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Stability of screening solitons in photorefractive media
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Normal mode stability of both rectilinear and self-bending photorefractive screening solitons is considered.
In each case, the Evans function procedure is used to investigate stability and to search for internal modes. For
the rectilinear case, a standard Evans function procedure is applied. However, in the self-bending case the
asymptotic form of the eigenvalue problem is a system of Airy equations, instead of the usual system of
constant coefficient differential equations. To overcome this difference, a modified version of the Evans
function method, using Airy functions rather than exponentials, is implemented and applied. The results
confirm stability and give an internal mode pattern in good agreement with full numerical integration.
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[. INTRODUCTION stant coefficient differential equations away from the beam,
but instead they tend to a system of Airy equations. We have
Photorefractive solitons were predicted in 1993 and ~ used the Airy functions to develop a modification to the
were demonstrated one year lag]. They are distinct Evans function method and have applied it in a search for
amongst optical solitons in requiring only low power lasers,Stability eigenvalues of the self-bending solitons. _
as small asuWs, and elementary experimental apparatus. !N Sec. Il, we introduce the ordinary differential equation
Photorefractive materials are doped electro-optic crystals th&bPtained from the partial differential equation by a similarity
have electronic energy levels within the forbidden gap. The/ariable reduction and briefly describe the characteristic pro-
photorefractive effect consists of a reversible change of théles for the two types of solutions: rectilinear and self-
refractive index induced by a spatial variation of an opticalPending. The stability eigenvalue problem is presented in
field, which is accomplished in two steps: creation of freeSec. lll, where we prove the stability of the rectilinear beams
charge by light absorption and charge migration by drift and4Sing theVakhltov-Kolokolovcn';erlon. Sectlons \ anq Vv
diffusion. A photorefractive soliton is a beam that becomeg?re devoted to the Evans function method. First, we find the
self-trapped through the above mechanism, which may b#ternal modes of the diffusionless case applying the stan-
interpreted as though the beam were inducing its own wavedard version of the method. Then we define a suitable Evans
guide. Several mechanisms are possible, each one leadingft#nction for the diffusive case. Its application confirms the
a different kind of photorefractive soliton. Here we focus onStability and gives the internal modes of the self-bending
the so-calledscreeningphotorefractive solitons. In this type, Solutions. Finally, in Sec. VI, we present the results of nu-
the photorefractive crystal is subjected to an external voltag@erical integration of the full evolution equation, which are
orthogonal to the light propagation. The final charge distri-in agreement with the normal mode stability analysis.
bution in the illuminated region produces a space-charge
electric fieldEg; with polarity opposite to the external field.

The Change in the refractive index that results from the Using the band transport model of the photorefractive ef-
electro-optic effect is given bjxn=n’r¢4E,, Wherenisthe  fect by Kukhtarev and Vinetski[11,17 to evaluate the
unperturbed refractive index anqﬁ is an effective electro- Space-charge ﬁelEsc and Considering the Change of refrac-
optic coefficient. In turn, the space-charge field depends onlyve index An=nqr 4E.., we arrive at the following equa-

on the beam power whenever only the drift produced by thejon describing the evolution of the optical field,5]:
external field is important, but depends also on the transverse

spatial derivative of the beam power whenever the diffusion ) q (|q|2)xq
mechanism is appreciable. The first case produces symmetric 1G9z Oxx— 1+|qf? Y 1+|qf? =
beams propagating along rectilinear trajectories and occurs q g
for high external voltage and narrow bea[8s4]. The latter  whereq, z, x, andy are normalized versions of the complex
produces slightly asymmetric beams propagating along #eam envelope, propagation distance, transverse spatial co-
parabolic trajectory, usually known aelf-bendingsolitons,  ordinate, and diffusion parameter, respectively.

and occurs for broader bearfs-7]. The only reported sta- ~ The above equation admits self-similar solutions having
bility analysis of theself-bendingsolitons was based on 5=x—2Vz+az? as a similarity variabléwith V anda con-
simulations of the full evolution equatidi®,6]. In this work  stanty [7]. Thus, introducing the ansatzq(z,X)

we investigate their normal mode stability by a method simi-= ex({i#(z,7)]JF(7) into Eq. (1), with F and 6 real, and re-
lar to the standard Evans function methi@-10. Unlike  quiring thatF—0 as»— *%, we obtain
usual applications, the stability equations do not tend to con-

II. MODEL AND LOCALIZED SOLUTIONS
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FIG. 1. Three beam profiles for=0.1, corresponding to points
markedO in Fig. 2. FIG. 2. Dependence of the curvature paramaten the beam

powerN, for three values ofy.
0(z,n)=(V—az)p+ia?z®—aVZ+(V?-B)z+C, _ s »
(zm)=( )7t 3 ( ) 3) when|F| is already very small. Hence, the initial conditions
for numerical integration of Eq4) are chosen as
whereB and C are arbitrary parameters. Fgr=0, the cur-

vature parameteaa should be equal to 0 and for eaBhthere F(#1)=ciAi[z(P1)] =€,
then exists a family of solutions having peak amplityde Vain:
related toB, throughB = In(1+ u?)/u?. They are symmetrical F'(41)=—cia"Ai'[z(¢y)],

about the peak positiom= 7, [3,4]. In the diffusive case, ) ) ] N )
y+0, the curvature parameter is necessarily nonzero. Th@herey is an estimate of the left tail position used in the
beam profiles result from the numerical integration of Eq.Shooting method. We were able, by adjustipg to obtain
(2), using a shooting methofb,7]. The method uses esti- localized solutions fory up to 0.2 over a wide range of beam
mates obtained from a perturbation procedure based upon ti@wer N= [ F?dy. Figure 1 shows three of these beam
diffusionless profiles ¢=0). The initial conditions forF  profiles with different peak amplitudés,,, for y=0.1. For
andF’ may be taken from the Airy functions in a way al- fixed y, the solutions may be parametrized by the curvature
ready used by Aleshkevickt al. [13] to treat the diffusive parameter or by the beam poweN. The dependence af
case of photorefractive solitons, but when the nonlinearityon N is not monotonic but exhibits a maximu¢see Fig. 2
was of the Kerr type. For largery, beam profiles have also been computed, but for

In the diffusive case, we transform ER) using ay v=0.3, 0.4, and 0.5 the numerical procedure fails to find
=an+B—1 so as to obtain an ordinary differential equation profiles for increasingly wide intervals o\.
(ODE) without the parameteB as follows:

I1l. NORMAL MODE STABILITY
F2 2FF’

F'+|ay— +y——
v 1+F2 V142

F=0. 4 In order to perform linear stability analysis, we consider a
total solution of the form q(z,n)=exdidzn)][F(n)
+w(z,7)], whereF () is the real beam profile obtained from
Eqg. (2) andw(z,7) is a small complex perturbation term.
Inserting the above form into E@l), and seeking solutions

iz \we obtain the

In fact, in the tail region wher&=0, Eq.(4) transforms to
the Airy equationF”"—zF=0 by the change of variable
z(p)=—a'®y. The only solutions that decay as—+% 0 B
(— — ) are multiples of Aig). At the other extreme, both in the formw(#,z) =u(n)e**+v*(n)e
Ai(z) and Bi(z) decay algebraically and oscillatorily. Ney- following eigenvalue problem:
ertheless, numerics on E) give us beam profiles with
rapid decay at either side. This suggests that the right tail of L( “) :)\( “) ©)
F is still in a region of positivez and is picking up the '

exponential behavior of Br) for z>0. The algebraically

decaying oscillations should appear in the right tail onlywhere the operatdr is given by

F2 F2
d,,TB+an+ y1+F2(3,]+I’(77) ymo’?,ﬁ-s(ﬂ)
L=
F2 2
~Y g2 S ~ Oy Bran—y Tty ()
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200 As p— £, r(n)——1, ands(#)—0, thus the matrix op-
erator tends to a constant matri&,.(\). Hence, the
100 1 asymptotic system has solutions of the form
Yi(n M) =yiMexdpi(N) 7], i=1,....4,
0 . . .
0 2 4 6 8 10 where p;(\) are the eigenvalues of,(\) given by

H *yJw*x\, with o=1-B, andy;(\) are the corresponding
eigenvectors. Full problent6) has four solutionsy; for
which the behavior ag— —« satisfiesY; (7,\)~Y;" and
has also four solution¥;" for which the behavior as)—

+ o satisfiesY;" (7,\)~ Y[ . Either set of solutions forms a
basis for the solution space to E&§). Whenevem belongs
to the setS={\ e R:|\|>w} two of the valuesp;(\) are

FIG. 3. Dependence of beam powéion the peak amplitudg.

andr ands are functions ofp defined in terms of andF’
as

—1+3yFF'+ yF3F’

r(n)= , purely imaginary and the remaining two are real and of op-
(1+F?)? posite sign. Fon e S there is necessarily an intersection be-
tween the subspace spanned by the three solutions bounded
F2— yF3F' + yFF' at +o and the subspace spanned by the three solutions
S(n)= > bounded at-o. This set of eigenfunctions corresponds to
(1+F9) the continuous spectrum. There are also isolated eigenvalues

. o occurring inC\S, for which the eigenfunctions decay expo-
The stability of the diffusionless casey£0 anda=0)  npengially in both directions. One exampleNs=0, which is
may be investigated by the well-knowrakhitov-Kolokolov  5jyays an eigenvalue of algebraic multiplicity equal to 4.
criterion [14], which in this case predicts normal mode sta-Thjs fact is related to the four invariances of evolution equa-
bility if N/9B<<0. This condition may be rewritten in the tjon (1), namely, translations im and inx, Galilean transfor-
form N'(u)/B’(u) <0, whereN(u) is easily evaluated as mation and constant change of phase. ker(\S, there are

the definite integral, always two values op;(\) whose real part is positive. Let
us denote them by;(\) (j=1,2). The other two, which we
N s nG?*dG denote byp,(\) (k=3,4), have negative real part. An eigen-
(m)= 0 \/len(l+62)—ln(l+,u2)62' function corresponding to an isolated eigenvalue must be a

linear combination ofY; (7,\) andY, (»,\) and simulta-

The derivativeB’(x) is negative for all positivex and Neously a linear combination of; (7,A) andY, (7,\). In
N(u) is found through the numerical integration to increaseother words, the two pairs of functions should be linearly
monotonically foru in the range (0,40). Results up o~ dependent, that is,

=10 are shown in Fig. 3. ThereforélN/9B<0 and, accord- _ _ n n

ing to theVakhitov-Kolokolowcriterion, all rectilinear screen-  21Y1 (7.0 +a2Y5 (7,0)=a5Y3 (7,0) +aY4 (17,)).

ing solitons are stable. ™
Here we define the Evans function as the determinant whose
IV. THE EVANS FUNCTION METHOD APPLIED columns arey; andY, evaluated, for instance, at the peak
TO RECTILINEAR PROPAGATION location of F, which, by the translational invariance of the

The stability problem fory=0 anda=0 may also be C(r)]rrespondlil% OT%E"e't’thf'(ﬁ) W.'th %:to’ r= 0]£ may be
treated using the Evans function method. We briefly intro-CN1OSEN a=0. Thus, the Tollowing determinan

duce an approach to the standard Evans function method

applied to this case. Stability syste(B) for y=0 anda i ’

=0 may be written as a system of first-order differential DOM=|Y1 Yz Y3 Y, (8)
equations given by : : :

(0N)
d_Y —A(n\)Y 6) is an analytic function i\, which is equal to O if and only if
dn K ' Eq. (7) is satisfied, that is, if and only i is an eigenvalue of
Eq. (5). Moreover, the multiplicity of its 0's coincides with
whereY=(uu,v vn)T and the algebraic multiplicity of the eigenvalues. One important
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tions. Thus, the asymptotic form of eigenvalue problén
0.1 for the variabley takes the form of two Airy equations for
v ol which the independent variables depend on the eigenwalue
They read

0.1
-0.2 (&Z+Z+_Z+)UZO! (az’z*_z_)vzoy
03 45 G0 5 0 5 10 15 20 wherez*=a ?3(—ay=\). The variablesz™ andz~ are

n complex, since\ may be complex. For fixed, the domain

of real  transforms into two parallel lines in the complex
plane ofz* (see Fig. 5. The lines lie in opposite half-planes
being at equal distance from the real axis. Changing the real
part of A translatesz” and z~ along the same line and,

advantage of this method is based on the analyticity 01consequently, relocates the profile in thedomains. Chang-

D(\), which permits the use of the argument principle for'ng the imaginary part ok translates each line vertically.
counting the 0's ofD()\) inside a certain region only by For all real\, the two lines lie within the real axis. The
determining the change of aB\), asD()) is evaluated ~POrtions corresponding bz~ (i), 2" (¢1)] will be called
while A moves around the boundary of such a region. the profile domains. The profile locations in thé andz~

The application of the Evans function method to the Sym_domains coincide fok =_O and are on the positive St_amiaxis,
metric beams, up to an amplitude @f=6.0, has confirmed Put @s the modulus of increases they move apart in oppo-
their stability. All the eigenvalues lie on the real axis within Sit€ directions. We define two important sets of real
the gap of the continuous spectrum. For small amplitudes, up (D St={\ e R:0<[\[<\4}. For\ € S,, both profile do-

to w=1.2, only the zero eigenvalue exists with the expected'@iNS remain on the positive semiaxis and only solutions
algebraic multiplicity equal to 4. Betweepn=1.2 and having rapid decay in both directions are the candidates as

=1.3, one pair of symmetrically placed eigenvalues emerge§°lmi°ns of eigenvalue problefs). They should match the

from the continuous spectrum and an increase in amplitud@&€havior of Ai@) to the left (y—y* <0, wherey™ is the
makes these eigenvalues move towards the origin. For high@eal( position and the behavior of BY) to the right (
amplitudes, further pairs of real eigenvalues were observed, ¥ >0)- Note that, although A¥) is also a bounded func-
For instance, fop.=4.0 there are two nonzero pairs and for ion (with algebraic decayas z— — (i— +), within
w=6.0 there are three nonzero pairs. These nonzero regnd near the profile location it still grows to the left. Hence,
eigenvalues are characteristic of nonintegrable generalizef€ May assert ﬂ_‘at I8, the eigenvalues are discrete.
nonlinear Schirdinger (NLS) models and are usually called (2 S2={\ € R:[\[>\;>0}. For\€S,, one of the pro-
internal modeg15—17. The eigenfunctions of the nonzero file domains lies on the positive semiaxis and the other one

eigenvalues fop.=4.0 are shown in Fig. 4. The eigenfunc- has one or both limits on the negative semiaxis. Here, there

tion corresponding to the pair of eigenvalues lower in mag_exists an extra possible matching Airy function, which is

nitude is symmetric, while the other is antisymmetric. Ai(2) to the left of the domain that lies in negatizeHence,
for any\ € S,, there exists a bounded solution to E8). and

we may identifyS, as the continuous spectrum. We still may
divide the setS, in two subsets, namelyS,,={\1<|\|
<Ny} andS,,={|\|>\,}. They correspond to the cases of
The normal mode stability for the diffusive case is lessthe profile domain on the left being either only partially or
standard than for the diffusionless case. The numerically oktotally on the negative semiaxis, respectively. The division
tained profiles foi- () show rapid decay to 0 in both direc- embodies the fact that only fare S,,, are the solutions simi-

FIG. 4. Perturbations andv that constitute the eigenfunctions
corresponding to.=0.44 and\ =0.78 for a solutiorF(#) of am-
plitude =4.0.

V. THE EVANS FUNCTION METHOD APPLIED
TO SELF-BENDING BEAMS
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lar to the solutions in the continuous spectrum of the nondifiater. Thus, numerical integration of the eigenvalue problem

fusive case and of other similar systems; that is, they arenade within such regions needs to involve only a fixed

similar to radiation modes. choice of appropriate recessive Airy functions. In the lower
In order that an eigenvalue may have nonzero imaginarpalf-plane, they are Ai (z*) asz®— —«, Aiy(z") asz”

part, the corresponding solution of Ed5) should be —+c, Aij(z7) asz — —«, and Ap(z") asz” — + .

bounded and should decay exponentially in both directions. From the above observations, let us define a modified

This is possible if the solution matches the exponentiallyEvans function. The stability system may also be written as a

decaying Airy functions in each direction. Standard theorysystem of first-order differential equations as

[18] involves three Airy functions Aiz) and Ai..,(z), each

of which decays exponentially in a 120° sector of the dy

plane. In such a sector it is said to zessiveFor certain —=A(y,\)Y, 9

regions of thex plane, each of the lod™ () andz™ () as dy

¢— oo remains in a fixed sector as varies. One such

region is the lower half-plane, which we shall be treatingwhereY=(u u,v v‘/,)T and

0 1 0 0
—ag—1-r+N —yFY(1+F? -s —yF2I(1+F?)
A(,\)= 0 0 0 1 (10
-s —yF2(1+F?) —ayp—1-r—\ —yF?(1+F?)

For Ne{N:N=a+ Bi, B<0}, solutions to the asymptotic are analytic. Consequently, the solutiofs (i =1,2) andyY;

system include the following: (j=23,4) are also analytic ih. The determinant is an alge-
braic operation; thereford ;;(\) is analytic in\.
YT (g N)=(Ai_y(z") _alf3AiL1(z+) 00)7, To prove stability, we need to evalual®,;(\) along a

closed path enclosing all the lower half-plane Xf[or
equivalently the upper half-plane, since the symmetry of Eq.
(5) only allows sets of eigenvalues of the kifid,—\,A*,
(1D —\*}]. However, in practice, we have chosen the contour as
Y5(h\)=(Aig(z") —aBAij(z") 00)T, a semicircle of large radiu@ypically ~10) closed by a line
parallel to the real axis but very close to(#t distance~5
X 107%). Numerical limitations are thdd,;(\) appears cha-
Y7y \)=(00 Aig(z) —a'BAiyz)". otic for large values ofA|. The number of 0's oD;(\)
inside the semicircle was determined by the argument prin-
As for the standard Evans function method described ear|iebip|e_ For all prof"es studied, the result was that no 0's were

we construct two bases of solutions to the full problem, on€ound, so confirming the stability of the self-bending soli-
set{Y, } whose behavior at « satisfiesy, (#,\)~Yy and  tons.

Y5 (4, N)=(00Ai(z) —a®Aij(z)T,

the other set{Y,} whose behavior at—« satisfies The defined Evans function was also useful for finding the
Y, (#,\)~Y( . Alocalized solution exists fok belonging quasilocalized solutions of Ed5), for real A. One trivial
to the lower half-plane if and only if the determinant example of those solutions is the profit€ ), which is the

eigenfunction corresponding to the eigenvalue 0. The
: : : : zero eigenvalue is confirmed to have algebraic multiplicity
vt + - - equal to 4 as happens in the diffusionless case. Other solu-
Da(M)=|Y1 Y2 Y5 Y4 12 fions for N#0, if present, are the counterpart of internal
: : : (W \) modes of the diffusionless case. We have sought for them for
\ on the real axis. As is real,z* is also real and we may
is equal to 0. Note that the functions are evaluated at theeplace Ai; and Aj in Eq. (11) by the real function Bi. As
peak location, here denoted lf . D4 (N) is our modified anticipated, whenever such eigenfunctions exist, they corre-
version of the Evans function and for this to be use®éx) spond toA € S;. For y small, such solutions do exist for
we need to prove its analyticity iN. The Airy functions are  peak amplitudes greater thanl.3, as in the diffusionless
entire functions, i.e., functions that are analytic everywherecase. Asy increases and the peak amplitude is maintained,
in C, and the variableg™ are analytic functions ok. The  those localized solutions cease to exist. The explanation is
initial conditions for numerical integration fronf; and ¢,  thatS; is narrowing asy increases. The latter was confirmed
to ¢* are based upon the asymptotic solutidffs, thus they by evaluating the value of that makesz™ (¢,)=0 where
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FIG. 6. Eigenfunctions corresponding xo=0.76 and\ =0.44 FIG. 7. Peak amplitude evolution for beams scaled by 10% con-
for a beam profile with amplitudg ,,5,=4.0 andy=0.03. cerningy=0.03, 0.10, 0.15 an@) F5,~1.0, (b) Fpa-2.0.

exhibits persistent amplitude oscillations whenever the un-
derlying self-similar beam possesses an internal mode.

The numerical simulations also confirmed the stability of
the self-bending beams. We have used the corresponding
%eam profiles as initial conditions in a way that spans the
. e g - studied ranges of and peak amplitude. In all cases, we have
tively similar tq those.presented in Fig. 4 for the r_eCt'“nearobserved steady propagation along the predicted parabolic
bea_lms_, .bUt with noticeable asymmetry. Increasmgagt trajectory. Moreover, stable propagation arises even when
maintainingF i causes the eigenfunction corresponding t0jpjtia| conditions differ from those of a self-similar profile by

A =0.76 to cease to exist. For even largerwe were unable g q) perturbations of three types: a sinusoid multiplying the
to find a solution for the ODE defining, suggesting that ,ofjje 4 multiple of the profile, and a multiple of its first
there is no localized self-similar solution.

i is in the right tail of the peak. Moreove$; tends to the
continuous spectrum gap-(w,w) of the diffusionless case
asy tends to 0.

Figure 6 shows the localized eigenfunctions found for
beam profile withF,,,,,=4.0 andy=0.03. They are qualita-

derivative.
Analogously to the diffusionless case, the propagation of
V1. NUMERICAL SIMULATION OF THE PARTIAL perturbe_d bea_ms revgals the existence or absence of localized
DIFFERENTIAL EQUATION modes in their stability spectrum. Thus, we may observe

large persistent oscillations in the propagation of beams

To complement our stability analysis we used the com-whose spectrum admits localized modes and smaller decay-
puted beam profiles as initial conditions for numerical inte-ing oscillations otherwise. The frequency of the decaying
gration of evolution equatiofil). We used a pseudospectral oscillations is, in this case, coincident with the limi of
method based on Fornberg and WhithEi8]. S, . As regards the characteristic features of solutions to Eq.

The numerical simulations fop=0 confirmed the stabil- (5) for \ € Sy, given above, we may assert also that, when
ity of the symmetric beams. An initial condition consisting of perturbed, the self-bending beams withdnternal modes
a self-similar profile plus a small perturbation causes readrelax with amplitude oscillations whose frequency is equal to
justment to a nearby beam shape with some emission dhe lowest frequency of their radiationlike modes. Figure
radiation. However, as is typical for other nonintegrable gen-7(a) shows the peak amplitude evolution of solutions of Eq.
eralized NLS modelg15,20, the consequent propagation (4) havingF .«~1.0 but scaled by 1.1, for various values of
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v. We recall that these profiles have no localized modes VII. CONCLUSION
except that corresponding =0. The frequency of the
amplitude oscillations increases withas also doea,. In
fact, \, is estimated in a way similar to, that is, by evalu-
ation of the value of that makes™(,) =0, wherey, is in

the left tail of the peak. Furthermork, also tends taw asy
tends to 0. Figure () also shows a noticeable decrease in

We have proved linear stability for the rectilinear screen-
ing solitons and obtained their internal modes. We give a
contribution to the stability analysis of the self-bending soli-
tons, including a discussion of their internal modes. This is
based on a modified Evans function that deals with
. o . . asymptotic systems given by Airy equations, instead of con-
the amplitude of the oscillation with increasing The case stant coefficient differential equations. The modified Evans

y=0.03 of Fig. K.b) ShO\.NS the Iohg—lived oscillation who.se function procedure may be applied to similar stability prob-
frequency coincides with the eigenvalue of the IocahzedIems as is currently being done

mode. However, the beams of similar peak amplitude but
corresponding to larger diffusion parameter evolve accompa- ACKNOWLEDGMENTS

nied by decaying oscillations. We have confirmed that the

average beams of those latter cases have no localized modes.M. Faca acknowledges the support of Fupdagara a
The frequency of the oscillations is again increasing with  Ciencia e a Tecnologia, Portugal.
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