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Two-dimensional solitons in quasi-phase-matched quadratic crystals
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We study the existence and dynamics of two-dimensional spatial solitons in crystals that exhibit a periodic
modulation of both the refractive index and the second-order susceptibility for achieving quasi-phase-
matching. Far from resonances between the domain length of the periodic crystal and the diffraction length of
the beams, it is demonstrated that the properties of the solitons in this quasi-phase-matched geometry are
strongly influenced by the induced third-order nonlinearities. The stability properties of the two-dimensional
solitons are analyzed as a function of the total power, the effective wave-vector mismatch between the first and
second harmonics, and the relative strength between the induced third-order nonlinearity and the effective
second-order nonlinearity. Finally, the formation of two-dimensional solitons from a Gaussian beam excitation
is investigated numerically.
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[. INTRODUCTION directional coupler$15] has been suggested.
As indicated above, the wave-vector mismatch is a key
It has been known since the early days of nonlinear opticparameter that controls the character of quadratic interaction.
that the cascading of two second-order processes, such as Ufere are several techniques for controlling wave-vector
and down-conversion in a three wave mixing process, genmatching of the waves propagating in a quadratic medium so
erally leads to nonlinear phase shifts of all waves involvedas to achieve phase-matching. For instance, birefringence-
[1-3]. However, only recently has this phase modulationbased phase-matching techniqUeT) use the anisotropic
been analyzed systematicall§]. In Ref. [4], it was found nature of the dispersion relatidt(w) to cancel the vector
that the process depends primarily on the ratio of wavemismatch between the fundamental wafV) and the sec-
vector mismatch and effective second-order susceptibilityond harmonioSH), which propagate ab and 2w, respec-
This phenomenon also displays some unusual physical propively [22]. Another traditional PMT is based on temperature
erties[4]; for instance, its effect may exceed appreciably thetuning of waveguide dispersion, i.e., modal PN23]. Fi-
phase modulation obtained with intrinsic cubic nonlineari-nally, quasi-phase-matchif®PM) is a powerful technique,
ties. If the wave-vector mismatch is large, this phase shiftonsisting of compensating the wave-vector mismatch
resembles that achieved with an effective third-order nonlinthrough artificial periodic variation of the quadratic nonlinear
earity and typical nonlinear effects, usually induced by cubiccoefficient y(?). The QPM technique offers several advan-
nonlinearities, such as all-optical switching, optical limiting, tages: it uses the highest possil&’ coefficients; it elimi-
or soliton formation have been demonstrafge 10]. nates the spatial walk-off effects; it can use nonbirefringent
During the past few years, intense research activity hasaterials; phase matching can be achieved at room tempera-
focused on both the experimental and theoretical investigature; and it allows higher flexibility in choosing the configu-
tions of phenomena related to these cascaded second-ordation of interacting waves, e.g., one can phase-match coun-
processes and their potential use for all-optical applicationgerpropagating waves.
Thus, a large phase modulation was measured in several ex- Although the QPM technique was proposed in the seminal
perimental setups, such as bulk KT®| and Ti-indiffused  paper of Armstronget al. almost four decades adj], recent
LiNbO; [11] or KTP [7] channel waveguides. Furthermore, technological progresses allowed the routine fabrication of
the potential use of this effect to all-optical switching in a high quality QPM gratings. There are two major classes of
Mach-Zender interferometg®] or phase-controlled transis- QPM structure. Those in the first class consist in alternating
tor action[12] has also been experimentally demonstrateddomains whose sign of thg(®) coefficient changes every
With regard to theory, many schemes to achieve phase argbmiperiod. They are obtained by standard poling techniques
amplitude modulation through cascading second-order intelf LiINbO3 or KTP crystals[24—26 or waveguideg27,28
action have been proposéd,8,13—15 and their use to op- or, in the case of QPM gratings with slab waveguide geom-
tical transistord12,16—20, loop mirrors[21], or nonlinear etry, by a poling procedure followed by crystal ion slicing
[29]. We will term this type of structures symmetric gratings
(SG). QPM structures of the second class will be termed
*On leave from Department of Theoretical Physics, Institute ofasymmetric gratingéAG) and can involve a periodic modu-

Atomic Physics, P.O. Box MG-6, Bucharest, Romania. lation either of they(® coefficient alone, by use of alternat-
"Formerly at Brookhaven National Laboratories, Upton, Newing quantum well§30], or of both refractive index ang(®
York, 11973. coefficient, by stacking together thin slabs of different semi-
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conductor crystal$31,32. Finally, since they exhibit huge
nonlinearities, polymer materials can also be used to fabri-x(z) 7
cate QPM grating$33].

Over the last few years, soliton formation in quadratic
media has been the ground of intense research activity, bot|
experimental and theoretical. Thus, in addition to the first
experimental verification of soliton existence in a bulk KTP
crystal[34] and LiNbQ;, slab waveguidef35], the existence
and stability of soliton propagation in quadratic media have
been demonstrated for various geometries: spatial solitons i
slab waveguide$36] or bulk crystals37—39 and walking An,
solitons in slab waveguidg0] or bulk crystalg[41]. Sev- An, or
eral theoretical studies have been reported on one
dimensional spatial soliton propagation in QPM waveguides C
[42,43. These studies have shown that the periodic modula-
tion of the quadratic nonlinearity induces an artificial cubic  FIG. 1. Schematic presentation of a QPM grating: is the
nonlinearity that can compete with the former one. A discusaverage value of the quadratic nonlinearity,is its modulation
sion of this phenomenon as well as an analysis of the validitamplitude, andAn, and An, are the deviations from the mean
of the theory describing this effect can be found in Ré#l].  value of the refractive indices at the FW and SH, respectively.
Furthermore, it has been demonstrated that by modulating
the grating the induced third-order nonlinearity can be fur-present. Since we want to describe both SG and AG, we
ther increased45]; a switching scheme based on this effectallow for the averagednormalized quadratic susceptibility
has been proposed in R¢fl6]. The first experimental veri- coefficientyy to be nonzero, a situation that describes QPM
fication of two-dimensional soliton formation in QPM grat- gratings fabricated from semiconductor materials. We con-
ings was reported in Ref47]. For a comprehensive review sider that the two co-propagating fields are plane waves
on quadratic solitons, see R¢#8|. propagating along the direction,

In this paper we present, to our knowledge for the first
time, a theoretical analysis of 2D soliton formation and their
stability upon propagation in QPM gratings, by taking into
account the higher-order nonlinearities induced by the peri-
odicity of the grating42]. We consider both SG, for which \yheree is a unit vector along the polarization direction,
the averagey'®) coefficient vanishes, as well AG, for which ang y are the transverse coordinatesis the longitudinal
both the averagg(® coefficient and the modulation of the distance,w;=w, w,=2w, and E; and k;=k(w,) are the
refractive indices are nonzero. The paper is organized as foklectric fields and wave vectors at the two harmonics, respec-
lows. In the fOlIOWing section we introduce the mathematicaltive|y_ Then, within the SIOWIy Varying enve|ope approxima-
model that describes the nonlinear interaction between twgon, the two co-propagating fields obey the following system
cw beams propagating in a QPM grating. Then, in Sec. Ill,of equationg49]:
we find, numerically, the QPM solitons that are stable upon

Ei(r,t)= %éEi(x,y,z)eXQi (wit—kz)]+cc., (1)

propagation in the QPM grating and the influence of the JE, Zwiﬁl

induced third-order nonlinearities on their properties. Fur- 2ik1&—+VfEl+ ——@2ANn(2)E,

thermore, a detailed stability analysis of the QPM solitons is z c

presented in Sec. IV. In Sec. V, we investigate the excitation 2

of these QPM solitons, using Gaussian beams. Two situa- n ®1 2VE*E, exo —i Akz)=0 2
tions are taken into account: launching of both harmonics c2 X (2B Eoexpl )=0, 23

[seeded second harmonic generatiSilG)] or of only the
FW (unseeded SHEG Finally, we conclude with a summary

; . 9E 2w3n
and discussion of our results. 2ikZT;+Vf E,+ EAnz(z)Ez
c
IIl. MATHEMATICAL MODEL w%
_ o _ +— xP(2)Ef explidk2) =0, (2b)
We consider the propagation in a lossless QPM grating, c

under type-I SHG conditions, of a cw beam at frequeacy

and its SH at frequency« The QPM grating consists of a whereV? is the transverse Laplaciank=2k;—k, is the
periodic structure, for which both the linear part of the sus-wave-vector mismatchy(?)(z) is the quadratic nonlinear co-
ceptibility (refractive index and the quadratic susceptibility efficient and isz dependentn,,n, andAn,(z),An,(z) are,

are periodic functions of the longitudinal distance, as it isrespectively, the averages and the modulations of the two
illustrated in Fig. 1. In this geometry, both the FW and therefractive indices at the FW and the SH.

SH are polarized along the same direction, which is also a In order to normalize this system, we introduce a new set
principal crystal axis; therefore, no walk-off effects are of normalized variables and functioné=z/z,, n=x/wy,
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é=ylwg, u=AE;, andv=A,E,. Here, z,=k,wj3 is the v,(7,&¢) are slowly varying functions with respect to the

diffraction length,w, is the characteristic beam width, and variables, as compared to the exponential, Enqg—K is

A= Eocﬁi/zso are normalization constants, withbeing  the effective phase mismatch parameter. We assume that the

the speed of light,e, the vacuum permittivity, andS,  Phase mismatch introduced by the QPM grating can be very

=1 GWI/cn? a normalization intensity. Upon normalization, well controlled, so tha is very small(although both3 and

the system of equation®) becomes | k| must be large For the geometry in Fig. 1, the Fourier
coefficientsg,, are given by the expression

ou 1 .
|(7—§+ EVfu-f— ay(Hu+T(Hu*v exp(—iBL) =0, 2sgri ) dd
i 0
(33 g,={ imn ' €
o 0, n even.
i—+-V2u+2 +T(Hu?expipl)=0, (3b
Szt Vi a,(§v+ T (LHu”expli BE) (3b) Here, the sgr¥) factor ensures that both positive and nega-

tive values ofk correspond to the same grating. Conse-

where B=2zpAk is the normalized wave vector mismatch, quently, since sgnf) =sgn(x), we can treat both case®
ay,({)=wzpAny {)/c are the normalized modulations of <( at the same time.

the refractive indiceffor a SG, ,(£)=0 andy,=0], and Now, we assume that the higher harmonics in expansions
I'(¢)=(wzoxPIc) \/Zsoleocﬁinz is the normalized para- (4c) are of the orde©(1//x|) or smaller, whereas, andv
metric coupling strength. are of the orde©(1). Then, inserting expressiorda —(4c)

For the sake of simplicity, in what follows we assume thatin system(3) and collecting all terms of the ord€ (1), we
the functionse, ,({) andI'({) that characterize the QPM obtain the relationships between the higher-order Fourier co-
grating are single-periodic functions. For reasons that will beefficients and the zero-order on@s, as called in this paper,
discussed later, more complex choices have been proposedtite average fieldsu, andvg:
other studies, e.g., multj45,50 or quasiperiodi¢43] func-
tions. With this choice, there are three physical lengths that
characterize the system, and the interplay among these char-
acteristic lengths determines the dynamics of the interacting
beams. These three lengths are the diffraction lemgtlihe 1 5
coherence length .= 7/|Ak|, and the domain length. In Unz0= 1 -[28,9000+ (Y0Sn 1t ¥9n-1)Up]-  (6D)
normalized unitszy=1 andL.= =/|B|. We consider here a
typical QPM grating for which the domain length is much Then, by inserting these expressions in syst@mnand ne-
smaller than the diffraction length, that i4,<1. Then, the glecting higher-order terms in the corresponding system that
grating wave vector defined Hy|= /A satisfies the rela- describes the evolution of the zero-order fields, we end up
tion | k|>1, implying that 1«| is a normalized characteris- with the following system of equations that describes the

1
Un;&o:ﬁ[augnuo‘F (Y06n,-1F ¥9n+1)Ugvol, (6a)

tic length that is much smaller than 1. evolution of the zero-order fields:
In order to analyze the beam propagation in the QPM L
grating, we use an asymptotic expansion technique intro- .% Lo2 % 2 12\,
duced in Ref[42]. To this end, we expand in Fourier series Y 5 Vilotpuguot 3(|uol"=[vol*)uo=0, (72
the grating functionsI'({) and «,,({), and the fields
u(n,¢;¢) and &:0): dvg 1 —
(&) andv(z.£:4) 158+ 2V ivom B+ p*u3-20luguo=0.  (7b)
— ink¢
') 70+7§ 9n€ (43 Here, p is the effective second-order nonlinearity and is
given by
—a elnxe, 4b 2i sgr(«) |2
au,v(g) u,v; On (4b) p= gni«) ﬁ(au_av)_’y , ®
o K
u(y 5.5)22 un( 7, &:0)einse (40) and § characterizes the magnitude of the induced third-order
> woo ' nonlinearity, and can be written as
i(nk+B)¢ 11 5. 5 8
v(n.60)=2 vn(7,E6 0L, o=~ v+ -] |- )
a

whereyy andy are, respectively, the average and the modu- Equations(7), with the Laplacian replaced by transverse
lation amplitudes of the parametric coupling strength,, second-order derivative, were first derived in Ref2], to
are the amplitudes of the modulation of the refractive indexdescribe the 1D case. Equati@®) shows that the effective
at the frequencies of the two harmonias,(#7,&;{) and  second-order nonlinearity in a SG{=0) is decreased by a
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factor of 2fr, as compared to the case of bulk crystal, aare not soliton solutions of syste(h0) [52], we will follow
well-known result. However, the most important conse-the terminology in the physics literature and call them soli-
guence of the averaging procedure is the appearance of aons.

induced effective third-order nonlinearity, similar to a Kerr By inserting Eqs(12) in Egs.(10), one can readily verify
effect. There is, though, an important difference: the selfthat the soliton solutions are given by the following system
phase and cross-phase modulation terms have opposite sigo$.equations:

This means that by tuning the parameters of the QPM grating

one can obtain either focusing or defocusing third-order non-
linearities; this asymmetric structure of the induced higher- 2
order nonlinearities has been recently verified experimentally
[51].

VZUg—NUg+Uguo+ o(U3—v2)uy=0,  (13a

%vao—(2>\+B)UO+U§—2UU§UOZO. (13h)
lll. QPM SOLITONS
Furthermore, from the expansions in E4c), and by us-
In this section we introduce the soliton solutions of sys-ing relations(6), one can see that, at the first-order in the
tem (7) and discuss their physical properties. To begin with.smaliness of parameter=1/ x|, the soliton solutions of full
we rescale the fielqso andUO bZ the effective second-order System(s) and those of averaged Systémo) are related by
nonlinearityp, ug=uq/|p|, vo=vo/p. Then, systent7) be-  the following relations:

comes
Ug(r) 1 |imwa 2iy vo(r)
(3;':10 1 ~ _ o~ - - - U(ﬂ,f,o): |p| _m _2u+ 7+7’OSQF(K)
5 T3 Vitot Ugvoto([uol*~[vo*)Uo=0, (103 i
Uo(r) 1
X—T——+0|—] (149
~ ol | |2
.(9U0 1 o~ — ~5 ~
IT§+ZVLUO_BUO+UO_20|UO| vo=0, (10b ~ ~
_ vo(r) 1| wo(r)
- , _ v(n,60)=———7|ima,——
whereo= 6/|p|? gives the relative strength between the in- P | |

duced cubic nonlinearity and the effective quadratic nonlin- -
earity. For typical SG, the parameter=0.05, but, as we will 2iy ug(r) 1
show later, even such relatively small values can have a dra- P sgnix) Ip|2 +0 W :
matic influence on the soliton formation process. Moreover,

for AG or certain specially engineered gratingss,50, the (14b
parameters can become close to 1. Furthermore, it is im-
portant to mention that the parameteris determined only
by the parameters=yy/v, p=(a,—a,)/, and the grating
wave vectork:

+

The existence and dynamics of QPM soliton solutions of
full system(3) are studied by finding first the soliton solu-
tions of systen{10), whose coefficients do not depend on the
longitudinal distanceg;, and then by using relationd4) to
obtain the soliton solutions of full systef8), at {=0. We
(11) call the solitons of systerfil0) zero-order solitons, whereas

those obtained from the zero-order ones through transforma-
tion (14) are called first-order solitons. Thus, the zero-order

In what follows, we look for solitary solutionsolitong ~ Selitons are obtained by keeping the terms of oi@¢t) in
of system(10), which are localized stationary solutions of Eqgs.(14), Wherea_s the first-order solitons are obtained from
the form Egs.(14) by keeping all the terms up to the oro@_(lllxl).
Then, in order to analyze the stability properties of these
solitons, they are propagated in the grating by integrating
numerically full system(3).

For numerical integration we used a standard Crank-
) ) Nicolson method, with transparent boundary conditions im-
where the parametex is the soliton wave vector and  ogeqd at frontier§s3]. Typically, at each longitudinal step,
=\7°+¢&°. Since we assumed that the functiang7.£,{)  four Picard iterations and ten Gauss-Seidel iterations were
andvo(7,£;¢) vary slowly as compared tg**, the soliton  peeded. The stationary solutions of systéx@), that is, the
parameterx must be much smaller thak. Here, we con-  solutions of systenf13), are determined numerically by us-
sider only lowest-order solutior{with no nodegwith radial  jng a standard band-matrix method with Newton-type itera-
symmetry. Moreover, we consider only the case in whichtjons[54]. Since we look for solutions with radial symmetry,
Eoth the f@ctions are real and neither of the two SOIUtiOﬂSsystem(13) can be formulated such that on|y one transverse
ug(r) anduvg(r), is identically equal to 0. Although from a coordinater enters. This reduction considerably simplifies
rigorous purely mathematical point of view these solutionsthe computation.

1 A(x*+1)-8
77 4k (2px—1)2

Uo(7,E D) =Ug(r)€M,  To(m &) =vo(r)e?re,
(12
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7& 4 FIG. 4. Amplitudes(upper row and the corresponding intensi-
P ties (lower row) evolution, in a SG, of the zero-ordéeft column
E 2 and first-order(right column. Soliton propagation is described by
0 full system(3). The soliton parameters are as in Fig. 3.
4

4 shown in Fig. 3. Note that in the case of approximate soli-
tons, that is, zero-order solutions, the difference in the soliton
4 4 2 & amplitudes at the two harmonics is smaller as compared to
the first-order soliton.

FIG. 2. (Color online First-order QPM solitons of full system Before ana|yzing in more detail how these solitons propa-
(3), obtained from the solitons of averaged syst@® by applying  gate in a QPM grating, note that one set of parameters that
transformationg14). The soliton parameters are=0.5, 7=0.05,  gefines a soliton solution of syste(@0) corresponds to an
and3=0 (phase-matched solitons entire family of QPM gratings, characterized by this set of

parameters. More exactly, there is an infinite set of choices of

We applied this method and determined soliton solutionghe grating parameters, p, and « that correspond to the
of system(3). A typical example is presented in Figs. 2 and same value of the induced cubic nonlinearity strength
3. Thus, Fig. 2 presents a soliton solution obtained by applyTherefore, the solitons we analyze here, characterized by a
ing transformatior(14) to a soliton solution of averaged sys- certain parametes, can be excited in a multitude of QPM
tem (10) and keeping all the terms up to the ord®f1//«x|),  gratings of different types, e.g., in both SG and AG.
that is, the first-order solitons. The zero-order solitons are In order to study the validity of our perturbative approach,
we numerically integrated full syster8), using as initial
conditions both the zero-order soliton and the soliton ob-
tained from the zero-order one by using expressi@ig,
that is, the first-order soliton. We used two types of gratings:
first, a SG characterized by the parametgfs-a,=0, g
=0, y=1, and«=9.35; the second, an AG grating, with the
parametersa,=1, a,=1.928, y,=1, y=0.4, and «
=308.42. Both these sets of parameters correspond to the
sameo=0.05. We monitored both the amplitudes of the
solitons as well as their intensities. The intensities at the two
harmonics, as well as the total intensity, are defined by the
following expressions:

Ul -2

w 6 15, [ Tio(n.&:0)l7dnde, (158
C 4
& ~
> 2 7= | otz Pand (15
0 ~
4 4 lo=15, 17, (150
il -2 4 4 -2 E An important property of the intensiif)b, which can be eas-

ily derived from systen{10), is that it is independent of the
FIG. 3. (Color onling Soliton solutions for averaged system |ongitudinal distance, that is, it is a conserved quantity.
(13). The soliton parameters ale=0.5, ¢=0.05, and3=0 (the We present in Fig. 4 the soliton propagation in a SG char-
same as in Fig. 2 acterized by the parameters given above. Note that in this
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170 T T T T

150 1

. 150 FIG. 5. Evolution of first-order soliton inten-

. 130} = 425 4 sitit_as upon propagation in an AQ. In the inset,

- - 100 soliton propagation over a diffraction length, after
the steady state is reached. The soliton param-

110 19 1923 1%5 1975 2 eters are as in Fig. 3.

figure the intensitied, ,I, andl,,l, represent the beam whereK = [UZv,d7d¢ is a constant. Similar relation have
intensities described by full syste(8) and correspond, re- been derived in Ref42], for the particular case of 1D SG.
spectively, to the zero-order and second-order solitons deFhese equations show that, over certain constant values of
fined earlier. To be more specific, to calculateandl, we  the intensities of the beams;o,;ol|p|2, there are superim-

used the zero-order soliton as initial condition for full systemposed fast modulations with the spatial frequency equal to
(3) and integrated it numerically. Then, the intensitigsand ~ 2«. Their origin is the existence of higher nonzero terms in

|, were calculated by integrating the propagating fields; thdhe Fourier expansiotc). Note that in the case of AGy

intensitiesl , and|, were calculated in a similar way except #0) the spatial frequency of the modulation of the intensi-

that as initial conditions we used the first-order solitons. Fig-tles is equal toc. Also, notice that the beam intensities at the

ure 4 illustrates that, even the zero-order soliton solution is &
very good approximation for the QPM soliton that is formed = | o/|pl?.
upon propagation in the grating_ Thus, in the case of zero- The same behavior is observed in Flg 5, which shows the
order approximation, a soliton is formed after just a few€volution of the first-order soliton upon propagation in an
diffraction lengths, whereas in the case in which the first-AG characterized by the parameters given above. In contrast
order soliton is launched into the QPM grating the transient0 the previous case, the transient distance over which the
regime can hardly be observed. We observed that in botiput solitons reach a steady-state propagation is slightly
cases the amount of energy radiated during the transient réarger. Also, notice the much larger spatial oscillation fre-
gime is negligible. This means that even in the case of zeroduency that can be observed in this case. Obviously, this is
order soliton, during the initial stage of the propagation, thedue to the fact that in this case the grating periodicity is
energy is not radiated but, in fact, is redistributed betweerdnuch smaller.
the two harmonics. To gain a better understanding of the differences dis-
The fast oscillations of the beam intensities, shown in Figplayed upon propagation by the zero- and first-order approxi-
4, can be understood by noting the relationship between th@ations of the QPM solitons, we also determined the depen-
intensities of the fieldsi(7,£;¢) andv(7,£;£), and the in-  dence of the total intensity and the Hamiltonian, on the

ero- and first-order are conserved, that Issl,+1,

tensities corresponding to the averaged fidigsand I; . longitudinal distance; the results are shown in Fig. 6. The
Thus, by using expansiongic) and definitions(15a and ;gnms:!tonlansH andH, are given by the following expres-

(15b), one obtains the following relations:

iy 2iK 4 sgri«) cog2n«{) H:lf[w 2 l 2_ 2
9o “™ ; _ Lo+ |Vl —2a ()] Y]
RPCRER vosinkd)=—— 2, 4n2—1 2 4
1 —[2%(()—B]|¢|2—T(§)(¢*2¢+¢*1,02)]dndf,
+0 T2 (1639
| ] (179
TAL _ 4 sgr ) cog2n«{) 1 ~ 1 ~ o
U_W_ K|p|2P Yo SiN(k{) — p =1 4n2—1 Hozzf r|VLuO|2+ ZlVLUO|2+B|UO|2_(USZ;0+U3ug)
1 [Uol> ~ )~
+0 W ’ (16b) - 20 T_|Uo|2 |Uo|2 d7]d§, (17b)
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41,
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FIG. 6. Intensities(left axis) and Hamiltoniangright axig vs o B
the longitudinal distancé. HamiltonianH(® (—) and intensityl ‘3‘6
(- - -) correspond to the zero-order soliton, whereas Hamiltonian =,
H® (...) and intensityl; (—-—) correspond to the first-order g-
soliton. ~
=
wherey=u and¢=ve'P¢. They correspond, respectively, to

systemg3) and(10). In fact, systemg3) and(10) represent 0
the Hamilton equations associated to the HamiltonidTs,

for example, Egs(10) are equivalent to the following ca-

nonical equations:

0 100 200 300
Intensity I0

FIG. 7. Peak intensities’ ratio of the soliton solutions of system

au SH (10), calculated foroc=—0.05, 0=0, and ¢=0.05 (a) and o
i—0 — — O, (1839 =-0.02,0=0, ando=0.02 (b). The effective wave-vector mis-
I sup match isB=—2 (---), B=0 (—), andB=2 (- - —).
(750 SH, correspond to systerfi0), for various values of the soliton
la—gz sox (18 wave-vector parametex, for three values of the effective
0

wave vector mismatch3=—2,0,2; in each case, the com-
with a similar set of equations fdt, ¢, and ¢. Here, the putations were repeated for three different values of the pa-
symbol 6 indicates a functional derivative. There is an im- rametero. The conclusions of our computations are illus-
portant distinction between the two cases: whllgis a con-  trated in Fig. 7, which shows the dependence on the total
stant of motion,H depends on the longitudinal distange  beam intensityl, of the peak intensity ratios of the two har-
The fact thatH is not conserved upon propagation is clearlymonics of the solitons of the averaged system. An important
seen in Fig. 6. Notice that botH(® andH™) shown in this ~ conclusion illustrated by this figure is that, as in the 1D case
figure have been computed by using the Hamiltortiaas- ~ [42], even small induced cubic nonlinearities can change
sociated to full systen(3). Thus, H(® was calculated by drastically the characteristics of the QPM solitons. For in-
using the zero-order soliton as initial condition, whered®  stance, the peak amplitude ratiocat —0.05 is almost twice
was calculated by using the first-order soliton as initial con-2s large as its value at=0. In addition, this change in the
dition. Furthermore, Fig. 6 shows that in the case of first-Soliton characteristics is more pronounced at higher intensi-
order approximation 0n|y a small amount of radiation isties. ThUS, the influence of the relative Strength of the in-
emitted. In contrast, in the case of zero-order approximationduced cubic nonlinearities on soliton dynamics increases
part of the soliton energy is radiated before the soliton igwith the beam intensity. Another phenomenon illustrated in
reshaped to its steady-state form. The plateau at the begifid. 7 is that, for positive effective wave vector parameters
ning of the propagation signifies the fact that the radiationg, there is a critical threshold of the total beam intensity
propagates over several diffraction lengths before it reacheselow which QPM solitons cannot exist. Furthermore, this
the boundaries situated at,,&,= = 10, and leaves the com- threshold intensity depends on the relative strength of the
putational domain. induced cubic nonlinearity. This result will be explained in

As has been discussed in Sec. I, an important consehe following section, where soliton stability is studied in
guence of the averaging process is the fact that the beandketail. Finally, note that for-# 0 the solitons no longer exist
interact in the QPM grating as if they were under the influ-if the total intensityl, is larger than some certain threshold.
ence of Kerr-type nonlinearities. In order to characterizeThis behavior is not observed in the 1D case.
quantitatively this effect, we found the QPM solitons that In order to investigate the influence of the induced third-
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FIG. 8. Peak intensities’ rati®=|v,(0,0)|%/|uo(0,0)|? of the
soliton solutions of systenil0), calculated fore=0.05(—) and
o=0 (- - -), vs soliton parametek. The stars correspond te
calculated by numerical integration of systdf). The effective

wave-vector mismatch i8=0.

order nonlinearity on the QPM solitons, we performed the

following numerical experiment: we determined the solitons <
of system(10) that correspond tg8=0 and o=0.05, for - R
Several Va|UeS Of the SO|It0n parameErThen, these SOIU' 1 L e /’(’ ..........................................

tions were used as initial conditions for full syst€B) and .

integrated numerically until a stationary propagation was
reached. We then determined the ratio of the peak intensitie:

0

60 80
Intensity I0

at the two harmonics and compared the results with those , ) ,
that correspond to the soliton solutions of systi). The FIG. 9. The intensityl, vs soliton wave-vector parametas
results are presented in Fig. 8. As this figure illustrates, ther§aiculated forr=—0.05(a), o= 0.05(b), ando =0 (). The effec-
is a large discrepancy between the predictions of systerivé wave-vector mismatch ig=-2 (- - -), =0 (—), and 5
(10), in which the third-order nonlinearity is taken into ac- —2 (= ~); dotted branches correspond to unstable solutions.

count (c#0), and the predictions of this system with the

third-order nonlinearity neglectedr@ O) As one can see, tonian HO, in the function Spacq’ao;i;o}, whereas local
for small soliton wave vectors, the former agree well with  maxima lead to unstable solutions. Another approach for es-
the numerical simulations of full syste(®). Conversely, Fig.  tablishing the stability properties of the soliton solutions uses
8 shows that fon=1 the predictions based on the averagethe Vakhitov-Kolokolov criterion[55], which states that
model are no longer accurate. The source of this discrepanatable solutions correspond to the positive-sloped branches
can be easily understood by noting that one of the conditiongf the functionl(\). Note that this is only a necessary
under which the average model was derived is that the avegondition for soliton stabilityf 39]; therefore, we checked by
age fields must vary slowly with respect to the exponentiahumerical simulations the validity of the results obtained by
e'“¢. This amounts to the requirement that the soliton paramapplying this criterion.

eter\ must be much smaller than the grating wave veetor We have determined the functional dependence of the
HamiltonianH, and total intensityl; on the soliton param-
eter \; the dependence df, on \ is presented in Fig. 9.
There are several phenomena illustrated by this figure. First,

In this section, we analyze in detail the stability propertiesfor nonzero effective wave-vector mismatchgsz 0, soli-
of the QPM solitons. In order to do this, we first determinetons are formed only if the intensity, is above a certain

the stability properties of soliton solutions of the averagedhreshold value. Furthermore, f(ﬁ>0’ the solitons are

system(10) and then we verify whether stable solitons of stable for all values ok for which they exist, whereas for

system (10) remain stable upon propagation in the QPM 5 oniv the solitons that correspond to the upper branch of
grating described by full syste3). B y I b upp

) i . the multivalued function\ (1), that is, those that satisfy the
It can readily be shown using Eq&l8) that solitons, or (lo) fy

IV. STABILITY ANALYSIS

stationary solutions of systefi0), correspond to extrema of
the functionalHgy+A\ly, that is, they satisfy the relation
8{Ho+\lg}=0. Here, the soliton wave vectar plays the
role of a Lagrange multiplier. Furthermore, for a fixégl

stable solutions correspond to local minima of the Hamil-

Vakhitov-Kolokolov criterion, are stable. Fq5=0, stable
solitons exist at any intensity,. We mention that, forE
>0, the threshold for soliton existence is approximatively
given by the relation g“=EI nLs: Wherely s=5.85 is the
so-called collapse threshold for the two-dimensional nonlin-
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FIG. 10. The critical intensityg’ (—) and the corresponding
minimum soliton wave vectok , (- - -) vs induced cubic nonlin- 300,
earity strengtho.

ear Schrdinger equation modéb6—58. This result has pre- = 0
viously been established for 2D solitons in bulk quadratic g
media[37,41]. The second important fact illustrated in Fig. 9 5 ~190f
is that the functional dependenkg\) is strongly dependent E
on the induced cubic nonlinearity strength ke —200¢
To see better the influence of the induced cubic nonlinear- 200 , , , ,
ity strengtho on the soliton parameters, we present in Fig. 0 30 60 90 120
10 the dependence of the critical intensifyand the corre- Intensity I,

sponding minimum soliton wave vectar,;, on the param-
etero. Here, the critical intensityg' is defined as the mini-

mum value ofl ; for which, for 8<0, a stable soliton exists.
This figure illustrates that variations i of only 0.05 pro-
duce a change itg of more than 20%.

In order to verify the results derived from thg vs \
dependency, we determined numerically the dependence Q

the Hamilto_nianHO on the total intens.ityo; the results are .to different regions of thély— 1 diagram were converted to
shown in Fig. 11. Thus, the conclusions suggested by thl.?ne u—v fields by using relationg14), and then the result

figure are in complete agreement W_ith those derived from th@\/as used as initial conditions for systdB). With these ini-

lo(\) dependence. For instance, {80, theHo—Io dia-  tjal conditions, systen{3) was then numerically integrated
gram has two branches; however, since they correspond togyer a distance~ 35 diffraction lengthgthis limit was im-
lower value of the Hamiltoniai, only the solitons on the posed by the required computation tim&he conclusion of
lower branch are stable. This means that, upon propagation tRese numerical tests was that stable solitons that correspond

soliton that corresponds to the upper branch will either decayp system(10) remain stable upon propagation in the QPM
to radiation or transform into a soliton belonging to the lowergrating described by full systeii).

branch. This fact can also be derived from the analytic de-
pendence of the Hamiltoniafd, on the intensityl o,

FIG. 11. The Hamiltoniaf, vs the intensityl 5, calculated for
o=—0.05 (a), 0=0.05 (b), and o=0 (c). The effective wave-
vector mismatch ig=—-2 (- - -), =0 (—), andB=2 (—-—);
dotted lines correspond to unstable solutions.

PM solitons of full systent3), we performed an extensive
ries of numerical simulations. Thus, solitons corresponding

V. QPM SOLITON EXCITATION
1 1 FROM GAUSSIAN BEAMS
HOZ_E)\|0+ Z’BIUO+UC' (19) . . . .
Since in real experiments one cannot launch into a QPM
grating beams with spatial shapes that rigorously match
those of specific QPM solitons, it is very important to study
~ 12 whether the QPM solitons described here can be excited
_ }f (|Uo| —|Z |2) |TJ 2dpd¢ (20) from the beams that are more accessible experimentally, that
2 2 0 ol 27 is, Gaussian beams. Therefore, in this section, we examine
. the characteristics of QPM soliton excitation from Gaussian
is a constant. Fop<0, there are two values of the Hamil- beams.
tonianH, that correspond to the same intendity however, We analyze two distinct cases: in the first case, the beams
the higher value corresponds to an unstable solution. are launched in a SG, whereas in the second case an AG is
To investigate whether these stability properties of theconsidered. In both cases, two different experimental condi-
solitons of averaged systeifi0) can be extended to the tions are investigated. The first one corresponds to a seeded

where
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SHG experiment, that is, at the input facet of the grating both
FW and SH are launched. The second case corresponds to 35 | (@
more common experimental setup, that is, to unseeded SHC u

in which case only the FW is launched at the input facet of

the grating. In both cases we assume that the gratings ar_> 25|

perfectly phase matched, that =0 (8= «). _>
The Gaussian beams launched into the QPM grating are | '
described by the following formulas: 5
U(7,£,0) =AM, (213 5 v .
- 0 10 20 30
v(7,60)=A,e”"", (21b 4

whereA,, , andw, , are the amplitudes and widths, respec- : ; .

tively, of the two Gaussian beams. For these expressions, th (b)
4 : . . : . 40

relationship between the beam intensity and its parameters i

2 A2 30H I
R (22 - "
—> 20t |
In order to study the soliton excitation from Gaussian

beams we proceeded as follows. First, we chose the ampli 10 | I
tudes and intensities of the Gaussians at the two harmonic v
to be equal to those of a QPM soliton that is formed in the 0 : : :
specific QPM grating that we analyze. Then, by using Eq. 0 10 20 30
(22), we calculated the corresponding widths of the Gauss- g

ians. Before presenting our results, we want to stress an im-
Fvsgtirgr;?g;izesgﬂglggn éhsarlgﬁls';?\lli}l\flﬁ)ﬁ]hﬁ: db:rti\\,/v;?;ntg aunched in a SG characterized by the following paramems:
. o . . =a,=0, 7,=0, y=1, and«=9.35. The parameters of the input
the equations describing the QPM solitons, the relative phase = arda) A,—2.92, A, — 1.8, w, - 1.52, andw, — 1.49 (seeded
between the two harmonics that form a QPM soliton is equ;EHG)_ b A 23 A 102 w=18 andw =1 (unseeded
to /2. It has been establishd89] that this value of the SHG)j Tt o v
initial relative phase between the two harmonics corresponds
to a case in which, during the process of soliton formation, it |, Fig. 13 we show the results of the propagation of the
emitts the smallest amount of radiation. Therefore, in whaigg,ssian beams in the AG described in Sec. Ill. This figure
follows, we choose one of the amplitudes to be real, whileshows that in the case of the AG, when compared to the SG
the other one is purely imaginary. _ _ case, the dynamics of the interacting beams during the tran-
We started by launching the Gaussian beams in the SGjent regime is more complex. Moreover, the amount of ra-
described in Sec. Il and the results are presented in Fig. 12jiation emitted during the process of soliton formation is
Figure 12a) shows the results corresponding to the seedeghyger in this case, too. This result can be explained by the
SHG. The beams’ parameters were calculated by followingact that the adjacent domains in an AG have different refrac-
the procedure previously described. However, in order Qe indices, so that the beams are scattered at the domain
compensate for the larger amount of radiation emitted, agerfaces. However, in the case of AG too, after a certain
compared to the case when into the grating are launcheglansient regime, QPM solitons are formed in both seeded
exact QPM solitons, the intensities of the two beams wergnq unseeded numerical experiments.
slightly larger than those corresponding to the soliton in Fig. 14 conclude this section, we mention that we repeated the
2. Figure 12a) shows that, as compared to the case of solitor merical experiments described above, for different values
propagation, which was described in Sec. lll, the transiengf he QPM grating and beam parameters. The conclusion
distance over which the solitons are formed is slightly\as that although we obtained different quantitative results,
longer; however, the intensities of the solitons that eventuallyhe general characteristics of the process of soliton excitation

form are very close to those that correspond to the case Whefym the Gaussian beams were similar to those described
pure solitons are launched into the QPM grating. In the unyzpove.

seeded SHG case, presented in FigbL2he transient dis-
tance over which the beams reshape to form a stable QPM
soliton is much longer. In addition, the amount of radiation
shed off by the beams is larger, a consequence of the fact that In conclusion, we have studied both the formation of two-
the input beams are very different from a pure soliton solu-dimensional solitons in a QPM grating as well as their sta-
tion. However, after the beams propagate a certain distancbility properties upon propagation. The QPM gratings taken
in this case too a QPM soliton is formed. into account covered two distinct classes: in the first case,

FIG. 12. Evolution of the intensities of Gaussian beams

VI. CONCLUSIONS
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asymptotic analysis were verified by numerical integration of
the complete set of equations that describes beam propaga-
tion in a QPM grating.

We also discussed the excitation of QPM solitons by
Gaussian beams. For both types of the QPM gratings consid-
ered here, SG and AG, we demonstrated that QPM solitons
can be obtained from Gaussian beams, when either both har-

8020 205 21 monics are injected into the gratingeeded SH@Gor only
100 I - the FW is inserted into the gratin@ginseeded SHG We
LV ) ’ . demonstrated that when SG are used, the amount of energy
0 1 2 3 4 5 that is radiated over the transient distance over which the
¢ soliton is formed is smaller as compared to that that corre-

sponds to the case of soliton generation in AG. We also
showed that, in both cases, after a transient regime during
which part of the input energy is radiated out, stable QPM
solitons are formed.

As an important remark, we mention that the QPM soli-
tons investigated in this paper are very similar to the guiding-
center solitons that can propagate in an optical fiber link that
contains optical amplifiers, periodically inserted in the trans-
mission line[60]. As in the case of QPM solitons discussed
here, guiding-center solitons in optical fibers are formed
|V when the characteristic length associated to the periodicity of

(b) . oo

: : : : the systenithe distance between amplifigis much smaller
0 10 20 30 40 S0 than the characteristic length associated to the dynamics of
g the pulses(the dispersion lengih However, the averaged

FIG. 13. Evolution of the intensities of Gaussian beamsnonlineqr equation describin_g the guidir_]g-center_ solitons in
launched in an AG characterized by the following parametags: OPtical fibers does not contain nonlinearities of higher order,
=1,2a,=1.928,y,=1, y=0.4, andc=308.42. The parameters of &S compared to the original equation, the nonlinear Schro
the input beams aréa) A,=6.28, A,=5.49, w,=1.52, andw, dinger equation. Based on this similarity, one expects to ob-
=1.49 (seeded SHG (b) A,=7.07,A,=10"2, w,=1.8, andw, serve a set of new and interesting phenomena when the grat-
=1 (unseeded SHEG In the insets, beam profiles calculated after iNng period becomes commensurable with the soliton
the stationary propagation are reach@ame diffraction length is diffraction length. For instance, in such a case, it is expected
shown. to observe a resonant radiative reshaping of the QPM soli-

tons whose parameters satisfy this condition.

SG were considered, that is, only the quadratic nonlinearity Finally, we mention that the results presented here could
coefficient was periodically modulated, whereas in the secP® appl!ed to other optlcal_struct_ures_contammg_ periodically
ond case, AG gratings, both the quadratic nonlinear Coefﬁg;_llternatlng slabs of materials with different optical proper-
cient and the refractive indices at the two harmonics werdi€S, €9, Kerr-layered structur¢81,63, or tandem struc-
periodic functions with respect to the longitudinal distance. 1{{UreS where the nonlinearity and the group velocity disper-
has been demonstrated that in both cases, in the first order 8o are spatially distributed between the adjacent Jl6Bis

an asymptotic perturbation theory, the beam dynamics is
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