical region, the metal must be consid-
cylinder and covered it with a mesh dFXN points. Then, ered to be dispersive, that is, the dielectric constant of the
the unit cell was further divided intl subdomaingin most ~ metal structures is frequency dependent. More exactly, we
of the calculations, we chosé=5) and for each subdomain, assumed that the real metal can be described by a Drude-like
we computed the scattering matrix. From these matrices, b§nodel,
using the procedure discussed in Sec. lll, we subsequently 2
calculated the scattering matrix for the entire unit cell. The 1- @p (11)
value of the number of discretization pointd, was in- w(w+iy)’
creased until the transmission coefficient would no longer
change. GenerallyN=30 was enough. Finally, layers con- where w, is the plasma frequency ang is the damping

€Em=
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frequency related to optical absorption in the metal. The
Drude expression is a good approximation for most common
metals[39] and, thus, using Eq11) allows us to incorporate
realistic dispersive effects in our calculations. Notice the dif-
ference between Eg#4) and(11): while in Eq. (4) €4 rep-
resents the effective dielectric function of the network of
metallic wires, calculated within the effective medium ap-
proximation, Eq.(11) gives the intrinsic dielectric function
of the actual metal.

We used this expression for the dielectric function of the
metal and calculated the transmission and reflection coeffi-
cients through a slab dfl = 16 layers of SRRsee sketch in
Fig. 2. The results for the polarization of the incident wave _ _ . .
are presented in Fig. 2. Our numerical simulations revealed 05 1 15 2 25 3
several phenomena. First, there are multiple gaps in the o [10"Hz)
transmission coefficient, the first, shown in Fig. 2, being at
about 1. 10" Hz. The corresponding wavelength is about  FIG. 3. The absorption coefficient for a slabMf= 16 layers of
A=15 um, that is, about three times the lattice constant split cylinders. The plasma frequency is,=7.5x 10" Hz, the
Therefore, one expects that for frequencies within this rangdamping frequencyy= 10" Hz (continuous ling, y=2x 10" Hz
the effective medium approximation holds, such that it is(dotted ling, andy=4x 10" Hz (dashed ling The parameters of
meaningful to introduce an effective permeability. Moreover,the split cylinders are those in Fig. 2.
for the frequency range shown in Fig. 2, there exists only one o ) o )
nonzero wave vector, that is, there exists only one modeenhanced t.rar]smlssmn. This behawgr is expected since, as
evanescent or propagating. All the other band gépst the transmission through thle slab increases, the |nc_:|dent
shown hergcorrespond to wavelengths that a@mparable ~ Waves can penetrate deeper into the slab and interact with the
or smallerthan the lattice constant or even the diameter offnetallic structure. _ o
the cylinders, so that for these wavelengths the effective me- 1he transmission and reflection coefficients can be used to
dium approximation is not valid. Therefore, we will focus on determine the effective permittivity and permeability. From
the properties of the first band gap. Moreover, the very smailinese quantities we can then obtain _the phase refractive |rjdex
values of the calculated transmission coefficients near th@f the LHM, thatis, we can determine the degree to which

center of the band gaps, which are only computationall)ﬁiSperSiO” affe(_:ts the negative-index pro_pe_rty. To do this, we
meaningful for an idealized geometry, are just a manifestalVert the relations between the transmission and reflection

tion of how the TMM builds the transmission-reflection co- Co€fficients, and the phase refractive indeand the imped-

efficients of a thin layer of material into the transmission-anceZ of the materia[33]
reflection coefficients of a larger slab of material.

Absorption

One important characteristic of this band gap is that it has T1=|cognkd)— ! 7+ 1 sin(nkd) |e*?, (12
a rather large relative gap widtty,,, defined as the ratio 2 VA
between the gap width and its midgap frequency. For the R )
case presented in Fig. 8,,=55%. The transmission and k1 _E . ikd
reflection coefficients presented in Fig. 2 are calculated for T 2 z Z sin(nkd)e™, (13

several values of the damping frequengy We observed
that, asy increases, i.e., the metal is more lossy, the depth iwherek= w/c andd is the thickness of the slab. We point out
the transmission gaps decreases; however, the general strdigat the quantitied, R, n, andZ are, in principle, complex,
ture and the position of these gaps remain unchanged. Alss0 thatn andZ, viewed as functions of andR, are multi-
notice the Fabry-Perot resonances at frequencies less thaalued complex functiongfor details, see Ref33]). Oncen
those corresponding to the first gap: these arise from thand Z are known,e.; and . are given by the relations
interference between the forward and backward propagatinges=n/Z and u.s=nZ. The results obtained by this proce-
waves into the slab. dure are illustrated in Fig. 4. For frequencies within the first
Finally, we point out that fop polarization no frequency band gapues Of the SRR lattice exhibits the necessary reso-
gaps have been observed within this frequency range angbnt behavior to obtain a LHM. Moreover, there is a good
that, within machine precision, for this polarization the trans-agreement between the numerical data and the analytical ex-
mission coefficient was equal to zero. This proves that thgression given by Eq1). Thus, by using this expression to
gaps are magnetically induced. fit the data, we obtained the following valuds=0.2 (the
We also determined the absorbtion properties of a slab adnalytical value isF=0.24), wy=1.489x 10" Hz, andT
split cylinders, and the results are illustrated in Fig. 3. Here=2.4x 102 Hz.
we show a larger domain of frequencies, such that more gaps Although not shown here, we have calculated similar
are seen in this figure. As this figure shows, as the dampingansmission and reflection curves for the thin wire network
frequency+y increases the absorption of the slab increasesysed in LHM. Again in this case, metallic dielectric constant
this absorption is larger at frequencies that correspond te,, for the wires was assumed to be that given by @4),
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15 - - J 5x10™
(a) . of==——]
101 ;l-w% 1 -oac-; al N
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o [10"Hz) JFY
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FIG. 5. The transmission coefficient for a homogeneous slab of
LHM with thicknessd=16a (16 layer$ and effective parameters
€eii( @) and po(w) calculated numerically by TMM. The plasma
frequency isw,=7.5x 10" Hz and damping frequency= 10 Hz
(dash-dotted ling y=2x10'® Hz (dashed ling and y=4x 10"

Hz (continuous ling The parameters of the split cylinders are the
same as those in Fig. 1, the radius of the wires,is 0.5 um, and
the lattice constant ia=5 um.

1.3 14 1.5 1.6 1.7
o1 014Hz] have large values, a characteristic that can have deleterious
effects on the properties of the LHMO]. However, for fre-
FIG. 4. DependenCﬂeﬁ(w) of a lattice of SRR$a) and the real quencies |arger than the resonant frequem@y the imagi_
(—) and imaginary(- - -) parts of the refractive inder(w) (b) of  nary part of the refractive index almost vanishes.
the combined structure made of SRRs and wires. The curve in - H5ying the effective values of the electric permittivity and
correspond fo the re&—) and imaginary (- -) parts ofuer, 0b- magnetic permeability, we can investigate an important char-
tained by using TMM, and the re& - -) and imaginary---) parts o avistic of the LHM, namely, its transmission property. To
Of Hetr, ot_)tamgd by fitting the data to E¢L). In the Inset, the real do this, we considered a slab wilth= 16 layers and a width
(—) and imaginary(- - -) parts of eg(w) for a distribution of 1" 0, by using the values of the effective electric
parallel wires. The radius of the wiresiig=0.5 um and the pa- o ’ . . . .
rameters of the SRR lattice are the same as those in Fig. 2. permittivity and mggnetlc permeability determlned with
TMM, for several different values of the damping plasma
i.e., the Drude expression. Then, through the same procedufeequency, we calculated the transmission coefficient through
we calculatede for this structure, and the real part ef;  the slab[41]. The results are presented in Fig. 5. This figure
(as a function of frequengyis presented in the inset in Fig. illustrates that, for these parameters, the transmission coeffi-
4(a). It illustrates that, over this frequency range, the permit-cient through the slab is small and, thus, the absorption in the
tivity is negative. We mention that, over the same frequencytHM is strong. Note, however, that the transmission in the
range, the imaginary part of the permittiviggs is almost LHM is improved sharply over the case in which only rings
zero. Note that this permittivitye.4 can also be fit to a are consideredsee Fig. 2 Figure 5 also shows that the
Drude-like expression. Furthermore, it has been demontransmission coefficient through the slab is strongly depen-
strated 33] that the addition of the wires does not change thedent on lossew in the metal. Thus, it is possible to consid-
effective permeability of the resulting LHM, whereas the lat- erably reduce the losses in the LHM slab by using a lower
tice of SRRs changes only slightly the effective permittivity loss metal in the LHM; for instance, if silver is useglyq
of the wire mesh. Therefore, with a very good approxima-=4.35x 10'2 Hz, the transmission coefficient will be im-
tion, the effective permittivity and the effective permeability proved by more than an order of magnitude. Moreover, al-
of the LHM will be those shown in Fig.(4), that is,e.s and  though not examined here in detalil, it is clear that a careful
i, respectively. Now having computed bothy and u.z  optimization of the parameters in the geometry of the LHM
for the LHM, we can obtain a plot af vs w. Thus, the real can also sharply improve the transmission of the LHM. For
and imaginary parts of the refractive index of the combinedexample, as will be shown in the following section, changing

structure, SRRs and wires, is shown in Figb}4 As indi-  the radius of the wires improves considerably the transmis-
cated, for frequencies near the resonant frequency, the resion properties of the metamaterial.
part of the refractive index is negative. Moreover, Figh)4 Our results in Fig. &) show that, surprisingly, the LHM

illustrates that for frequencies smaller than the resonant frds magnetically active, that isu.4#1, at frequenciesw
quency w the imaginary part of the refractive index can ~10' Hz. In the case of the metamaterial discussed here,
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the magnetic activity is the result of the onset of resonant N

currents in the split rings induced by the magnetic field of the 3:1_6

incoming wave. Thus, the time varying external magnetic e (@ o
field induces electrical currents that flow around the metallic '~1.4 ~©0 @ o
rings and, as a result, a magnetic moment is created. In ad- %

dition, the capacitance associated with the narrow gap be- 31.2 o°

tween the rings, combined with the inductance of the rings, 2 0-0

determines a resonant response of the structure. When the o 4

dimensions of the split rings are scaled down, the resonant S g

frequency determined by the inductance of the rings and 208 . .

their capacitance can reach the frequency range shown here. 370 5 10 15

As it is shown below, we verify this fact by estimating the

Plasma frequency o, [1015Hz]
resonant frequency of the rings, based on the values of their

—_
N

geometrical parameters. Furthermore, it has been demon- (b)

strated that if the characteristic dimensions of rings, arranged 9 gk x
in a slightly different pattern from the one discussed here, are *#;in‘ Foxer

of the order of tens of nanometers, the characteristic resonant 3%

frequency and, consequently, the frequency at which the

Band gap width [10'°Hz]
()]

metamaterial becomes magnetically active can reach optical .*‘*

frequencieg42]. Note that this approach, which uses an ar- 3 x

tificial or metamaterial, is different from well known ex- f

amples, even at optical frequencies, of magnetically active 00 5 10 15

materials. For instance, in the case of ferromagnetic garnets,
the off-diagonal tensor components of the permittivity and
perr'n.eablllty are cqmparable at visible wavelend#). In FIG. 6. The dependence of the position and width of the first
addition, re_Ceme’. it has be?” demonstrated th‘?‘t other t.ypeﬁgand gap on the metal parametées:the band gap frequency vs the
of metallodielectric composites, made of metallic nanowires .- frequencys. : (b) the band gap width vs the plasma fre-
e_mbedded_ in a dielectr.ic matrix, can have magnetic prope Guencyw, in the Ic;)ssless casg=0 (crosses and with lossesy

ties at optical frequencie21,44). In such a case, the mag- _ g3y, (pluses. The parameters of the SRR are the same as
netic moments of the currents induced in the nanowires agose in Fig. 1 and the lattice constanis 5 wm. In both figures,
well as the displacement currents between the nanowires afge dotted lines are only a guide to the eye.

responsible for the magnetic response of the composite. In a

different scheme, by inserting nanoscale particles of ferrow1ere
magnetic metals in an insulating matrix, the so called cer-

mets, one obtains a composite material that is magnetically

Plasma frequency ®, [1 015Hz]

; 2
active up to infrared frequenciggl5]. In the rest of this o= | €owp (15)
section, we will discuss in more detail the dependence of the w+iy

resonant frequency of the rings on the material parameters of

the metal. , _ _ is the frequency-dependent conductivity amg is the
Furthermore, we analyzed in more detail the influence of 5.,um permittivity. Combining Eq€15) and (1), one ob-

the parameters describing the dielectric function of the metghing an expression for the resonant frequency of the rings in
(plasma frequency and the damping frequermy the posi-  (orms of the metallic plasma frequency and SRR’s dimen-
tion and size of the first band gap in the transmission coefgjqq-

ficient. The results are presented in Fig. 6. As seen in Fig.
6(a), as the plasma frequenay, increases, the midgap fre-

guency increases asymptotically to a constant limit. Also, - Wo

notice that as the plasma frequency increases the absolute Wo= 5 (16
value of the dielectric functior,, increases, too. A similar 2¢c

behavior has been observed in RE§2], that is, for large 1+ W2

absolute values of the dielectric function the resonant fre- “p

guency of the SRR reaches an asymptotic limit. However, in

the case studied in Reff32], the dielectric function did not Thus, the resonant frequenay, is an increasing function of

depend on the frequency.

the plasma frequency, and reaches the asymptotic value

An explanation for this phenomenon is as follows. Equa-w, as the plasma frequency goes to infinity. Moreover, we

tion (11) can be recast in the form

1+i—
em=1+i—
m wepy’

(14

observed that the midgap frequency does not depend on the
damping frequency, a result that is also in agreement with
Eq. (16). Finally, Eq.(16) shows that the plasma frequency

w,, above which the resonant frequensy reaches /2 of
the asymptotic valua, is given by
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2 FIG. 8. Transmission througiM=4 layers of split squares
g 10 (dashed ling and split squares and wirésontinuous ling The real
g part of the refractive index of the metal at the reference frequency
S we=1.26x10* Hz is n,=1.5 and the absorption=15. The pa-
810 rameters of the structures are=1.5 um, g=0.4 um, s=0.4 um,
@ w=0.8 um, the thickness of the squares 0.8 um, the transverse
« width of the wiresd=0.8 um, and the lattice constant &=8 um.
107 : : . : : . S o
05 1 15 2 25 3 very sharp dips, an indication of large densities of states at
©[10"*Hz] these edge frequencies. A similar phenomenon has been re-

cently observed experimentally when the transmission at
FIG. 7. The transmission coefficied) and reflection coeffi- near-infrared frequencies through a 3D metallic photonic
cient (b) for a slab ofM =16 layers of split-ring resonatofson- crystal has been measurptb|.
tinuous ling and split-square resonatofdotted ling. The plasma
frequency isw,=7.5x 10" Hz and the damping frequency=0. B. FDTD based computations
The parameters of the resonant structures are the same as those in

Fig. 1 and the lattice constantas="5 um. Although TMM method is a very powerful tool in char-

acterizing the band structure of periodic structures, due to the
5 fact that it operates in the wave vector space, it cannot pro-
P /2i27_35>< 104 Hz 17) vide information on the temporal dynamics of the interaction
' between electromagnetic waves and periodic structures. In
contrast, the FDTD method is a time-domain method, so that
a value that is in close agreement with the data in Fig).6 it is very powerful in describing the time evolution of the
In Fig. 6(b) we present the width of the first band gap aselectromagnetic field interacting with periodic structures. In
a function of plasma frequency, calculated for two cases: foparticular, it can provide a detailed and accurate description
a lossless metal and for a metal characterized by the dampiraf the electromagnetic fields in the presence of metallic
frequency y=10" Hz. As expected, the band gap width structures. Because of this capability, we also used the FDTD
changes with the damping frequency. More exactly, our calmethod to investigate the response of a slab of LHM to a
culations show that it increases weakly with Moreover, pulse of electromagnetic waves that propagates perpendicu-
this figure shows that the band gap frequency width increasdarly to the slab. The fact that we were able to implement 3D
with the plasma frequency, . calculations with the FDTD code also made using it desir-
We have also investigated the dependence of the transmiable.
sion properties of the material slab on the geometry of its Using FDTD, we were able to start directly with the trans-
building blocks. Thus, two cases were taken into account: thenission properties of @ombined3D periodic structure of
slab consists of a lattice of split ringss in the previous split squares and wires. The wires were alongxfaxis and
discussioh or split squares. In order to be able to comparethe split squares were arranged in the plane. The dimen-
the results, the two resonant structures were chosen to hageons of the structures were generally comparable to those
similar dimensions. The results are shown in Fig. 7. used in the preceding section. However, the split squares
Several conclusions can be drawn from the results prewere nowt=0.8 um in thickness. Further details on the ex-
sented in this figure. First, one can observe that the structuract dimensions are given in the caption of Fig. 8. We chose
of the band gaps in the transmission coefficient is strongh8D split squares and wires with a rectangular transverse sec-
dependent on the geometry of the resonant building blockgion because such shapes are better approximated by a rect-
Thus, when the unit cell contains split-square resonators, thengular spatial grid, allowing us to use a relatively small
transmission coefficient contains more gaps and these gapsimber of grid points. The slab containbt=4 layers.
have a larger depth. Furthermore, in the case of split-square In order to find the transmission through such a structure,
resonators, one can observe at the edges of some of the gaps launched a Gaussian pulse which propagates along the

@p
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5 permittivity of a mesh of metallic wires increases consider-
ably when the radius of the wires is decreased. Consequently,
for thinner wires, the imaginary part of the refractive index
of the LHM obtained by adding the split rings is larger, so
that the absorption losses of the metamaterial are larger. This
fact shows that the geometrical characteristics of the building
blocks of the LHM play an important role in defining its
optical properties.

The FDTD method allowed us to calculate directly the
electromagnetic field created by a monochromatic wave that
propagates perpendicularly onto a slab of LHM. Both 2D

T T 1 and 3D geometries were considered, and in both cases peri-
0.8 1.0 1.2 1.4 1.6 odic boundary conditions in the transverse directions were
Frequency [1014Hz] imposed. In Fig. 10 we present the field components that
correspond to the 2D geometry. The brighark gray re-

ions correspond to lowhigh) field intensities. As before,

e incident plane wave was polarized, so that the only
nonzero field components wet¢,, E,, andE,. As this
figure illustrates, there is an intense induced magnetic field
) ] ) ) along the ring’s axis, field which induces surface currents in
axis and with spectral width equal to half of its central fre- hoi, rings, which flow in the opposite directions. This fact is
quency. The pulse was centered at a wavelendth peg; jllustrated by the distribution of the electric fielEs
=25 pm. The incident wave waspolarized, with the mag- anqE . Also, notice that due to the fact that we deal with
netic field along the axis of the split squares. To model thenetais, the fields do not penetrate into the rings. This fact
frequency dispersion of the metal we ‘jsed E85and(10),  shows that, at infrared or optical frequencies, skin effects
with reference frequency e 1.26< 10" Hz. The real part  pjay an important role. Furthermore, since the electromag-
of the refractive index was =1.5 and the absorptioa  netic field does not penetrate into the metal, there is a sig-
=15. At the other side of the slab we recorded the values ofificant enhancement of the field in the narrow regions be-
the electric and magnetic fields. The simulation was run untihyeen metallic domains, e.g., between the two rings or in the

the response of the structure became negligibly small and thgt regions. This effect can lead to a strong enhancement of
recorded data was then Fourier transformed. We performeghe nonlinear response of the metamaterial.

these numerical calculations in two cases, that is, first when e extended this analysis to a full 3D structure and the

only the split squares were included and second with bothesyits are shown in Fig. 11. In this case, a network of wires
the split squares and the wires. The results are presented {jhs added to the periodic structure of metallic split squares.
Fig. 8. As seen in this figure, there is a band gap in thexs in the previous case, we determined the electromagnetic
transmission through the slab at a frequency that correspongig|d induced by a plane wave, which propagates perpendicu-
to A=20 um. The larger value for the band gap wavelength,jarly on a slab of three layers of split squares. Since in this
as compared to the one obtained by the TMM, is due to th@ase the lattice constant is larger than that in the case of
fact that in the case analyzed by TMM the lattice constansrRs, the wavelength of the incident wave was
was smaller. Furthermore, Fig. 8 shows that, when the net= 5 um. The plane wave was againpolarized, with the
work of wires is added, the transmission through the slab ig|ectric field oriented along the wires. As in the 2D case, the
significantly enhanced, and the band gap is almost halvedie|y gistributions in Fig. 11 illustrate the resonant behavior
with an increased transmission at frequencies closer to thg the split-square structure. The results also show a strong
lower band edge. A similar behavior has been observed bothagnetic field around the wires, field created by the induc-
in experiments performed at microwave frequencies and igye currents flowing along the wires. Moreover, in this case,
numerical simulations. ) ~ too, one can observe high intensities of the electromagnetic
In order to study in more detail the effects of the wire fig|gs in the narrow regions between metallic domains, an

mesh on the transmission properties of the LHM, we re-ffect that can lead to enhanced nonlinear response of the
peated the numerical simulations on the full structure, but fof y\.

different values of the radius of the wires; all other param-

eters were kept constant. Figure 9 shows the transmission
spectra througM =4 layers of split squares and wires, for

three different values of the radius of the wires. This figure We have investigated the properties of recently introduced
illustrates that as the radius of the wires decreases, the transtetallic LHM at infrared and optical frequencies. Both the

mission through the LHM slab decreases and the slab béeFMM and the FDTD method have been employed and the
comes more absorbing. This effect is consistent with a simiresults obtained by using the two methods have been com-
lar behavior for losses of wire meshes in the microwavepared. The transmission, reflection, and absorption of a slab
region, which has been recently reported in R4%], and is  of metamaterial was calculated numerically and the relation-
explained by the fact that the imaginary part of the effectiveship between the properties of the photonic gaps displayed

Spectral density [arb. units]

FIG. 9. Transmission throughkl =4 layers of split squares and
wires. The parameters of the split squares were chosen as in Fig.
whereas the transverse width of the wireslis1.75 um (continu-
ous ling, d=1 um (dotted ling, andd=0.5 um (dashed ling

V. CONCLUSIONS
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FIG. 10. (Color online The field components created by a plane
wave at normal incidence on a layer of split cylinders. The real part
of the refractive index of the metal is,=1.5, the absorption FIG. 11. (Color onling The field components created by a plane
=15, and the wavelength of the incident wanxe-15 um. The  wave at normal incidence on a layer of split squares and metallic
parameters of the resonant structures are the same as those in Figvites. The wavelength of the incident wawe=20 um and the
and the lattice constant =5 pm. parameters of the structures are the same as those in Fig. 8.
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by these coefficients and the dispersive properties of thé& has been demonstrated that, as at the microwave frequen-
metal was established. Thus, we showed that as the plasne&s, adding a mesh of wires to a 3D periodic distribution of
frequency increases, the frequency at which it is expectedplit rings determines the transmission coefficient near the
that such a material exhibits a negative refraction index infesonant frequency to increase, while the width of the band
creases asymptotically to a frequency limit determined engap is reduced to about a half of its previous value. This
tirely by the geometry of the resonant structure. A theoreticabuggests that metamaterials with negative refractive index
explanation of this effect has been proposed. On the otheran exist at infrared or even optical frequencies.
hand, it has been shown that the position of the band gap While the dimensions required for producing this effect
responsible for the negative-refractive-index behavior is incan be challenging for most nanofabrication tools, they are
dependent of the damping frequency of the metal. still within the capability of state-of-the-art technology.

The calculated transmission and reflection coefficientsThus, the thin metallic structures that are discussed in this
also allowed us to calculate the effective permittivity, thepaper, with characteristic dimensions of a few hundred na-
effective permeability, and the refractive index. The calcula-nometers, can be patterned by using deep UV or electron-
tions showed that the refractive index is negative near théeam lithography.
resonant frequency of the metallic rings, frequency that cor-
responds to a band gap in the transmission spectrum. ACKNOWLEDGMENTS
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