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Influence of the dispersive properties of metals on the transmission characteristics
of left-handed materials

N.-C. Panoiu1,* and R. M. Osgood, Jr.2

1Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
2Brookhaven National Laboratories, Upton, New York 11973, USA

and Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
~Received 16 January 2003; revised manuscript received 24 March 2003; published 21 July 2003!

We study numerically the influence of the frequency dispersion of the dielectric function of metals on the
physical properties of negative-refractive-index metamaterials. A numerical analysis is performed using the
transfer matrix formalism in conjunction with the finite-difference time-domain method. We analyze the de-
pendence of the transmission and absorption properties of a slab of split-ring-type resonators on the parameters
characterizing the frequency dispersion of the metallic dielectric function: plasma frequency and damping
frequency. Then, using these transmission and reflection coefficients, we show that the refractive index remains
negative near the resonant frequency of the rings, despite the presence of frequency dispersion. We also
determine the dependence of the position and width of the band gaps of a slab of such a metamaterial on the
material dispersion. Finally, we also discuss the influence of the shape of the split-ring resonators on the
transmission and reflection coefficients. The calculations are performed for both two- and three-dimensional
structures.
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I. INTRODUCTION

More than three decades ago, Veselago described theo
cally the electromagnetic properties of a medium, for wh
both the electric permittivitye and the magnetic permeabilit
m are negative@1#. Thus, he predicted that this proper
would lead to very unusual characteristics of the propaga
of electromagnetic waves in such a medium: reverse
Snell’s law~that is, such media behave as if they had a ne
tive refractive index!, reversed Doppler shift, backwar
emission of Cherenkov radiation, negative radiation pr
sure, etc. However, since for ordinary materialse andm are
not simultaneously negative, these theoretical predicti
could not be verified experimentally until recently. Since
these media the electric field, magnetic field, and the pro
gation wave vector of an electromagnetic plane wave for
left-handed system of vectors, such media have been na
left-handed materials~LHM !.

Very recently, the fabrication of materials, which exhib
the properties of a LHM at frequencies in the microwa
region, has been reported@2–5#. The central ideas that led t
the choice of the structure of the metamaterials introduce
Ref. @2# can be traced to the work of Pendryet al. @6–8#.
Thus, in Ref.@6# it has been suggested that, in the microwa
region, a lattice of metallic split-ring resonators~SRR! with
characteristic features in the millimeter range behaves a
effective medium which has a negative magnetic permea
ity meff . The main factor which determines this behavior
that the resonant frequency of these specially designed
corresponds to a wavelength that is several times larger
the lattice constant. Thus, the effective medium approxim
tion is valid and theoretical calculations have shown that
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correspondingmeff is negative. Furthermore, in Refs.@7–9# it
was also demonstrated that a network of thin metallic wi
behaves as a quasimetal with a highly reduced plasma
quency. A consequence of this phenomenon is that the p
etration depth of electromagnetic waves in such a qu
medium is increased considerably. By combining these
structures, Smithet al. @2# have demonstrated that one ca
fabricate a metamaterial which, within a certain frequen
range, has bothe andm negative, that is, a LHM.

Although some of the properties of LHM are still not full
understood@10–14#, they offer a rich ground for both theo
retical and, recently, experimental researches. Thus, sur
polaritons of a LHM @15#, scattering properties of LHM
spheres@16# or cylinders@17#, or the properties of electro
magnetic wave propagation in LHM@18# have been studied
theoretically, whereas their transmission properties h
been investigated experimentally@2,19#.

Despite the fact that LHM could have important techn
logical applications in the microwave regime~antenna, selec-
tive reflective surfaces!, it would also be important if one
could fabricate LHM at infrared or optical frequencies. A
though several candidates for LHM at optical frequenc
have been proposed@20–22#, to the best of our knowledge
this paper is the first attempt to extend the analysis of
properties of LHM proposed by Smithet al. at infrared and
optical frequencies. There are several reasons why this
tension cannot be made simply by scaling down the cha
teristic dimensions of the building blocks of the LHM. Firs
as the frequency approaches the optical spectrum, the
quency dispersion of the dielectric function of the metal b
comes important and cannot be neglected. Second, it is
known that as the frequency becomes comparable to
plasma frequency, surface plasmons are excited, leadin
significant changes of the electromagnetic properties of
metallic structures@23,24#.
©2003 The American Physical Society11-1
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The importance of this work is twofold. First, as just me
tioned, it extends the analysis of the LHM to the infrared a
optical frequencies, a region that could offer important te
nological applications. Second, since the periodic distri
tion of SRR and thin metallic wires can be viewed as
photonic crystal, this work is of interest for the understan
ing of the physical properties of the metallic photonic ba
gap ~PBG! materials at optical frequencies. Thus, until r
cently, most of the research work on the PBG materials
cused on photonic crystals consisting of dielectrics. Ho
ever, recent research studies have shown that it is possib
design metallic photonic crystals with new features: la
relative gap width@25,26#, unusual transmission propertie
@27,28#, or high surface impedance@29#.

The paper is organized as follows. In Sec. II, we brie
describe the structure of the unit cell of the LHM. Then,
Sec. III, we introduce two numerical methods, used here:
transfer matrix method~TMM ! and the finite-difference
time-domain~FDTD! method. Furthermore, in Sec. IV w
present our results obtained by analyzing the transmis
properties of the LHM. Also, we show how the transmissi
and reflection coefficients of a slab of material can be use
determine its effective permittivity, effective permeabilit
and refractive index and apply this method to the LHM. F
nally, in Sec. V our results are summarized and discusse

II. DESCRIPTION OF THE UNIT CELL OF THE LHM

The LHM introduced in Ref.@2# consists of two inter-
spersed periodic metallic structures. The first one is a p
odic lattice of metallic SRR with either a circular or a rec
angular shape. The geometrical features of such a struc
are presented in Fig. 1. Note that throughout this paper,
characteristic dimensions of our structures were chosen t
near the fabrication limit of current industry patterning tec
nology, that is, a few hundred nanometers.

Although not unique, the geometry in Fig. 1 has seve
features that make it an ideal candidate for the building bl
of a LHM. Thus, the small gap between the two rings crea
a large capacitance which, combined with the inductance
the rings, lowers considerably their combined resonant
quency. Furthermore, the split of the rings ensures that
resonant frequency corresponds to a wavelength sev
times larger than the diameter of the rings. Had the rin

FIG. 1. The structure of a hollow square~left! and circular
~right! split-ring resonator with an inner~core! radius r 51 mm,
gapg50.33mm, split s50.4 mm, and widthw50.33mm.
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been continuous, the resonant wavelength would have b
equal to their diameter. Thus, one can treat the periodic
tice within the effective medium approximation. Moreove
since the rings are magnetically active, resonant behavior
be induced only bys-polarized electromagnetic waves, th
is, waves with the magnetic field along the ring’s axis.

Theoretical calculations using a nondispersive metal h
shown that a periodic lattice made from SRR is characteri
by an effective magnetic permeability given by the followin
analytic expression@6#:

meff512
Fv2

v22v0
21 iGv

, ~1!

whereF5pr 2/a2 is the fill factor,

v0
25

3lc2

pr 3 ln
2w

g

~2!

is the resonant frequency, and

G5
2r l

m0r
~3!

is the resonance width. In Eqs.~2! and ~3!, a is the lattice
constant,r is the inner radius of the ring,w is the width of
the rings,l is the distance between adjacent planes of SR
andr is the resistance per unit length of the rings measu
along the circumference.

The second component of the LHM introduced in Ref.@2#
consists of a network of thin metallic wires which acts as
high-pass filter: only the frequencies above a cutoff thresh
~the plasma frequency of the quasimetal-type medium! can
propagate in the material. Since the cutoff frequency co
sponds to a wavelength several times larger than the pe
of the structure, again the effective medium approximat
holds. The effective dielectric function of this quasimediu
can be written as@7,8#

eeff512
ṽp

2

v~v1 i g̃ !
, ~4!

whereṽp is the associated plasma frequency of the long
dinal modes andg̃ plays the role of absorption.

III. NUMERICAL METHODS

In analyzing the transmission properties of a slab
LHM, we used two numerical methods: TMM and FDTD
The first method is extremely useful in determining the sc
tering properties of periodic structures, whereas the latter
offer valuable insights into the time evolution of the sol
tions of Maxwell’s equations in a finite spatial domain.
this section, we will briefly describe both these methods.
1-2
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A. Transfer matrix method

The TMM, which was introduced by Pendry and c
workers@30,31#, is a powerful tool for calculating the ban
structure of periodic dielectric materials. This method h
been used for investigating periodic metallic structures b
at microwave@32,33# and optical@34# frequencies. It consists
of discretizing Maxwell’s equations on a lattice containi
the unit cell of the periodic structure and then construct
the transfer matrix that relates the electromagnetic field
the input and output facets of the unit cell. Thus, if o
considers that the output fieldFout is related to the input field
Fin through the relation

Fout5TFin , ~5!

whereT is the transfer matrix of the unit cell, one can eas
prove that the matrixT can be written as@30,31#

T5S t112t12~ t22!21t21 t12~ t22!21

2~ t22!21t21 ~ t22!21 D . ~6!

The parametert11 (t22) represents the transmission coe
ficient of a wave incoming from the left~right! and transmit-
ted to the right~left!, t21 (t12) represents the reflectio
coefficient of a wave incoming from the left~right! and re-
flected to the left~right!, and t11 , t22 , t21 , and t12

being the elements of the scattering matrixS that relates the
incoming and outgoing waves:

S5S t11 t12

t21 t22
D . ~7!

One of the advantages of using the TMM formalism
that it allows one to decompose large structures, for wh
the transfer matrix could be difficult to calculate, into smal
ones which can be calculated easily. Then, from these m
ces, one calculates the transfer matrix for the entire struct
The reason why this approach works is that the transfer
trix obeys the following composition rule:

T125T2T1 , ~8!

whereT1 and T2 are the transfer matrices of two adjace
layers andT12 is the transfer matrix of the combined laye

However, repeated use of the Eq.~8! can soon lead to
numerical instabilities. As we add new layers, the numer
instabilities in the transfer matrix accumulate, leading
massive computational problems. To overcome this probl
instead of using Eq.~8! to account for the combined effect o
two layers of the material, we used a similar expressi
except that we construct thescatteringmatrix of an ensemble
of two layers from thescatteringmatrices of each layer. Th
advantage of this approach is that the elements of the s
tering matrix are of the order of unity; consequently, wh
applied to scattering matrices, this recursive process is
merically stable~for details, see Ref.@31#!. The drawback is
that computing the scattering matrix of two layers by us
the scattering matrix of each layer is computationally an
pensive operation. Therefore, in practice one calculates
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the transfer matrices for subsystems that are as large as
sible; then one determines the scattering matrices for th
subsystems; and finally, from these scattering matrices,
calculates the scattering matrix for the entire system.

One final modification of the previous algorithm is need
when dealing with periodic structures with large absolu
values of the dielectric constants~as it is the case with me
tallic structures!. In this case, to avoid numerical instabilitie
it is necessary to subpartition even the unit cell and to c
culate first the transfer matrix for each subpartition.

Another advantage of the TMM is that it allows one
describe periodic structures made from materials charac
ized by frequency-dependent parameters, i.e., dispers
This feature is especially useful when investigating meta
structures at optical frequencies. The reason for this is
TMM, unlike other widely used methods, e.g., plane wa
expansion method, operates at fixed frequencies. There
even if one deals with dispersive materials, the transmiss
and reflection coefficients or the band structure of perio
structures can still be computed by means of TMM.

B. Finite-difference time-domain method

FDTD is the second method used here. It was introdu
in Ref. @35# and involves solving Maxwell’s equations on
spatial grid that contains the structure of interest. Since
FDTD method is well known and widely used in many are
of computational electromagnetic modeling, we present h
only those features concerning its application to structu
containing frequency-dependent materials. For a deta
presentation of the FDTD, see Ref.@36#.

In order to model the frequency-dependent response
the real material, i.e., the metal in the wires or rings,
assume that its dielectric functione(v) can be described by
a single Lorentzian,

e512
~es21!v0

2

v22v0
212idv

, ~9!

wherees is the static value of the dielectric constant,v0 is
the resonant frequency, andd is the damping frequency
Once the frequency-domain representation of the dielec
constant is set by the Eq.~9!, one can easily obtain, by th
Fourier transformation, the time dependence of the susce
bility x(t) and, consequently, the functional relationship b
tween the electric flux densityD(t) and the electric field
E(t). Since the medium is dispersive, this relationship
nonlocal in time. The Yee algorithm must then be modified
take into account this nonlocal relationship betweenD(t)
andE(t) @36#.

However, the physical parameter that is generally use
describe the optical properties of a metal and is directly m
sured experimentally is the refractive indexn. Thus, we took
it as the basic input parameter for the FDTD based com
tations. The parameterses and d are then determined from
the Eq.~9! by fixing the refractive index

n~v![nr~v!1 i
a~v!

2
[Ae~v! ~10!
1-3
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at some reference frequencyv ref. Here,nr anda represent
the real part of the refractive index and absorbtion, resp
tively. Finally, the resonant frequencyv0 is chosen to be a
certain fraction of the reference frequencyv ref and its spe-
cific value does not affect the results of the computations
long as it is chosen far enough from the reference freque
v ref @37#.

In all the FDTD based numerical computations we us
FULLWAVE, a commercially available software@38#.

IV. TRANSMISSION THROUGH A SLAB OF LHM

In this section we present the main results regarding
transmission and absorption properties of a slab of LHM
infrared and optical frequencies. We start by discussing
results obtained by the TMM and conclude by present
both the transmission properties of a full three-dimensio
~3D! slab of LHM as well as the corresponding structures
the electromagnetic field. The latter are obtained by
FDTD method.

A. TMM based computations

As has been pointed out in earlier studies of the LH
based on interspersed SRR and thin wires, the main fa
that determines the properties of the material~e.g., the fre-
quency at which it exhibits a negative refractive index, t
value of the index, etc.! is the geometry of the SRR. There
fore, we will analyze in detail the relationship between t
characteristics of the SRR and the properties of the LHM

Due to the fact that full 3D numerical simulations usin
the TMM are extremely time consuming, we used th
method to investigate only the 2D case. Thus, the SRR
replaced by a periodic distribution of infinite split cylinder
The advantage offered by this choice is that we could us
much finer computational grid, increasing thus the accur
of the results. Furthermore, as has been proven in Ref.@6#,
such geometry leads to a similar resonant behavior as in
case of SRR and the effective permeability is given by
formula similar to Eq.~1!. In fact, Eq.~1! has been derived
under the assumption that the magnetic field in a lattice
SRR is identical to the one in a periodic distribution of sp
cylinders@6#. When the SRRs are replaced by infinite cyli
ders, the parametersv0 andG in Eqs.~2! and~3! change to
v0

253wc2/p2r 3 and G52r8/m0r , where r8 is the resis-
tance per unit area@6#.

In order to calculate the transmission properties throug
slab of such split cylinders, we proceeded as follows. Fi
we chose the unit cell as the domain containing one s
cylinder and covered it with a mesh ofN3N points. Then,
the unit cell was further divided intoK subdomains~in most
of the calculations, we choseK55) and for each subdomain
we computed the scattering matrix. From these matrices
using the procedure discussed in Sec. III, we subseque
calculated the scattering matrix for the entire unit cell. T
value of the number of discretization points,N, was in-
creased until the transmission coefficient would no lon
change. Generally,N530 was enough. Finally, layers con
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taining one unit cell were stacked together to form slabs
the desired thickness.

As shown in the sketch in Fig. 2, the incident wave w
taken to be perpendicular on the axis of the cylinders. Alo
the transverse direction, with respect to the incident wa
the slab is infinite since along this direction we impos
periodic boundary conditions. In this geometry, two polariz
tions of the incident wave are of interest:s polarization when
the magneticfield is along the cylinder axis andp polariza-
tion when theelectric field is along the cylinder axis. It ha
been pointed out in previous studies@2,32,33# that only in
the first case does the material exhibit a negative refrac
index. We determined the transmission properties of the s
for both polarizations.

Since we deal with metallic structures and the frequen
is in the infrared to optical region, the metal must be cons
ered to be dispersive, that is, the dielectric constant of
metal structures is frequency dependent. More exactly,
assumed that the real metal can be described by a Drude
model,

em512
vp

2

v~v1 ig!
, ~11!

where vp is the plasma frequency andg is the damping

FIG. 2. The transmission coefficient~a! and reflection coeffi-
cient ~b! for a slab ofM516 layers of split cylinders. The plasm
frequency isvp57.531015 Hz, the damping frequencyg51013 Hz
~continuous line!, g5231013 Hz ~dotted line!, andg5431013 Hz
~dashed line!. The parameters of the split cylinders are the same
those in Fig. 1 and the lattice constant isa55 mm.
1-4
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INFLUENCE OF THE DISPERSIVE PROPERTIES OF . . . PHYSICAL REVIEW E 68, 016611 ~2003!
frequency related to optical absorption in the metal. T
Drude expression is a good approximation for most comm
metals@39# and, thus, using Eq.~11! allows us to incorporate
realistic dispersive effects in our calculations. Notice the d
ference between Eqs.~4! and ~11!: while in Eq. ~4! eeff rep-
resents the effective dielectric function of the network
metallic wires, calculated within the effective medium a
proximation, Eq.~11! gives the intrinsic dielectric function
of the actual metal.

We used this expression for the dielectric function of t
metal and calculated the transmission and reflection co
cients through a slab ofM516 layers of SRR~see sketch in
Fig. 2!. The results for thes polarization of the incident wave
are presented in Fig. 2. Our numerical simulations revea
several phenomena. First, there are multiple gaps in
transmission coefficient, the first, shown in Fig. 2, being
about 1.231014 Hz. The corresponding wavelength is abo
l.15 mm, that is, about three times the lattice constana.
Therefore, one expects that for frequencies within this ra
the effective medium approximation holds, such that it
meaningful to introduce an effective permeability. Moreov
for the frequency range shown in Fig. 2, there exists only
nonzero wave vector, that is, there exists only one mo
evanescent or propagating. All the other band gaps~not
shown here! correspond to wavelengths that arecomparable
or smaller than the lattice constant or even the diameter
the cylinders, so that for these wavelengths the effective
dium approximation is not valid. Therefore, we will focus o
the properties of the first band gap. Moreover, the very sm
values of the calculated transmission coefficients near
center of the band gaps, which are only computationa
meaningful for an idealized geometry, are just a manifes
tion of how the TMM builds the transmission-reflection c
efficients of a thin layer of material into the transmissio
reflection coefficients of a larger slab of material.

One important characteristic of this band gap is that it
a rather large relative gap widthgw , defined as the ratio
between the gap width and its midgap frequency. For
case presented in Fig. 2,gw.55%. The transmission an
reflection coefficients presented in Fig. 2 are calculated
several values of the damping frequencyg. We observed
that, asg increases, i.e., the metal is more lossy, the dept
the transmission gaps decreases; however, the general s
ture and the position of these gaps remain unchanged. A
notice the Fabry-Perot resonances at frequencies less
those corresponding to the first gap: these arise from
interference between the forward and backward propaga
waves into the slab.

Finally, we point out that forp polarization no frequency
gaps have been observed within this frequency range
that, within machine precision, for this polarization the tran
mission coefficient was equal to zero. This proves that
gaps are magnetically induced.

We also determined the absorbtion properties of a sla
split cylinders, and the results are illustrated in Fig. 3. H
we show a larger domain of frequencies, such that more g
are seen in this figure. As this figure shows, as the damp
frequencyg increases the absorption of the slab increas
this absorption is larger at frequencies that correspond
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enhanced transmission. This behavior is expected since
the transmission through the slab increases, the incid
waves can penetrate deeper into the slab and interact with
metallic structure.

The transmission and reflection coefficients can be use
determine the effective permittivity and permeability. Fro
these quantities we can then obtain the phase refractive in
of the LHM, that is, we can determine the degree to wh
dispersion affects the negative-index property. To do this,
invert the relations between the transmission and reflec
coefficients, and the phase refractive indexn and the imped-
anceZ of the material@33#

T215Fcos~nkd!2
i

2 S Z1
1

ZD sin~nkd!Geikd, ~12!

R

T
52

i

2 S Z2
1

ZD sin~nkd!eikd, ~13!

wherek5v/c andd is the thickness of the slab. We point o
that the quantitiesT, R, n, andZ are, in principle, complex,
so thatn andZ, viewed as functions ofT andR, are multi-
valued complex functions~for details, see Ref.@33#!. Oncen
and Z are known,eeff and meff are given by the relations
eeff5n/Z andmeff5nZ. The results obtained by this proce
dure are illustrated in Fig. 4. For frequencies within the fi
band gap,meff of the SRR lattice exhibits the necessary res
nant behavior to obtain a LHM. Moreover, there is a go
agreement between the numerical data and the analytica
pression given by Eq.~1!. Thus, by using this expression t
fit the data, we obtained the following values:F50.2 ~the
analytical value isF50.24), v051.48931014 Hz, and G
52.431012 Hz.

Although not shown here, we have calculated simi
transmission and reflection curves for the thin wire netwo
used in LHM. Again in this case, metallic dielectric consta
em for the wires was assumed to be that given by Eq.~11!,

FIG. 3. The absorption coefficient for a slab ofM516 layers of
split cylinders. The plasma frequency isvp57.531015 Hz, the
damping frequencyg51013 Hz ~continuous line!, g5231013 Hz
~dotted line!, andg5431013 Hz ~dashed line!. The parameters of
the split cylinders are those in Fig. 2.
1-5
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N.-C. PANOIU AND R. M. OSGOOD, JR. PHYSICAL REVIEW E68, 016611 ~2003!
i.e., the Drude expression. Then, through the same proce
we calculatedeeff for this structure, and the real part ofeeff
~as a function of frequency! is presented in the inset in Fig
4~a!. It illustrates that, over this frequency range, the perm
tivity is negative. We mention that, over the same freque
range, the imaginary part of the permittivityeeff is almost
zero. Note that this permittivityeeff can also be fit to a
Drude-like expression. Furthermore, it has been dem
strated@33# that the addition of the wires does not change
effective permeability of the resulting LHM, whereas the la
tice of SRRs changes only slightly the effective permittiv
of the wire mesh. Therefore, with a very good approxim
tion, the effective permittivity and the effective permeabili
of the LHM will be those shown in Fig. 4~a!, that is,eeff and
meff , respectively. Now having computed botheeff and meff
for the LHM, we can obtain a plot ofn vs v. Thus, the real
and imaginary parts of the refractive index of the combin
structure, SRRs and wires, is shown in Fig. 4~b!. As indi-
cated, for frequencies near the resonant frequency, the
part of the refractive index is negative. Moreover, Fig. 4~b!
illustrates that for frequencies smaller than the resonant
quencyv0 the imaginary part of the refractive index ca

FIG. 4. Dependencemeff(v) of a lattice of SRRs~a! and the real
~—! and imaginary~- - -! parts of the refractive indexn(v) ~b! of
the combined structure made of SRRs and wires. The curves i~a!
correspond to the real~—! and imaginary (•••) parts ofmeff , ob-
tained by using TMM, and the real~- - -! and imaginary~-•-! parts
of meff , obtained by fitting the data to Eq.~1!. In the inset, the rea
~—! and imaginary~- - -! parts of eeff(v) for a distribution of
parallel wires. The radius of the wires isr w50.5 mm and the pa-
rameters of the SRR lattice are the same as those in Fig. 2.
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have large values, a characteristic that can have deleter
effects on the properties of the LHM@40#. However, for fre-
quencies larger than the resonant frequencyv0, the imagi-
nary part of the refractive index almost vanishes.

Having the effective values of the electric permittivity an
magnetic permeability, we can investigate an important ch
acteristic of the LHM, namely, its transmission property.
do this, we considered a slab withM516 layers and a width
d5Ma. Then, by using the values of the effective elect
permittivity and magnetic permeability determined wi
TMM, for several different values of the damping plasm
frequency, we calculated the transmission coefficient thro
the slab@41#. The results are presented in Fig. 5. This figu
illustrates that, for these parameters, the transmission co
cient through the slab is small and, thus, the absorption in
LHM is strong. Note, however, that the transmission in t
LHM is improved sharply over the case in which only ring
are considered~see Fig. 2!. Figure 5 also shows that th
transmission coefficient through the slab is strongly dep
dent on lossesg in the metal. Thus, it is possible to consid
erably reduce the losses in the LHM slab by using a low
loss metal in the LHM; for instance, if silver is used,gAg
54.3531012 Hz, the transmission coefficient will be im
proved by more than an order of magnitude. Moreover,
though not examined here in detail, it is clear that a care
optimization of the parameters in the geometry of the LH
can also sharply improve the transmission of the LHM. F
example, as will be shown in the following section, changi
the radius of the wires improves considerably the transm
sion properties of the metamaterial.

Our results in Fig. 4~a! show that, surprisingly, the LHM
is magnetically active, that is,meffÞ1, at frequenciesv
;1014 Hz. In the case of the metamaterial discussed h

FIG. 5. The transmission coefficient for a homogeneous slab
LHM with thicknessd516a ~16 layers! and effective parameter
eeff(v) and meff(v) calculated numerically by TMM. The plasm
frequency isvp57.531015 Hz and damping frequencyg51013 Hz
~dash-dotted line!, g5231013 Hz ~dashed line!, and g5431013

Hz ~continuous line!. The parameters of the split cylinders are t
same as those in Fig. 1, the radius of the wires isr w50.5 mm, and
the lattice constant isa55 mm.
1-6
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INFLUENCE OF THE DISPERSIVE PROPERTIES OF . . . PHYSICAL REVIEW E 68, 016611 ~2003!
the magnetic activity is the result of the onset of reson
currents in the split rings induced by the magnetic field of
incoming wave. Thus, the time varying external magne
field induces electrical currents that flow around the meta
rings and, as a result, a magnetic moment is created. In
dition, the capacitance associated with the narrow gap
tween the rings, combined with the inductance of the rin
determines a resonant response of the structure. When
dimensions of the split rings are scaled down, the reson
frequency determined by the inductance of the rings
their capacitance can reach the frequency range shown
As it is shown below, we verify this fact by estimating th
resonant frequency of the rings, based on the values of t
geometrical parameters. Furthermore, it has been dem
strated that if the characteristic dimensions of rings, arran
in a slightly different pattern from the one discussed here,
of the order of tens of nanometers, the characteristic reso
frequency and, consequently, the frequency at which
metamaterial becomes magnetically active can reach op
frequencies@42#. Note that this approach, which uses an
tificial or metamaterial, is different from well known ex
amples, even at optical frequencies, of magnetically ac
materials. For instance, in the case of ferromagnetic garn
the off-diagonal tensor components of the permittivity a
permeability are comparable at visible wavelengths@43#. In
addition, recently, it has been demonstrated that other ty
of metallodielectric composites, made of metallic nanowi
embedded in a dielectric matrix, can have magnetic pro
ties at optical frequencies@21,44#. In such a case, the mag
netic moments of the currents induced in the nanowires
well as the displacement currents between the nanowires
responsible for the magnetic response of the composite.
different scheme, by inserting nanoscale particles of fe
magnetic metals in an insulating matrix, the so called c
mets, one obtains a composite material that is magnetic
active up to infrared frequencies@45#. In the rest of this
section, we will discuss in more detail the dependence of
resonant frequency of the rings on the material paramete
the metal.

Furthermore, we analyzed in more detail the influence
the parameters describing the dielectric function of the m
~plasma frequency and the damping frequency! on the posi-
tion and size of the first band gap in the transmission co
ficient. The results are presented in Fig. 6. As seen in
6~a!, as the plasma frequencyvp increases, the midgap fre
quency increases asymptotically to a constant limit. Al
notice that as the plasma frequency increases the abs
value of the dielectric functionem increases, too. A simila
behavior has been observed in Ref.@32#, that is, for large
absolute values of the dielectric function the resonant
quency of the SRR reaches an asymptotic limit. However
the case studied in Ref.@32#, the dielectric function did not
depend on the frequency.

An explanation for this phenomenon is as follows. Equ
tion ~11! can be recast in the form

em511 i
s

ve0
, ~14!
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where

s5
i e0vp

2

v1 ig
~15!

is the frequency-dependent conductivity ande0 is the
vacuum permittivity. Combining Eqs.~15! and ~1!, one ob-
tains an expression for the resonant frequency of the ring
terms of the metallic plasma frequency and SRR’s dim
sions:

ṽ05
v0

A11
2c2

wrvp
2

. ~16!

Thus, the resonant frequencyṽ0 is an increasing function o
the plasma frequencyvp and reaches the asymptotic valu
v0 as the plasma frequency goes to infinity. Moreover,
observed that the midgap frequency does not depend on
damping frequencyg, a result that is also in agreement wi
Eq. ~16!. Finally, Eq. ~16! shows that the plasma frequenc
v̄p , above which the resonant frequencyṽ0 reaches 1/A2 of
the asymptotic valuev0 is given by

FIG. 6. The dependence of the position and width of the fi
band gap on the metal parameters:~a! the band gap frequency vs th
plasma frequencyvp ; ~b! the band gap width vs the plasma fre
quencyvp in the lossless caseg50 ~crosses! and with lossesg
51013 Hz ~pluses!. The parameters of the SRR are the same
those in Fig. 1 and the lattice constant isa55 mm. In both figures,
the dotted lines are only a guide to the eye.
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v̄p5A2c2

wr
.7.3531014 Hz, ~17!

a value that is in close agreement with the data in Fig. 6~a!.
In Fig. 6~b! we present the width of the first band gap

a function of plasma frequency, calculated for two cases:
a lossless metal and for a metal characterized by the dam
frequency g51013 Hz. As expected, the band gap wid
changes with the damping frequency. More exactly, our c
culations show that it increases weakly withg. Moreover,
this figure shows that the band gap frequency width increa
with the plasma frequencyvp .

We have also investigated the dependence of the trans
sion properties of the material slab on the geometry of
building blocks. Thus, two cases were taken into account:
slab consists of a lattice of split rings~as in the previous
discussion! or split squares. In order to be able to compa
the results, the two resonant structures were chosen to
similar dimensions. The results are shown in Fig. 7.

Several conclusions can be drawn from the results p
sented in this figure. First, one can observe that the struc
of the band gaps in the transmission coefficient is stron
dependent on the geometry of the resonant building blo
Thus, when the unit cell contains split-square resonators,
transmission coefficient contains more gaps and these
have a larger depth. Furthermore, in the case of split-sq
resonators, one can observe at the edges of some of the

FIG. 7. The transmission coefficient~a! and reflection coeffi-
cient ~b! for a slab ofM516 layers of split-ring resonators~con-
tinuous line! and split-square resonators~dotted line!. The plasma
frequency isvp57.531015 Hz and the damping frequencyg50.
The parameters of the resonant structures are the same as th
Fig. 1 and the lattice constant isa55 mm.
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very sharp dips, an indication of large densities of state
these edge frequencies. A similar phenomenon has bee
cently observed experimentally when the transmission
near-infrared frequencies through a 3D metallic photo
crystal has been measured@46#.

B. FDTD based computations

Although TMM method is a very powerful tool in char
acterizing the band structure of periodic structures, due to
fact that it operates in the wave vector space, it cannot p
vide information on the temporal dynamics of the interacti
between electromagnetic waves and periodic structures
contrast, the FDTD method is a time-domain method, so
it is very powerful in describing the time evolution of th
electromagnetic field interacting with periodic structures.
particular, it can provide a detailed and accurate descrip
of the electromagnetic fields in the presence of meta
structures. Because of this capability, we also used the FD
method to investigate the response of a slab of LHM to
pulse of electromagnetic waves that propagates perpend
larly to the slab. The fact that we were able to implement
calculations with the FDTD code also made using it des
able.

Using FDTD, we were able to start directly with the tran
mission properties of acombined3D periodic structure of
split squares and wires. The wires were along thex axis and
the split squares were arranged in thex-z plane. The dimen-
sions of the structures were generally comparable to th
used in the preceding section. However, the split squa
were nowt50.8 mm in thickness. Further details on the e
act dimensions are given in the caption of Fig. 8. We ch
3D split squares and wires with a rectangular transverse
tion because such shapes are better approximated by a
angular spatial grid, allowing us to use a relatively sm
number of grid points. The slab containedM54 layers.

In order to find the transmission through such a structu
we launched a Gaussian pulse which propagates alongz

e in

FIG. 8. Transmission throughM54 layers of split squares
~dashed line!, and split squares and wires~continuous line!. The real
part of the refractive index of the metal at the reference freque
v ref51.2631014 Hz is nr51.5 and the absorptiona515. The pa-
rameters of the structures arer 51.5 mm, g50.4 mm, s50.4 mm,
w50.8 mm, the thickness of the squarest50.8 mm, the transverse
width of the wiresd50.8 mm, and the lattice constant isa58 mm.
1-8
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INFLUENCE OF THE DISPERSIVE PROPERTIES OF . . . PHYSICAL REVIEW E 68, 016611 ~2003!
axis and with spectral width equal to half of its central fr
quency. The pulse was centered at a wavelengthl
525 mm. The incident wave wass polarized, with the mag-
netic field along the axis of the split squares. To model
frequency dispersion of the metal we used Eqs.~9! and~10!,
with reference frequencyv ref51.2631014 Hz. The real part
of the refractive index wasnr51.5 and the absorptiona
515. At the other side of the slab we recorded the value
the electric and magnetic fields. The simulation was run u
the response of the structure became negligibly small and
recorded data was then Fourier transformed. We perform
these numerical calculations in two cases, that is, first w
only the split squares were included and second with b
the split squares and the wires. The results are presente
Fig. 8. As seen in this figure, there is a band gap in
transmission through the slab at a frequency that corresp
to l.20 mm. The larger value for the band gap waveleng
as compared to the one obtained by the TMM, is due to
fact that in the case analyzed by TMM the lattice const
was smaller. Furthermore, Fig. 8 shows that, when the
work of wires is added, the transmission through the sla
significantly enhanced, and the band gap is almost hal
with an increased transmission at frequencies closer to
lower band edge. A similar behavior has been observed b
in experiments performed at microwave frequencies and
numerical simulations.

In order to study in more detail the effects of the wi
mesh on the transmission properties of the LHM, we
peated the numerical simulations on the full structure, but
different values of the radius of the wires; all other para
eters were kept constant. Figure 9 shows the transmis
spectra throughM54 layers of split squares and wires, fo
three different values of the radius of the wires. This figu
illustrates that as the radius of the wires decreases, the tr
mission through the LHM slab decreases and the slab
comes more absorbing. This effect is consistent with a si
lar behavior for losses of wire meshes in the microwa
region, which has been recently reported in Ref.@47#, and is
explained by the fact that the imaginary part of the effect

FIG. 9. Transmission throughM54 layers of split squares an
wires. The parameters of the split squares were chosen as in F
whereas the transverse width of the wires isd51.75mm ~continu-
ous line!, d51 mm ~dotted line!, andd50.5 mm ~dashed line!.
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permittivity of a mesh of metallic wires increases consid
ably when the radius of the wires is decreased. Conseque
for thinner wires, the imaginary part of the refractive ind
of the LHM obtained by adding the split rings is larger,
that the absorption losses of the metamaterial are larger.
fact shows that the geometrical characteristics of the build
blocks of the LHM play an important role in defining it
optical properties.

The FDTD method allowed us to calculate directly t
electromagnetic field created by a monochromatic wave
propagates perpendicularly onto a slab of LHM. Both 2
and 3D geometries were considered, and in both cases
odic boundary conditions in the transverse directions w
imposed. In Fig. 10 we present the field components t
correspond to the 2D geometry. The bright~dark! gray re-
gions correspond to low~high! field intensities. As before
the incident plane wave wass polarized, so that the only
nonzero field components wereHy , Ex , and Ez . As this
figure illustrates, there is an intense induced magnetic fi
along the ring’s axis, field which induces surface currents
both rings, which flow in the opposite directions. This fact
best illustrated by the distribution of the electric fieldsEx
and Ez . Also, notice that due to the fact that we deal wi
metals, the fields do not penetrate into the rings. This f
shows that, at infrared or optical frequencies, skin effe
play an important role. Furthermore, since the electrom
netic field does not penetrate into the metal, there is a
nificant enhancement of the field in the narrow regions
tween metallic domains, e.g., between the two rings or in
slit regions. This effect can lead to a strong enhancemen
the nonlinear response of the metamaterial.

We extended this analysis to a full 3D structure and
results are shown in Fig. 11. In this case, a network of wi
was added to the periodic structure of metallic split squa
As in the previous case, we determined the electromagn
field induced by a plane wave, which propagates perpend
larly on a slab of three layers of split squares. Since in t
case the lattice constant is larger than that in the case
SRRs, the wavelength of the incident wave wasl
520 mm. The plane wave was agains polarized, with the
electric field oriented along the wires. As in the 2D case,
field distributions in Fig. 11 illustrate the resonant behav
of the split-square structure. The results also show a str
magnetic field around the wires, field created by the ind
tive currents flowing along the wires. Moreover, in this ca
too, one can observe high intensities of the electromagn
fields in the narrow regions between metallic domains,
effect that can lead to enhanced nonlinear response of
LHM.

V. CONCLUSIONS

We have investigated the properties of recently introdu
metallic LHM at infrared and optical frequencies. Both th
TMM and the FDTD method have been employed and
results obtained by using the two methods have been c
pared. The transmission, reflection, and absorption of a
of metamaterial was calculated numerically and the relati
ship between the properties of the photonic gaps displa

. 8,
1-9
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FIG. 10. ~Color online! The field components created by a pla
wave at normal incidence on a layer of split cylinders. The real p
of the refractive index of the metal isnr51.5, the absorptiona
515, and the wavelength of the incident wavel515 mm. The
parameters of the resonant structures are the same as those in
and the lattice constant isa55 mm.
01661
rt

g. 1

FIG. 11. ~Color online! The field components created by a pla
wave at normal incidence on a layer of split squares and met
wires. The wavelength of the incident wavel520 mm and the
parameters of the structures are the same as those in Fig. 8.
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INFLUENCE OF THE DISPERSIVE PROPERTIES OF . . . PHYSICAL REVIEW E 68, 016611 ~2003!
by these coefficients and the dispersive properties of
metal was established. Thus, we showed that as the pla
frequency increases, the frequency at which it is expec
that such a material exhibits a negative refraction index
creases asymptotically to a frequency limit determined
tirely by the geometry of the resonant structure. A theoret
explanation of this effect has been proposed. On the o
hand, it has been shown that the position of the band
responsible for the negative-refractive-index behavior is
dependent of the damping frequency of the metal.

The calculated transmission and reflection coefficie
also allowed us to calculate the effective permittivity, t
effective permeability, and the refractive index. The calcu
tions showed that the refractive index is negative near
resonant frequency of the metallic rings, frequency that c
responds to a band gap in the transmission spectrum.

Also, numerical investigations based on the FDT
method of 2D and 3D periodic distributions of SRR a
metallic wires have been performed and the results obta
by this method agreed with those obtained by the TMM
field distribution consistent with previously proposed the
retical models has been obtained, confirming thus the m
netically induced resonant behavior of such LHM. Moreov
S
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it has been demonstrated that, as at the microwave freq
cies, adding a mesh of wires to a 3D periodic distribution
split rings determines the transmission coefficient near
resonant frequency to increase, while the width of the ba
gap is reduced to about a half of its previous value. T
suggests that metamaterials with negative refractive in
can exist at infrared or even optical frequencies.

While the dimensions required for producing this effe
can be challenging for most nanofabrication tools, they
still within the capability of state-of-the-art technolog
Thus, the thin metallic structures that are discussed in
paper, with characteristic dimensions of a few hundred
nometers, can be patterned by using deep UV or elect
beam lithography.
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