PHYSICAL REVIEW E 68, 016607 (2003

Collisionless Boltzmann equation with an external periodic traveling force: Analytical solution
and application to molecular optics
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We present an analytical solution to the collisionless Boltzmann equation for describing the distribution
function of molecular ensembles subject to an external periodic traveling force of pulsed optical fields. We
apply our solution to study a pulsed standing wave mirror for neutral molecules, recently propoBssitty
et al, Phys. Rev. Lett84, 5074(2000]. Using our analytical solution we study the effects of the anharmo-
nicity of optical potential on the reflectivity of the molecular mirror and the corresponding optimal pulse
duration. We demonstrate that the reflectivity of the molecular mirror can be significantly improved by opti-
mizing the pulse duration of the external optical fields when taking into account the anharmonicity of molecu-
lar motion.
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[. INTRODUCTION longitudinal position and velocity distribution of molecules
in an optical lattice and was solved with a perturbation tech-
The Boltzmann equation describes the evolution of thenique for weak optical dipole forces. In a study of a pulsed
position and velocity distribution of an ensemble of particles.standing wave mirror, this equation was solved numerically
It has extensive and important applications in the fields such?1,22 to model the reflection of a molecular beam by a
as rarefied gas dynamits], statistical physic§2], and solid pulsed optical standing wave. Here, we present an analytical
state physic§3], but can rarely be solved analytical§—6]. solution to the equation for any initial distribution by using

The difficulty of solving the Boltzmann equation arises from the method of characteristi¢5]. The method of character-
the nonlinear nature of the collision term. However. if theiStics reduces the problem of the distribution function of an

mean-free path for an ensemble of particles is much |arge$nsemble of particles to that of a probability density function

than the typical dimension of the system, or the duration on a single particle; the distribution function of the system

the external force exerted on the system is much shorter thaTnquals the initial probability density of the single particle.

the mean collision time, the collision term can be neglectedoWO steps were required to obtain the solution. The first step

first imatiof2,4.5.. A collision| ) A btained a general solution to tlidewtonian equation of
as a hirst approximatiofc,2,5]. A COMISIONIESS environment ., 4 for the particle, referred as the characteristics of the
is often realized in high temperature plasm@g molecular

. , collisionless Boltzmann equation with external force. The
beams[8,9], atomic and molecular optickl0], and astro-  ge00nq step was to recover the initial stétackward char-

physics[11]. More than 50 years ago, Landau derived theycieristics of the particle using the characteristics. Using this
dispersion relation for electron plasma oscillati¢hagmuir  rocedure we obtain the analytical expression for the distri-
oscillation using the collisionless Boltzmann equation andpytion function of the collisionless Boltzmann equation in
the Poisson equatidir]. In most recent dipole force experi- terms of the initial condition and the parameters of the opti-
ments using short pulsed lasers, solutions to the collisionlesgal fields and molecules, such as optical intensity and the
Boltzmann equation agree well with experimental resultgpolarizability of molecules.

[12—14. The collisionless Boltzmann equation without ex-  In the second part of this paper, we apply our analytical
ternal force can be solved read[l¥5,16. However, it is not  solution to investigate a pulsed standing wave mirror for
a trivial task to find an analytical solution to this equation neutral molecules, which Ryytty and Kaivola studied nu-
when an external force is presdifl—14,17—-19 If the ex-  merically[21]. Such a mirror may be important for designing
ternal force is weak, a perturbative technique can be used tmatter wave cavitie$23,24], atomic wave guide$25,26,
obtain an approximate analytical solutiftl—13. For arbi-  and interferometerf27,2§. Mirrors for reflecting atoms by
trary external forces, numerical techniques such as than evanescent optical wave have been realized previously
second-order McCormack methd@0] can be applied to [29,30, but this approach fails for molecules and atoms with
solve the equatiopl7-19. complex energy structurf21,22. Ryytty and Kaivola re-

In this paper, we study the one-dimensioifD) colli-  cently proposed a new method for a molecular mirror based
sionless Boltzmann equation with a periodic traveling force,on the properties of the motion of molecules trapped in the
which arises from the current research on manipulation obptical potential wells formed by two counterpropagating op-
molecules with a one-dimensional far-off resonant opticaltical fields[21,22. They suggested that a molecular mirror
lattice. An optical lattice is a periodic dipole potential createdcould be realized when the pulse duration of the standing
by two counterpropagating optical fieldi§2—14,21,22 In wave was chosen to be half a period of the simple harmonic
previous experiments on coherent Rayleigh scatteft®f  motion of trapped moleculg®1,22. In this paper, we use
and its application to a noninvasive measurement of temeur analytical model to extend their approach considering the
perature of a gakl3], this equation was used to describe themore general case of the anharmonic motion of molecules in
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G, ~—Gosing(x—vt)](ky —kp)/q. (2

We note that the rati@(k;, —K,,)/q| is much less than 1%
for nearly counterpropagating beamg>175° in Fig. 1
and, therefore, the dipole for€®, in the transverse direction
is much less than the longitudinal for¢g. In order to
demonstrate that we can neglect the transverse force in fur-
ther calculations we estimate its effect on the molecular
beam for the duration of the optical fietd. The velocity

FIG. 1. An optical lattice is created by two optical fields at angle change induced by the force is given v, |<|Go(kq,
ﬁ~18q°. A mc_)IecuIar beam with longitudinal velocity, i_s in-_ —ky,)/(ma)|ty, and the displacement i$As<|v, oty
jected into the interference pattern of the two crossed optical fields, |Go(k1l_kzl)/(qm)|t§/2, wherem is the mass of the

a periodic potential. We study the effects of the anharmonicmolecule and/, is_tthe initial transv;arse velocity. For a Rb
ity on optimal pulse duration and the reflectivity of the mo- (Massm=2.82x10"* kg, «=135 A%) molecular beam at a
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lecular mirror.

Il. THE ONE-DIMENSIONAL COLLISIONLESS
BOLTZMANN EQUATION WITH AN EXTERNAL
OPTICAL PERIODIC TRAVELING FORCE

We study the interaction of a molecule in a collimated
molecular beam with a quasi-one-dimensional optical lattice
as shown in Fig. 1. A pulsed optical lattice is created by twi
counterpropagating optical fields(r,t)=E (t)sin(k,-r
- wlt) and82(r ,t) = Ez(t) Sin(kz' r— wzt), WhereEl andE2
are the amplitudes of the two optical fieldsis a coordinate
vector,k,; andk, are the wave vectors, ano; and w, are
frequencies of optical waves chosen to be far-off resonant t
form quasielectrostatic potential[31]. We consider
optical pulses that have a square temporal profile
where E(t)=E,(t)=E, for 0<t=<ty, with a pulse
duration ty, which is typically in the nanosecond range
[12,13,18,21,22,32 The x axis is set to be parallel to the
axis of the collimated molecular beam. The dipole

potential of a molecule in the nonresonant field is given by

U(r,t)=—aEE,;/2co$(k;—K,) - r—(wr—wq)t], where
a is polarizability, and the dipole forceG(r,t)
exerted on a molecule is given by = —VU(r,t)
=—aE1E2/25in[(kl—k2)-r—(wz—wl)t](kl—kz). In

many  experimental schemes [12,13,18,21,22,32
where the two optical fields are nearly counter-
propagating, the angle between the optical fields

and the supersonic beam is very smatt4.5°), so that
the transverse wave vectoks;, and k,, are small. In
these experiments, there is a small difference in the freque
cies of the two beams and, therefoke, ~k,, . With these
approximations, stk —K») - r — (wo— wq) t]=sin (ki
Tho)X+ (Kyy =Kz ) -1y = (0= wg)t] ~sin(ky+Kp)X — (@
—w)t]=siNq(x—u.t)], wherek,, andk,, are the compo-
nents of wave vectork; andk, in the direction ofx axis,
and g=Kqy+ Koy, andv, =(w,— w,)/q. Thus, the optical
force along thex axis, G| =—aEEy/2sin[(k;—kp)-r
—(wy— w)t](kixtKyy), is approximated by

G~ —Gosing(x—vt)], (1)

whereGy= aqE;E,/2 is the maximum force in the longitu-
dinal direction. In the transverse direction, the forGe
=—aE Ey/2sir{(ky—kz) -1 = (w2~ wy)t](ky, —ka,) is ap-
proximated by

(o)

n

temperature of 1 mK(the most probable velocity of,
~0.63 m/s), we estimate a transverse velocity change of
|Av,|<8.5um/s, and a transverse displacemejts|
<12.6 nm. These calculations are carried out using an opti-
cal field with an intensity 10 GW/cf a wave length 1064
nm, a pulse durationty=10 ns, and the ratio
|(kq, —k5,)/g|=1%. The initial transverse velocity, , we
used in this estimation is twice the most probable velocity
determined by the temperature. As in this example, where the
duration of typical experimental schemes is in the nanosec-
ond range, the transverse velocity chafye, | induced by

the potential is much less than the most probable velocity
vm, and the transverse displaceméht] is much less than
the typical width of the optical lattice (10@m). Therefore,

the weak transverse ford®, does not significantly change
the transverse position or velocity of molecules within the
pulse duration we consider. We conclude that only a very
small fraction of the molecules will enter or escape from the
potential during these time periods.

We consider the motion of the molecules in a high inten-
sity optical lattice where the momentum transferred to the
molecules is several orders of magnitude larger than the re-
coil momentum. Under these conditions we can treat the
molecules as classical particlggl,22. Aimost collisonless
conditions can be created within a pulsed supersonic beam
[8,9], when the interaction time between the optical fields
and molecules is shorter than the collision time. For this
situation the position and velocity distribution function
f(r,v,t) can be described by the collisionless Boltzmann
equation[2,4,5),

af(r,v,t) of(rv,t)  G(r,t) af(r,v,t)
+v- + : =0. (3
at or m av
During the short interaction time, the transverse motion of
molecules cannot be significantly affected by the weak trans-
verse forceG, , we thus treatG, as a perturbation, and
neglectG, in Eq. (3) in the zero-order approximation of the
position and velocity distribution functiof(r,v,t). With this
approximation, we can decouple the transverse motion to the
longitudinal motion and make the approximation that
f(r,v,t)=f(x,vy,0)f (v, ,v, 1), where the transverse mo-
lecular beam distribution functiofy (v, ,v, ,t) and the lon-
gitudinal molecular beam distribution functiofy(x,v,,t)
are independent. As the effect of the external fields on the
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transverse molecular beam distribution can be neglected, tHaserting Eqs(5)—(8) into Eq.(4), we obtain the normalized
parallel molecular beam distribution functidf(x,v,,t) can  collisionless Boltzmann equation,

be determined by the 1D Boltzmann equation
&f(@,n,7)+ of(0,7m,7) f(0,7n,7)

(?fH(X,vx,t) (7f”(X,UX,t) G”(X,t) (3’fH(X,UX,t) or 7 96 —sin(6) an =0, (9
+v + =0
at X m Jv

(4)  which we solve by using the method of characterisfs]
by rewriting this equation into the following three equations:
The use of Eq(4) is borne out by recent experimental

work in coherent Rayleigh scatterifd2] and its applica- df(o(7), n(7),7) 0 10
tions[13] where the distribution function was measured us- dr o (10
ing light scattering techniques. The experimental results can

be well described by Eq4). This equation has also been do(r)

used in theoretical treatments to describe a pulsed standing dr M7 (13)
wave mirror[21,22 for molecules, and the deceleration of

cold molecules in a molecular beam using a one-dimensional dy(7)

far-off resonant optical lattic¢18]. This formalism could T=—sir{ o(7)]. (12

also be used to model recent experiments demonstrating the
decelerating, trapping, and bunching of molecules by a Starlfhe functionf (6(7) ; ;

) e~ ,7(7),7) in Eqg. (10) can be interpreted
deceleratlor[33_—35] and measurement of the polarizability ;¢ e probability density function of a molecuid], the
of molecules with the optical dipole for¢82]. motion of which is described by Eq&l1) and (12), which

In the following, we study how to solve EG4) analyti- 5 the equations of motion for a pendulum driven by a force
cally. For convenience, we drop the subsciipfrom the ¢ cine form. From Eq(10), we obtain

distribution functionf(X,vy,t).
f(6(7),n(7),7)=1(6(0),7(0),00=fo(6(0),7(0)),

I1l. ANALYTICAL SOLUTION TO THE (13
ONE-DIMENSIONAL COLLISIONLESS BOLTZMANN . - L
EQUATION WITH AN EXTERNAL PERIODIC yvhlch shows t'hat' the pI’ObabI.|Ity density in the phase space
TRAVELING EORCE is unchanged in time, even with the presence of the external

force. This is due to the collisionless environment of the
The one-dimensional collisionless Boltzmann equatiormolecules. This result is consistent with the recent experi-
with an external periodic traveling force, given by E¢), ments with a Stark deceleratf83,34. Using Eq.(13) and
has been used to model the position and velocity distributiothe normalization relation E@8), the distribution function is
of molecules in 1D optical lattices. When the optical dipolegiven by
force is weak, 1D perturbation solutions can be used to ac-
curately model experimenf&2—-14. However, no analytical f(x,0,t)=qfe(6(0),7(0))/v,, (14
solution to this equation for arbitrarily strong fields has been o i
presented. In this section, using the method of the charactei?dicating that the distribution function of an ensemble of
istic, we find an analytical solution, for arbitrarily strong Molecules is proportional to the probability density function
fields, which are of interest for a number of applications suctPf & single molecule in the collisionless environment. How-
as a pulsed standing wave mirf@1,27 and for the creation €Ver, the initial positior(6(0),7(0)) of the molecule is un-
of cold molecules by deceleratigi8,33—35. !mpwn, therefore, to obtain the analytical relati@haracter-
Before we solve Eq(4), we introduce a normalization istics) between(6(7),7(7)) and (6(0),7(0)), we need to

transformation. We denote the phase of the traveling force b§olve Egs(11) and(12) for 6(7) and (), and then carry
0, out an inverse procedure to determit@0),7(0)) (back-

ward characteristigsfrom (6(7), (7)).
f=q(x—uvt), (5) Equations(11) and(12) are the equations of motion for a
nonlinear pendulum, which has been extensively studied in
and introduce the normalized timeand normalized velocity mechanicg36] and engineering fieldg37,38. In previous

7 by works, the periodic behavior of the nonlinear pendulum was
studied[36—-39 and some solutions were presented for spe-
=twg, (6)  cial initial conditions[39]. However, in this paper we study
the motion of an ensemble of molecules, which requires gen-
n=(vy—v)lv,, (7) eral solutions to Eq911) and (12) so that the inverse pro-
cedure can be done.
wherewy=vGyg/m andv,=+Gy/(ma). We further intro- To solve the equations of motioidll) and (12), we first
duce the normalized distribution functioi(é,7,7) in the  present the corresponding normalized Hamiltonian of a mol-
new normalized phase space, {) by eculeH(8(7),n(7)) by
f(0,n,7)=v,f(xv,t)/Q. (8) H(0(7), n(7))=n(7)%12—cod 6(7)]. (15

016607-3



DONG, LU, AND BARKER PHYSICAL REVIEW E68, 016607 (2003

From Eq.(15), we obtain the normalized velocity where amg+ ¢,N) is a Jacobian elliptical amplitude func-
_ tion [40,41] and ¢=[§®{1—[Nsin(8)]3 *2dg is a con-
n(7)==N?=sin[ 6()/2], (160 stant. Using Eqs(18) and(20), the normalized velocityEq.

where the parametét is defined as (16)] becomes

N=[H (1), 7(7) + 1112= (7 4+ S 6( 1) 12]. n(m)=2Ncn(7+4.N), (D)

(17 where cng+ ¢,N) is a Jacobian elliptical cosine function

Since the system is conservative, the parambtes time [403411. The vel_ocit_yn(a-) is a periodic function of-, and its
independent. The dynamical behavior of the molecules i®€r0dPy,(N) is given by
classified by the parameté&d. When N=<1 molecules are o
trapped by the potential welthe second term in the right PiadN) =4 {1-[Nsin(8)]1%}~Y2dB=4K(N),
side of Eq.(15)] and forN>1 molecules are untrapp¢89]. 0

If a molecule is untrapped by the potential wells, it travels (22
from one potential well to another, whereas if trapped, it ) _ L
oscillates within one of the potential well89]. We discuss whereK(N) is the complete Jacobian elliptic integral of the

these two motion states separately. In this section we presefifst kind [40,41. Equation(22) shows that the period of a

analytical results for trapped molecules. The analytical relf@Pped molecule depends only on the paramister

sults for untrapped molecules are given in the Appendix A. Ve integrate Eq(21) with respect to the normalized time

The mathematical procedures for the two cases are similar” @nd obtain
For the trapped cagd<1, we define a functiod(7) by 0(7)= 6(0)+ 2 sgrisn(t+ ¢,N)Jarccogdn(t+ ¢,N)]

N sin{ &(7)]=sir 6(7)/2]. (18) _ 2 sgifsn(¢.N) Jarccosdn( 6.N)1. 23

Differentiating both sides of Eq(18) with respect to the

normalized timer, and using Eq(16) we obtain where sgnf) is a sign function, sgn) =1 for x>0, and

—1 otherwise.f(7) and »(7) given by Egs.(23) and (21)

dé(r) are a general solutioftharacteristicsof Eqgs.(11) and (12).
P +J1-{Nsin&(7)]}? (19 Now let us study the inverse process to obtain the initial
phase and velocity8(0),7(0)) from (6(7),n(7)). The ini-
which has the solution tial velocity 7(0) is given by Eq.(21) for 7=0. Using ¢
=7+ ¢— 7 and the addition theory of Jacobian elliptic func-
&(r)=am 7+ ¢,N), (200  tions[40,41], we have

cn(7+ ¢,N)cn(7,N) +sn 7+ ¢,N)sn 7,N)dn( 7+ ¢,N)dn(7,N)

0)=2N 24
7o 1-N7sn(7+ ¢,N)sn(7,N)]? 29
|
To find the relations of alth-dependent terms in Eg24) to n(7)en(7,N) +sin 8(7)]sn(7,N)dn(,N)
the state(6(7), (7)), we differentiate both sides of E(R1) 7(0)= : 5 -
with respect to the normalized time and compare this ex- 1— sin( (_T)) sn(7,N)
pression ford »(7)/d 7 with Eq. (12) to obtain 2 26

si6(r)]=2Nsn(7+ ¢,N)dn(7+ ¢, N). (25

Using Egs.(17), (21), (25), and the relations between the  Next, we determine the expression for initial phake)
Jacobian elliptical functions, from E4), we finally get an  from Eq.(23). Using ¢=t+ ¢—t and the addition theory of
analytical expression for the initial velocity(0) by 6(r) elliptical functions[40,41, sn(¢,N) and dni,N) in Eq.
and n(7), (23) are given as

sn(t+¢,N)cn(t,N)dn(t,N) —cn(t+ ¢,N)dn(t+ ¢, N)sn(t,N)
1—[Nsn(t+ ¢,N)sn(t,N)]? ’

sn(¢,N)= (27)

dn(¢,N)=V1-[Nsn¢,N)J*. (28)
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From Eq.(21) and the relations between the Jacobian elliptical functid@s41], dn(t+ ¢,N) is determined by

dn(t+¢,N)=y1—-N?+[Ncn(t+ ¢,N)]°= V1—-N*+ 5(7)%/4. (29
Further using Eq(25), we obtain
sn(t+ ¢,N)=sin 6(7)1/[2N1— N2+ 5(7)%/4], (30)
and by inserting Eq921), (29), and(30) into Eq. (27), we arrive at

_sin{ (7)Jen(t,N)dn(t,N) — (7)[ 1~ N?+ 5(7)?/4]sn(t,N)

SN = 2N{1—[N2— 7(7)%4]sn(t,N)2}V1— N2+ (1) 2/4 (3D

Substituting Egs(28)—(31) into Eq. (23), we can determine responds to those traveling frofdto B in Fig. 2. For this

0(0) with 6(7) and 5(7). situation, the time required for reflection is shorter than a
In summary, the procedure for calculating the distributionhalf-oscillation period. The duration is given by,
function of the collisionless Boltzmann equatiof) is the  =2[K(N)—cn (7p/N,N)], where cn! is the inverse
following. function of the Jacobian cosine function cn. The timeor
(1) Calculater, 5(7), 6(7) by the normalization transfor- this process, and the following two processes, are obtained
mation, Egs(5)—(7), from t,v,X. with the results presented in Sec. Il and are given in Appen-
(2) CalculateN by Eq. (17). dix B. The second process involves two groups of molecules

(3 If N<1, first determine (6(0),7(0)) from  whose initial phases are symmetrical with-0. This corre-
(6(7),n(7)) using Egs.(26) and (23), and then obtain the sponds to the groups & and C traveling toD andE, re-
distribution functionf(x,v,t) by inserting(#(0),7(0)) into  spectively, as shown in Fig. 2. The two groups reverse their
Eq. (14). initial velocity after traveling half their orbit and, therefore,

with a half of the period, given by, =2K(N). A third pro-
cess involves molecules whose initial phases are between

IV. APPLICATION TO A PULSED STANDING WAVE . .
— to 0, which are reflected after traveling more than a half

MIRROR FOR NEUTRAL MOLECULES

In this section, we apply our analytical results to the study 2 -
of a pulsed standing wave mirror, recently proposed as an e 3N
optical element for reflecting a molecular beg#i,22. A -§ 1K Z e \
schematic diagram of the two optical fields interacting with a R S CHER T WX N
supersonic molecular beam to produce a pulsed standing E ) i ; o] 8l
wave is shown in Fig. 1. The two optical fields have the same E
frequency, and the force in E@l) is time independentu z
=0). 2

To understand the dynamics of molecules in pulsed stand-
ing wave mirror (stationary optical lattice we present a 8 (r rads)
phase spaced( n) plotin Fig. 2. Each line is an equal energy k== $§'§'J§§,§é'°§52§es; ot JE
line corresponding to a different value of the paraméler £ | thethird process - . -
defined in Eq(17). Dotted lines are separatrix, which define % sk ""—'—'_'_'G:?E'—.LJ
two dynamical regions: molecules enclosed by them are = Co2B Pl |
trapped, whereas molecules outside are untrapped. Arrows 0 D e S PR = UGN oA
show the direction of the motion of the molecules. As shown 02 0.4 0.6 038 1
in Fig. 2, untrapped molecules move from one potential well N (real units)

to another and keep their initial motion direction unchanged, L . .
. . FIG. 2. (a) Each line in the §,7) space is an equal energy line

whereas trapped molecules move along close trajectories and . . ;

the directi f thei i h iodicallv. Th corresponding to a value of the parametedefined in Eq.(17).

f € Irelc lons o d elrl mollons ¢ znge ﬂperlodlct;)a yﬁ d.ereI'The dotted lines are separatrix and the region enclosed by them is a

ore, only trapped molecules can be reflected by the dipo apping region. The arrows show the direction of motion, and the

potential well. The cross points of the SO"F" dashgd, aNGyoints denoted bWB,C, ... ,GH are the crossing points of the
dot-dashed orbits of trapped molecules with the lings ohits of the trapped molecules with the lineg=7, and 7
=np and »=—7p are denoted byABC, ... .GH as —_,  Herey, is the initial velocity. The three dynamical reflec-

shown in this figure. It can be seen that there are three dyton processes are revealed: the first is frano B, the second is
namical processes contributing to reflection of moleculesrom C to E and fromF to D, and the third is fronG to H. (b) The
from 7p to — np . The first of these processes involves mol-time 7, required for reflecting molecules with the initial velocity
ecules whose initial phases are between 0 and’his cor-  5;=0.264 varies with the paramethic
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of the period. These are molecules that travel fréno H,
with time 7,=2[K(N)+cn (75 /N,N)]. The timer, re-
quired for each of the three processes, corresponding to dif-
ferent equal energy lines, varies in a wide range as shown in
Fig. 2(b), which implies that the trapped molecules cannot be
reflected at the same time. Consequently, there is a question
of what is the optimal pulse duration to realize maximum
reflectance. In the following we apply the analytical results
obtained in Sec. Il to study the velocity distribution of the
molecular beams and determine the optimal pulse duration.
The initial longitudinal velocity distribution of a free mo-
lecular beam is described by a Maxwellian modg(x,v,)
=exd — (vx—vp)vl@m/mvy)  with  vy,=\2KgT/m,
whereKy is the Boltzmann constant ang, is the molecular
beam velocity. As the dipole force is of the form of Ed),
the distribution of a molecular beam after the optical fields
are turned on ig(x,vy,t)=qf(4,n,7)/v,, as given by Eq. T
(14), where the normalized distributioi{ 6, 7, 7) is read as

(a)

p(n,1,)

FIG. 3. The reflection of a molecular beam with velocify,

_ 2 _ 2 =2.64x10! and an initial 1¢ velocity width of gz,
£(0,7.7) = 19m €XP = 70 T 70( 6,7, 7) = 770] }/(ZW\/;)’ =6.90x 10 2 by a pulsed standing wavéa) The velocity distribu-
(32 tion for ensemble of reflected molecules corresponding to several
pulse durations(b) The dependence of the distribution function

where n,=v /v, is the normalized ¥ width of the initial 0(— 70..72) on the pulse duration

distribution, »p=vp /v, is the normalized beam velocity,
and 7y(6,n,7) is the initial velocity of a molecule with
phased and normalized velocityy at normalized timer.
10(6,7n,7) depends on the parameférand is calculated by
Eq. (26) for N<1, otherwise by Eq(A10). Due to the peri-
odic motion of the molecule, the velocityy(8,7,7) is a
periodic function with a period given by Eq22) or Eq.
(A5). Consequently, the normalized distributibf¥, ,7) is
also a periodic function.

Based on Eq(32), we now study the reflection of the

p(—np,7q) for different values ofry. On increasing the
duration, the first peak appearsmt=0.53 corresponding to
the first dynamical process of transferring molecules from
7p to — 7p (reflection as revealed in Fig. 2, and the second
occurs atry= 3.18 corresponding predominantly to the latter
two processes discussed in Fig. 2. The following peaks occur
because of the periodic nature of the molecular motion in the
potential wells. However, the molecules that contribute to the

molecular beam by the pulsed standing wave. As an exgecond peak havg different periods, th(_erefore at a later time
ample, we consider the beam with a normalized velocit)}?Ot all of them arrive at the same velocitynp at the same

7o=2.64x 101 and normalized widthz,,=6.90x 103, time. Consequgntly, the peak height decrgases with time. The
which corresponds to Rtmolecules with the beam velocity second peak gives the highest concentration of reflected mol-

vp=10 m/s and temperatufie= 700 xK in an optical lattice eclulesd at77t_= —7p and thereforery=3.18 is the optimal
formed by optical field of intensity 7.25 GW/émFor this pu E.e rlga4losnﬁo < a more qeneral relation of the optimal
parameter set, the motion of the molecules in the regio 'gu W 9 ! pt

n ) . i X
around the antinodes is quasiharmonic and, therefore, guranon Tdopt and their co_rrespondmg_ peak_ heights
similar to the case discussed in referenias 22. P(= 70, 74,0p) t0 beam velocityyp. On increasing the

The velocity distributions of reflected molecular beam areP€am velocityzp, it shows that the optimal durationy, op

shown in Fig. 8a) for several pulse durations. The normal- increases from half a period of simple harmonic periad
ized velocity distributionp(#,y) is calculated byp(7, 4) but the peak height(—7p ,74,0p) decreases. These results

= IZ T eXF{_ 77;12[ 770(01 7, Td) - 77D]72}/(27T\/Enm) de. The

42 Eonus) LA RAARE RARRE RARRE RALAN B

dotted and solid lines, respectively, correspondrfe- , WE ~——— 110
which is half a period of the simple harmonic motion, and L 8 F 3 \‘\\\ 49 3
74=3.18. Both the distributions are similar to Gaussian cen- Soas po 600 SUEE ERE
tered aty= — 7p and have almost the same width as that of “E g X
the initial distribution. On the contrary, the dashed line for P ST T TN PO UUN PN PO Y- D
4= 0.53 is asymmetric withy, whereas the dot-dashed line 04 06 08 1 12 14 16

for 74=3.22 is double peaked. The peak for=3.18 is the Mo

highest. Figure @) reveals that the velocity distributions £ 4. The dependence of the optimal duratigyy (solid
sensitively depend on the pulse duration and the optimajne) and the velocity distributiom(— 7p , 7q.0p) (dashed lingon
pulse duration occurs aty>. With our analytical results  the beam velocityp,. Due to anharmonicity, the optimal pulse
we can quickly calculate the velocity distribution duration 7, increases with increasing the beam velocify,
p(—mp,74) for different pulse durations to determine an while the velocity density at the velocity 7, P(— 7p , 7q.0p)-
optimal durationry. Figure 3b) gives the dependence of decreases.
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are consistent with the previous findifg1] that anharmo- dé(7) S—
nicity is more profound for higher velocity such that the ar ==NV1-N"Zsin’[{(7)], (A2)
reflectance is decreased. We note, however, even when the

motions of molecules are predominantly anharmonic at,hich has the solution

higher beam velocity, reflection can still be achieved, though

with significantly reduced peak height. This result agrees {(1)=+am N7+ ¢,N~1), (A3)
with the dynamical analysis of reflecting molecules shown in
Fig. 2. where ¢ is a constant. Inserting EGA3) into Eqg. (16), we

obtain the velocity
V. SUMMARY

: . . =*=2Ndn(N7+ ¢,N~? A4
We have obtained a general analytical solution to the col- 7(7) dn(N7+ 4, ), (A4)
lisionless Boltzmann equation describing the distribution Ofwhere dnlN7+ ¢,N"1) is a Jacobian elliptic tangent func-
an ensemble of molecules in an external periodic travelinqion [40,41), + i,s for initial 7(0)>0, and — for initial

field for arbitrary initial conditions. The analytical solution (0)<0. Equation(A4) shows that an untrapped particle
enables us to investigate the relation of the final distributio / : g : i

function to the initial velocity distribution, its bulk velocity rberforms periodic motion whose period is given by
and its initial velocity width, as well as the magnitude of the 5 2

external force. Our results can be used to aid in the design of pumrap:NK(Nfl), (A5)
pulsed standing wave mirrof21,22), coherent Rayleigh
scattering using arbitrary field42—-14, deceleration of mo-
lecular beams with optical lattic¢8], and the measuremen
of molecular polarizability by an optical dipole for¢&2].
As a case study, we have applied our analytical method t§Veen the phase(
study the pulsed standing wave mirror for,Rholecules and Mineéd by

show that the velocity distribution of the reflected molecules

is sensitively dependent on the pulse durations of the optical cn
fields. We have further studied how the optimal pulse dura- .
tion is found as a function of the molecular beam velocity 6(7)—6(0)==iIn

¢ whereK (N 1) is a complete Jacobian elliptic integral of the
first kind [40,4]]. Integrating Eq.(A4), the difference be-
7) and the initial phas&(0) is deter-

1 1
NT+¢,N>_iSF(NT+¢,N)

et

and show that it is, in general, larger than half a period of the cn

simple harmonic motion. Moreover, we show that the reflec-

tance of the pulsed standing wave mirror can be significantly +2mar, (AB)

improved by optimizing the pulse duration when compared

to the simple harmonic model previously considered. with i2=—1, mis equal to the integer part @ybumrap, and
e=2mK(N"1)+ ¢. Equations(A4) and (A6) are solutions

APPENDIX A: DISTRIBUTION FUNCTION of Egs.(11) and(12).
FOR UNTRAPPED MOTION (N>1) Now we begin to perform an inverse procedure to recover

the initial states9(0) and »(0) from 6(7) and n(7). From

Like the analysis of the trapped motion presented aboveEq (Ad), we obtain the initial velocity

we introduce a functiord(7) by
sin £(7)]=sin 6(7)/2]. (A1) 7(0)==2Ndn(¢,N~h. (A7)

Differentiating both sides of EqA1) and by using Eq(16) Using ¢=N7+ ¢— N7 and the addition theory of elliptic
we obtain functions, from Eq(A7), we obtain the initial velocity

|
1\ 1 1 1
NT,N +NS NT+¢,N)S NT,N)CH
(sr(NTJr ¢>,Nl)sr(NT,N1))2
1= N

1 1 1
dn(NT—’_QS!N)dn NT+¢,N>Cn(N7,N)

7(0)=2N

(A8)

We next determine the relation of tikedependent terms in EGA8) with 6(7) and (7). By differentiating both sides of Eq.
(A4) and using Eq(12), we obtain

sif 0(7)]=*2snN7+ ¢, N Hen(N7+ ¢, N~1). (A9)
Using Egs.(A4) and (A9), from Eq. (A8) we obtain the initial velocity
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+N~tsiM6(7)]snN7,N"Hen(N7, N~ 1)

n(r)srrNr,N-l>)2
2N

1
n(7)dn NT,N

7(0)= (A10)

[en(N7,N"1)]2+

Next we investigated(0) using Eq.(A6). Using the addition theory of Jacobian elliptical functions, M) and
sn(e,N~1) are determined by

N’ld N’l N ldN ! N’l
TN n N7, = T+(]5,N n T+¢,NS TN

1
,.( 1) sr<N7-+¢,N>cn N —cn At
sn e, 5| =
N 1[N LsnN7+ ¢ N DHsnNr N 12
and
N . N’l N 1dN ! N’ldN’l
( 1) cn T+¢,N cnf N7 ,N +s T+¢'N n T+¢,N S ’T,N n T,N (Alz)
cnf ¢, —|= s
“N 1-[N"tsnN7+ ¢, N~ snN7' ,N~H)]?
[
where ' = 7~ MPyuap From Eq.(A4), we have APPENDIX B: TIME REQUIRED FOR EACH DYNAMICAL

REFLECTION PROCESS
dn(N7+ ¢, N~ 1) ==+ 5(7)/(2N). (A13)
Using the relation The time rgqui_red for the second process is half a .period
of the oscillation, i..Py,(N)/2=2K(N), whereP,(N) is
SNT+¢,N")=Ny1-dn(N7+ ¢ N~ 1), defined in Eq(22).
we have In Fig. 2, the time needed for molecules to travel frém

to C is two times that fronf to (0,2N), which is the middle
=1\ — 2 2
SAINT+,N" %)= VAN“— 7(7)7/2. (A14) point of the trajectory fromF to C. By setting 6(7)=0,

By further inserting Eq(A14) into Eq. (A9), we obtain n(7)=2N, and 7(0)=»p in Eqg. (26) we obtain that the
. _ . time for molecules to travel fromF to (O,2N) is
cn(NT+¢,N" 7)== sif6(7)]/[[2Nsn(N7+¢,N"7)]. cn Y(7p/(2N),N). The time required for molecules to

(A15) move fromC to D, corresponding to the first process, is the
By inserting Eqs(A11)—(A15) into (A6), we can get?(0), time for moving fromF to D minus that fromF to C, given
and inserting Eq(A10) and Eq.(A6) into Eq.(14), we ob- by 2[K(N)—cn (7p/(2N),N)]. The time for the third
tain f(6(7),n(7),7). process can be obtained in a similar manner.
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