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Fractal dynamics of electric discharges in a thundercloud
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We have investigated the fractal dynamics of intracloud microdischarges responsible for the formation of a
so-called drainage system of electric charge transport inside a cloud volume. Microdischarges are related to the
nonlinear stage of multiflow instability development, which leads to the generation of a small-scale intracloud
electric structure. The latter is modeled by using a two-dimensional lattice of finite-state automata. The results
of numerical simulations show that the developed drainage system belongs to the percolation-cluster family.
We then point out the parameter region relevant to the proposed model, in which the thundercloud exhibits
behavior corresponding to a regime of self-organized criticality. The initial development and statistical prop-
erties of dynamic conductive clusters are investigated, and a kinetic equation is introduced, which permits us
to find state probabilities of electric cells and to estimate macroscopic parameters of the system.
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I. INTRODUCTION

Many systems in nature such as physics, chemistry, b
ogy, and even social sciences reveal some common fea
in their spatiotemporal dynamics, which are now charac
ized by a common definition as fractal dynamics. The imp
tant class of such systems are nonlinear systems with so
and sink of free energy, which are able to generate inte
dynamic structures@1–3#. The examples are neuron sets
biology, convective streams in hydrodynamics, and mu
flow systems in plasma. These systems demonstrate a
organizing and self-tuning critical behavior when a syst
comes to the state with universal management of its inte
structures, which does not depend on the peculiarities o
separate elements@4–6#.

The thunderstorm cloud~TC! seems to be a bright ex
ample of such systems. The source of free energy in a T
updraft convective flow, which forms multiflow streams co
sisting of air molecules, light droplets, ice crystals, a
heavy hail stones. Interaction of these streams with e
other leads to the electrical charging of cloud particles a
generation of an electric field@7#. A lightning flash that in-
cludes leader progression, return strokes, and micro
charges inside of the small-scale cells supply dissipation
sink of free energy in a TC.

Processes in a TC are very diverse and complicated
classical cloud to ground lightning discharge includes th
stages: preliminary breakdown, leader formation, and re
stroke@7,8#. The existing theoretical models of lightning di
charges are based on its similarity with a laboratory lo
spark@9#. It actually relates to the leader formation and r
turn stroke. But there is a very important difference, wh
concerns a preliminary stage of the discharge. In the cas
a laboratory spark, electrical charge is accumulated on a
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ducting wall~s! of a discharge space and flows down eas
into the spark channel. It is not clear what mechanism co
provide the electric charge gathering over all intracloud v
ume ~or over its considerable part! to the leader channel
Apparently, a certain important process which supplies t
gathering takes place during the preliminary breakdo
stage. This stage lasts from tens to hundreds of milliseco
and consists of numerous~up to 10 000! relatively short
~with duration about microseconds! discharges ~pulses!
grouped in trains of various durations. Radio images
trieved with the help of these pulses reveal a strongly fork
intracloud network of microdischarges, resembling the str
ture of fractal clusters. This stage is just discussed in
paper. We suggest a model, which can supply the elec
charge gathering over the entire volume of a cloud and br
this charge to the leader channel. This model is based o
two-scale structure of a TC electric field where there ex
electric cells with sizel;10 m much smaller than the clou
size in addition to the large-scale field. Microdischarg
which are observed during a breakdown preliminary sta
@7,8,10# can be actually considered as indirect evidence
the existence of such small-scale electric cells. There is
physical background for our model based on the bea
plasma instability in a TC@11–13#. This instability predicts
the generation of a short-scale electric structure of si
;1 – 102 m. It is borne in mind that the electrical breakdow
model which is considered in the paper differs principa
from the famous dielectric breakdown model@14# which is
based on the step-by-step solution of the Laplace equa
DU50 ~U is electrical potential! with the self-consistent
moving boundary between infinitely conducting and neut
parts of air. In our case, the Laplace equation is modified
a background air conductivity and by a current of charg
cloud particles. The solution of this modified equation
given ~in linear approximation! by relation ~7!, and it pre-
dicts the generation of small-scale electric cells. Thus,
intracloud discharge is developing in the electric field, whi
is initially strongly inhomogeneous. It is natural to suppo
©2003 The American Physical Society01-1
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in such a situation that discharges appear inside a sep
most intense electric cell and can stimulate discharges in
neighboring cells due to activation processes. In the rea
mosphere, such processes can include local inhomogene
of conductivity or runaway electrons generated by microd
charge inside a neighboring cell. The suitable mathemat
model for analyses of cells’ interaction is a cellular autom
tion model, which is used below in our computer expe
ments. We will show below that this system reveals, in
wide range of TC parameters, the features of universal
namics typical for percolation fractals with self-organiz
criticality ~SOC! behavior. In our case, percolation refers
the process of a TC dynamic metallization on the basis
short-living conducting elements, which appear as a con
quence of electrical microdischarges. Such a metalliza
forms a drainage conducting system, which gathers a ma
scopic electric charge over the entire volume of the clo
and determines the development of a macroscopic lightn
discharge. There are important experimental evidence
such a scenario, which are seen at the preliminary stage
lightning flash. Those are multilayer electric field structur
that are seen in thein situ experiments, and numerous m
crodischarges on the preliminary stage of lightning fla
which are not accompanied by any change in the static e
tric field. Figure 1 is taken from Proctor@15#, which illus-
trates this microdischarge activity inside a TC.

This paper is organized in the following way. Section
contains a brief description of the features of a TC multiflo
instability, which we need for the quantitative formulation
a cellular automation model. This model is described in S
III, and some results of the computer experiment are giv
which demonstrate the universal behavior of the system. S
tion IV is devoted to the analysis of the model in the mea
field approach. The kinetic equation is introduced for t
potential difference distribution function, which permits us
obtain important mean-field characteristics of the process

FIG. 1. Plan projection of flash development detected by a V
mapping system@15#. Letters indicate a sequence of developme
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Sec. V, the properties of a dynamic cluster followed from t
computer experiment are discussed from the viewpoint of
percolation theory, and we summarize the obtained result
Sec. VI.

II. MULTIFLOW INSTABILITY IN A THUNDERCLOUD

It is well known that a thunderstorm cloud in its matu
state consists of different components, which include c
ducting air, charged heavy particles such as large drop
and hail stones, and charged light particles such as s
droplets and ice crystals. The updraft air flow, which is ty
cal for a TC in its mature stage, supplies particle charg
and leads to the appearance of a large-scale electric field
to charge separation on the cloud boundaries. The nume
three-dimensional~3D! cloud model was developed~see
Refs.@16,17# for details!, which permits to obtain the distri
butionN0(r ) of macroscopic electrical charge over the clo
and valueE0(r ) of the macroscopic electric field. A lightning
initiation arises in the point, where the magnitude of t
electric field is close to the breakdown value. The devel
ment of lightning discharge in such a formulation was co
sidered by Mansell, MacGorman, and Straka@18# on the ba-
sis of improved dielectric breakdown model~DBM!,
suggested by Niemeyer, Pietronero, and Wiestmann@14# and
Wiesmann and Zeller@19#. This model, however, does no
take into account the important peculiarity of a TC, which
connected with a multiflow character of the TC medium. T
experience with similar multiflow plasma systems shows t
there exists a plasma-beam instability, which leads to
generation of electrostatic waves, drifting together with t
flow. Trakhtengerts@11,12# and Mareev, Sorokin, and Trakh
engerts@13# considered this instability as applied to a TC
These waves organize the small-scale electric structure
side a cloud. To illustrate the effect of electric cell generat
we consider a simple TC model, which includes two charg
components: heavy particles~droplets and hailstones! sus-
pended in the updraft air flow and filling mainly the lowe
half of the cloud, and the fraction of light particles~air ions,
small droplets, and ice crystals! that are carried to the uppe
part of the cloud.

The initial system of equations includes the equation
motion for charged heavy and light particles,

]va

]t
1~va•“ !va52~q/M !“U1g2Ff r /M ,

]v

]t
1~v•“ !v52~e/m!“U1g2ynv1FD /M , ~1!

the continuity equations for species, including the continu
equations for the space charger and the electric currentj :

]r

]t
1div j50, ~2!

where

r5en1qN, j5env1qNva , ~3!

F
.

1-2
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and the Poisson equation for the electric potentialU,

¹2U524pr. ~4!

In system~1!, va is the velocity,q andM are the charge and
mass of heavy particles,g is acceleration due to the gravity
and Ff r is the friction force in the updraft air flow; accord
ingly, v is the velocity ande andm are the charge and mas
of light particles,FD is the force creating the updraft air flow
In relation ~3!, n andN are the densities of light and heav
particles accordingly.

We shall analyze the initial stage of electric cell gene
tion, when variations of the concentration and the velocity
heavy and light particles are small, that is,

Ñ/N0!1, uñu/n0!1, uṽu/v0!1, uṽau/v0!1, ~5!

whereN0 ,n0 are the stationary concentrations of heavy a
light charged particles, which follow, for example, from 3
calculations@16–18#, v0 is updraft velocity,ṽ5v2v0 and
ṽa are the velocity variations of heavy and light charg
particles accordingly. In this approach, from the initial sy
tem of equations~1!–~4!, we obtain the Poisson equation fo
the electrical potential with the self-consistent space cha
that is not taken into account in the traditional DBM:

F ]

]t
1~v0•“ !14psG¹2U54pqF ]

]t
1~v0•“ !GÑ,

]

]t S ]

]t
1y D Ñ5~N0q/M !¹2U, ~6!

where s is air conductivity ~without charged heavy par
ticles!, y is the effective collision frequency that is equal
y5g/v0 for suspended particles. If we are interested in sp
taneous generation of electric cells with scale much less
the cloud scale, the boundary conditions are not importan
frame of Eq.~6!, the electric cell generation manifests itse
as the instability that leads to the exponential growth
small variations ofU. The wave potentialU and the variation
Ñ during the linear stage of the instability development c
be presented in the formU, Ñ;exp(2ivt1ik•r ), wherer
and t are the spatial coordinate and time, respectively. S
stituting this presentation into Eq.~6!, we obtain the follow-
ing dispersion relation between the wave vectork of the
electric wave and its frequencyv @11,12#:

12
V2

v~v1 i y!
1

4p is

v2k•v0
50, ~7!

whereV254pq2Ñ/M is the square of the ‘‘heavy particl
gas’’ plasma frequency. The instability threshold is given
the condition (V/y)2>1 and the instability growth rate
is derived asg.2ps(V/y) for the optimal spatial period
a;p/k.pv0 /V. For particle radius ;0.5 cm and
N;103 m23, the instability threshold is achieved fo
q;10210 C. Putting v0;10 m/s and V;2y, we find
y;1 s21, a;10 m, andg;4ps s21. Our further research
@13# with taking into account charge exchange between p
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ticles has shown this instability to be universal in a wi
range of the cloud parameters. At the nonlinear stage
small-scale electric field amplitude is determined by a b
ance between the electric force and the force of gravity a
ing on a large particle:E;Mg/q;106 V/m. Therefore, the
amplitude of the small-scale electric field can be much lar
than the mean magnitude of a large-scale intracloud field.
assume that the amplitude growth of the small-scale fiel
limited at some critical value beyond which a spark d
charge between the electric-wave maxima and minima is
veloped. These breakdowns limit the instability developm
and determine the microdischarge activity on the lightn
preliminary stage.

III. MODEL

We suggest that the evolution of a small-scale elec
structure during the preliminary stage of a lightning d
charge is determined by competition between the gro
process caused by the beam-instability development and
neutralization process related to the appearance of sm
scale breakdowns in the intracloud medium. Below, we a
lyze the details of this interaction using the modeling bas
on a finite-automata lattice. For clarity, we simulate t
small-scale structure of a cloud by the square-lattice e
ments~see Fig. 2!. The lattice step corresponds to the size
a cell of the small-scale electric structure and amounts
about 10 m. With allowance for the fact that the maximu
spatial scale of the system is determined by the size of
active part of the TC, which is about a few kilometers, w
find that the linear size of the model lattice should be ab
a few hundred of the spatial period. Each site of the lattice
related to a time-dependent scalarUi j characterizing the
electric potential. In our model, the potential differences b
tween the neighboring sites are growing due to the instab
effects, as discussed in the preceding section, but the q
tion is what law describes this growth. The fact of the mat
that the scale of a TC is very large in comparison with t
cell’s scale and the conditions for the instability developm
could be occasional in different parts of a cloud. This pro
lem is needed in a special consideration, which is beyond
scope of this paper. We consider below the simplest rand
growth model, in which random values with a normal dist
bution are added to the electric potentialsUi j at the lattice
sites at each step of the model time. In this case, each

FIG. 2. Square-lattice model. Each site of the lattice is related
a time-dependent electric potentialUi j .
1-3
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independently of its neighbors, undergoes Brownian mot
in the space of electric-potential values. The potential diff
encesDU between the neighboring sites is described by
relation

d~DU !

dt
5h~ t !, ~8!

where the stochastic forceh(t) is a white noise with constan
dispersion:

^h~ t !&50, ^h2~ t !&5D. ~9!

The brackets in Eqs.~8! and~9! mean the averaging. In thi
case, the energy of the electric field is growing linearly
time:

^U2~ t !&5Dt. ~10!

The potential difference growth is limited by some critic
value Uc . As soon as this critical value is reached for a
two neighboring sites on the lattice, breakdown between
sites takes place and the lattice bond between the sites
comes a conductor. Its conductivity exponentially disappe
for a few model-time steps and corresponding potential
ference levels down. We assume that such a fine scale s
discharge can initiate breakdowns of the neighboring lat
bonds~‘‘infect’’ the neighbors!. It occurs if the potential dif-
ference between them exceeds some activation levelUa ,
which is less than the critical one. Here it is appropriate
mention analogy with the experiments@20# on the laser-beam
initiation of a spark discharge, in which the breakdown fie
is decreased several times under the action of the radia
After a breakdown, the corresponding lattice bond return
the deactivated state with zero potential difference.

So, each bond of the lattice can be in one of the th
different states: the bond can be an insulator with volta
drop absolute value that is less than the activation le
Ua—passive bond; the bond can be an insulator with volt
drop absolute value that exceeds the activation levelUa and
is less than the critical valueUc—activated bond; the bond
can be a conductor with voltage drop absolute value
exceeds the critical valueUc—metallized bond. The lattice is
updated simultaneously according to the following alg
rithm.

~a! An activated bond becomes a metallized one if at le
one of its nearest neighbor sites is metallized.

~b! A metallized bond becomes a passive one in the s
ceeding model-time step. The corresponding voltage d
goes down to zero.

~c! The potential difference random growth ensures tr
sitions from the activated bonds to metallized ones and
tween passive and activated bonds. Open boundary co
tions are assumed.

Figure 3 shows the typical potential relief realized in t
numerical experiment. The behavior of the potential diff
ence on a single-lattice bond of the network as a function
the model time is shown in Fig. 4. The cloud electrificati
and the growth in the small-scale potential relief determ
the slow evolution of the intracloud medium which, in tur
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is the background for fast relaxation processes caused by
small-scale discharges. The model parameters are ch
such that a relatively fast dissipation and a slow growth
the potential are ensured. The time step of the automata’s
corresponds to the characteristic time of the excitation tra
fer to its nearest neighbors. In this case, the variation in
potential difference between the neighboring sites durin
single step of the model time is smaller thanUc by a few
orders of magnitude. Taking into account that the cell size
about 10 m and assuming that the excitation is transfe
with a streamer velocity of about 107 m/s, we can estimate
the model-time step to have a value of about 1ms. The
duration of the preliminary stage of a lightning discharg
lasting from about tens to hundreds of milliseconds, de
mines the total duration of the model calculation, whi
therefore should comprise tens to hundreds of thousan
steps.

Let us turn to the results of our numerical experime
Figure 5 shows the evolution of the specific number

FIG. 3. Potential relief realized on a 50350 square lattice.

FIG. 4. Time evolution of the potential difference on a sing
lattice bond of the network. Arrows indicate the moments wh
breakdown takes place and the lattice bond becomes a conduc
1-4
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activated-lattice bonds. The vertical lines in this figure ma
the time instants of the appearance of the critical latt
bonds initiating metallization. It is easy to see that the
pearance of critical lattice bonds is an extremely rare ev
compared to the total number of the small-scale dischar
Moreover, it is seen that the specific value of the activat
lattice bonds fluctuates near the levelp5pc.0.5. This criti-
cal level is determined by the combined operation of
external drive~potential relief growth! and the internal relax-
ation of the threshold dynamics~equalization of the poten
tials of neighboring cells between which a breakdown
curs!. The appearance of new activated-lattice bonds
balanced by their disappearance due to metallization.
can say that the medium is populated by activated eleme

The corresponding temporal evolution of the intraclou
discharge number is presented in Fig. 6. In the case of a
temporal resolution, the events at large times look liked
spikes@see Fig. 6~a!# whose frequency is inversely propo
tional to the amplitude. On the contrary, if a high tempo
resolution is used at short time intervals, the fine structure
individual intracloud discharges can be seen, as determ
by the metallization of a distinct cluster of activated-latti
bonds@see Figs. 6~b,c!#. A cluster of activated-lattice bond
is such an aggregate of the activated network elements
any two of these elements can be connected by a contin
chain of the activated-lattice bonds belonging to the agg
gate. Of principal importance here is the fact that activat
lattice bond clusters appear to be fractal structures. A sn
shot of the process of metallization of an activated-latt
bond cluster is shown in Fig. 7. The white points in th
figure correspond to the ionization front, i.e., the local bre
downs during a given step of the model time. The frac
dimension of metallized clusters calculated with allowan
for the simulation results is equal todf.1.9, which is almost
equal to the dimensions of a two-dimensional percolat
cluster, as will be seen in Sec. V.

It is not evident that a temporally and spatially homog

FIG. 5. Time evolution of activated lattice bonds’ specific nu
ber ~heavy line! and evolution of extreme cells’ number~d-shaped
splashes of simple length!.
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neous pumping, i.e., the randomly homogeneous growth
the potential relief, results in the formation of inhomog
neous fractal dissipative structures. Such a clustered diss
tion in a cloud is caused by the fact that the inverse grow
rate of the small-scale potential relief is a few orders of m
nitude greater compared to the time of the excitation tran
from the broken-down element to its nearest neighbors
this case, even the largest cluster of activated-lattice bo
‘‘degrades’’ faster than the time, when new activated netw
elements appear among its nearest neighbors. We emph
the principal importance of such a drastic difference in
time scales in the system considered, which, together w
the threshold form of the fast dissipative processes, is ge
ally typical of strong nonequilibrium systems manifestin
critical behavior. In Sec. IV, we will see that a big differenc
in the characteristic time scales characterizing pumping
dissipation is a necessary condition for the spatiotemp
self-similarity of dissipative structures. If this condition
not realized, the system dynamics changes drastically.
deed, if an activated-lattice bond cluster did not degrade u

FIG. 6. Intracloud-discharge number temporal evolution.~a!–~c!
the scale interval of the horizontal axis varies from 10 000 mo
time steps in the upper plot to 20 steps in the lower one.
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new activated network elements grew among its nea
neighbors, then the metallization process would never ter
nate even in the absence of new spontaneous spikes. In
case, repeated ionization fronts of quasiregular spiral fo
would propagate over the system~see Fig. 8!. Note that the
characteristic scale of the spirals and the typical dista
between them are inversely proportional to the growth rate
the small-scale relief.

To obtain the realizations shown in Figs. 6 and 7, we u
a ratio of the activation levelUa to the critical potential
difference Uc of about 10%~the valueUa50.1Uc corre-

FIG. 7. Metallization process. Gray pixels indicate the area
breakdown spreading; white points correspond to the ioniza
front.

FIG. 8. Formation of quasiregular spiral waves in the network
finite-state automata upon violation of the condition that the ti
scales of pumping and dissipation are drastically different: snap
of the system on a 2003200 square lattice.
01660
st
i-
his
m

e
f

d

sponds to the experimental results on the laser initiation
spark discharge!. A smooth increase inUa /Uc leads to a
rapid shrinking of the metallized regions, though their d
namics do not show any serious qualitative changes. H
ever, a decrease of the ratioUa /Uc at a fixed growth rate of
the potential relief leads to disrupting the critical dynam
and establishing the regime of relaxation autooscillations
which the entire network behaves as a single lump
parameter element. Such a synchronization of the autom
is caused by the fact that all these automata overcame
activation level before the first spontaneous breakdown.
reestablishment of the critical dynamics under the fix
Ua /Uc requires an even smaller value of the potential-re
growth rate. Let us turn again to the sequence of metall
tion spikes shown in Fig. 6 and analyze the statistics of
events. The bilogarithmic plot of the occurrence frequency
metallized clusters comprisingN elements as a function o
the element numberN is presented in Fig. 9. Evidently, thi
dependence is a power law, which reveals the self-simila
of the space-time dynamics. It is impossible to point out
typical cluster size or typical frequency of their appearan
in a wide range of their values. The scaling regime is limite
on the one hand, by the system size and the computing
and, on the other hand, by the size of the one-element c
ters and the appearance frequency of such unit clusters.
characteristic time between frequent small events~the ap-
pearance of clusters consisting of no more than ten eleme!
is about a few hundred of model-time steps.

It is interesting that the scaling properties of the meta
zation process of a single activated cluster were also
served at a higher resolution at short-term intervals from
to a few hundred of model-time steps. For example, we c
culated the average length of the plotN(t), the number of
lattice bonds metallized at a specified step, as a function
the averaging interval and find that this value grows fas
than a linear function, i.e.,N(t) is a fractal of dimension
D f51.28 ~see Fig. 10!. Using the well-known definitionD f
522H, where H is the Hurst exponent of a generalize
Brownian process@6#, we arrive at the following asymptotic
relation confirmed by the numerical experiment:

f
n

f
e
ot

FIG. 9. Occurrence frequency of the metallized clusters a
function of their sizes in log-log scale. The slope of the spectrum
equal to21.
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N~ t !;t0.72. ~11!

In Sec. V, we compare obtained results with the regulari
which follow from the percolation theory.

IV. MEAN-FIELD APPROXIMATION

In this section, we intend to point out the general crite
for the appearance of critical dynamics. For example,
numerical experiment revealed the existence of a crit
population level such that fluctuations near it have sca
properties. Moreover, the experiment revealed the dep
dence of this level on the number of nearest neighbors f
given automata lattice, i.e., on the lattice coordination nu
berz. The more the elements contact the ‘‘infected’’ one, t
higher is the probability of the ‘‘infection’’ spreading and
therefore, the lower is the critical population level. The c
ordination number increases with increasing lattice dim
sion. In the limit of large coordination numbers, the mea
field approach can be applied to calculate the criti
population level. The mean-field approach is interesting
the estimation of other mean characteristics of our sys
such as the number of passive~nonactivated! and critical
~metallized! cells as well for the definition of parameter
where the system reveals features of SOC behavior. Le
introduce the distribution functionf (U) of lattice bonds over
the magnitude of potential difference on them. The quan
f (U)dU determines the fraction of lattice bonds with a p
tential difference magnitude in the interval fromU to U
1dU, and it is evident that*0

` f (U)dU51. The specific

FIG. 10. Dependence of the length of the plotN(t) on the time
interval, obtained numerically. The slope of the bilogarithmic p
of the obtained dependence determines the fractal dimensionD f

.1.28 of the plot.
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fraction of the activated-lattice bonds is given by

p5E
Ua

Uc
f ~U !dU ~12!

and plays the role of a specific critical parameter of the s
tem. Taking into account the random-growth model~8!–~10!
and the character of neighboring cell’s interaction, it is po
sible to write the kinetic equation for the distribution fun
tion f in the form

] f

]t
5D

]2f

]U2 1I 2y f , ~13!

whereD is the absolute value of potential difference, and t
last two terms on the right hand side characterize the so
and the sink, which are equal to

I 5H y0md~U !, u<Ua

0, Ua<U<Uc

y0zp f, Uc<U

~14!

and

y5H 0, u<Ua

y0mz, Ua<U<Uc

y0 , Uc<U,

~15!

wherem5*Uc

` f (U)dU is the number of metallized bonds,z

is the lattice coordination number,d(U) is the Dirac delta
function,p is determined by Eq.~12!, andy0

21 is the model-
time step~duration of a bond breakdown!. The three regions
of U we use in Eqs.~14! and ~15! correspond to the three
types of bonds we consider. For example, the termy0mz in
Eq. ~15! describes the loss density of activated bonds due
the breakdown spreading from one of themzneighbor met-
allized bonds. The number of passive cells is equal to

q5E
0

Ua
f ~U !dU. ~16!

Because all lattice bonds of the model fall into one of thr
complementary categories, the densities must add up
unity. That is,

p~ t !1q~ t !1m~ t !51. ~17!

It is easy to find the stationary solution of Eq.~13! by requir-
ing the continuity of f and ] f /]t and putting f→0 at U
→`. Using the dimensionless variabley5U/Ua , we obtain

t

f 5H mt~12y!1~mt/z!1/2~11a!/~12a! if 0<y<1,

Amt/z$exp@2Amtz~y21!#1a exp@Amtz~y21!#%/~12a! if 1<y<yc ,

2Amt/z exp@2Amtz~yc21!#3exp@At~12pz!~yc2y!#/@~12a!A11~12pz/mz!# if yc<y<`,

~18!
1-7
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wheret5Ua
2y0 /D, m5*yc

` f dy is the number of metallized

cells, yc5Uc /Ua , and parametera is equal to

a5
Amz2A12pz

Amz1A11pz
exp@22Amtz~yc21!#. ~19!

Integrating Eq.~18! we find p,

p5
1

z H 12
2A12pzexp@2Amtz~yc21!#

~12a!~Amz1A12pz!
J . ~20!

The number of nonactivated cells is determined by the
lowing relation:

q[E
yc

`

f dy5mt/21
11a

12a
Amt/z. ~21!

Relations~20! and ~21! together with condition~17! give us
the particular values ofq, p, mas functions of the paramete
z, t, andyc . Function~18! together with the analysis of th
nonstationary problem of Eq.~13! permits us to investigate
all possible solutions which take place for different values
z, t and yc , including the solutions which were obtained
our computer experiments~Figs. 7 and 8!. We restrict our-
selves to the analysis of only the case when our system
veals the fractal and self-tuned behavior. As it follows fro
the computer experiment, such a behavior takes place w
t@1 andp@m. According to relations~18!–~21!, both in-
equalities are fulfilled under the following condition:

Amtz~yc21!@1. ~22!

Just in this case the system reveals SOC dynamics and
cording to Eq.~20! is determined only by the coordinatio
number
as
e

io

01660
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p'z21. ~23!

Relations~17!, ~21!, and~23! give us the value ofm:

2~z2A2z21!/tz. ~24!

Now inequality~22! can be written in the form

d[~2z22A2z21!1/2@
1

yc21
. ~25!

In our computer experiments,z53, yc510, and d51.2
@(yc21)2150.11, so that inequality~22! is fulfilled. The
distribution function~18! in the limit of Eq.~22! is simplified
with the exponential accuracy to the following form:

FIG. 11. Comparison between mean-field theory and simulatio
f 55
d

z
@d~12y!1d# if 0<y<1,

d

z
exp@2d~y21!#$11exp@22d~yc2y!#% if 1<y<yc

2
d

z
exp@2d~yc!2D~y2yc!# if y>yc ,

, ~26!
atch

e,

ich
on
re
of
whereD52d
t exp@2d(yc21)#. Function~26! is illustrated in

Fig. 11 by a thin line forz53 (d51.2), yc510, and t
525. Here the distribution function is shown as well
squares in the figure, which is obtained in the computer
periment for the same values ofz, yc , andt525. One can
see a rather good coincidence in the main part of distribut
but the difference grows at the tail of distribution fory
.yc . In particular, it follows from the theoretical model~26!
that the number of critical cellsm.231022; at the same
time, the computer experiment givesm.1024. The reason
x-

n,

of such a discrepancy is apparently the same as the mism
in the values of the critical parameterpc , which is deter-
mined in the mean-field approach by relation~23!, pc
.z21, and considerably differs from the computed valu
^p&'0.44, close to the percolation threshold~Fig. 5!. This
cause is in strong fluctuations of a connection number, wh
exists in the systems with low values for the coordinati
parameterz. The similar situation appears in SOC forest-fi
models@16#. Indeed, we should take some effective value
zeff,z, which is close toz for z@1. In particular, a much
1-8
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better agreement of the mean-field approach with the c
puter experiment takes place forzeff51/̂ p&'2.3. The distri-
bution function for this case is shown in Fig. 11 by a thi
line.

V. PERCOLATION STRUCTURE OF METALLIZED
CLUSTERS

Now we compare the properties of our dynamical frac
obtained from the computer experiment, with the we
known percolation fractal@6,21,22#. Actually we have three
parameters for such a comparison: the averaged numb
activated cellsp, the fractal dimensiondf of dynamic acti-
vated cluster, and the Hurst numberH. It is borne in mind
that we are dealing with a dynamic fractal, while the perc
lation is usually considered as a geometrical phase transi
So, let us discuss the percolation process with this poin
view. When our system comes to a stationary~on average!
state, the clusters are generated in time as a dynamic p
erty of the system. In this case an ensemble of realizati
which is needed to get the averaged characteristics of a
tal, is obtained actually as a temporal consequence. The
rect estimation of fractal critical parameters demands a
ficiently long temporal realization. Here the situatio
reminds ergodic processes, when the average over an
semble is equal to the average over time. So, we can ob
the critical parameters of our system, using the time ave
ing, as it has been done in Sec. III. Acting so, we obtain
the number of activated cells, which characterizes in our c
the phase transition from the dielectric state to the elec
cally conducting state of a TC medium. According to o
computer experiment, this value is equal to^p&'0.44 ~see
the realization in Fig. 5!, which is close to the percolatio
threshold pc50.5 for bonds in a 2D case. Similarly, w
found the fractal dimensiondf , using the averaging over th
temporal series of activated clusters. It turns out to be eq
to the fractal dimension of two-dimensional percolation clu
ter df

p51.89@6#. The important indication of SOC systems
the power spectrum of occurrence frequency of the clus
as a function of their sizes with the power exponenta5
21. The close dependence is revealed in our experiment
shown in Fig. 9.

To obtain additional information on the structure of
cluster, formed in the course of the metallization, let us
mind some properties of a fractal as geometrical object.
consider the shortest path~so-called chemical distance! be-
tween two points of the cluster along the cells, belonging
this cluster. According to the fractal theory, the cluster m
M ~the number of the cluster’s cells! is changing as

M ~ l !} l d1, ~27!

where l is the chemical distance length, and the chemi
dimensiondI51.72 for the percolation cluster. The relatio
can be rewritten as

N~ l !}dM/dl} l H, ~28!

where the Hurst exponentH50.72 characterizes our fracta
formation as a generalized Brownian process@6#. In our case
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l;t, and we can see that the Hurst exponent in relation~11!
coincides with the power exponent in Eq.~28! following
from the percolation theory@6,22,23#. So we can agree quite
certainly that we are dealing with the percolation dynam
fractal.

VI. THE INITIAL PROBLEM

The important question is the process of switching on o
drainage system, especially in application to a lightni
flash. The preliminary stage of a lightning discharge in t
form of numerous electrical microdischarges laststp
;10– 300 ms@24# up to the appearance of a leader. At t
same time, the growth rate of electric cellsg;0.1 s corre-
sponds to the time scaleg21@tp . However, it is borne in
mind that the preliminary stage in our model is associa
with the development of a conducting percolation clust
which is switched on by explosive manner~similar to the
phase transition!. Figure 12 demonstrates the tempor
growth of conducted cells’ number. We can see that a dra
age system as a long chain of conducting cells is switched
for a timetp!g21. In real situation, one needs to take in
account the real value of an ionization front velocity inside
cloud. According to Proctor’s data@10#, this velocity v i
;102– 103 km/s ~the velocity of intracloud streamer!. For a
cloud sizeL;10 km, it givestp min;10– 102 ms. The fur-
ther behavior of a conducting percolation cluster is det
mined by a large-scale electric field, but this question is
yond our present consideration.

It is easy to understand the results in Fig. 12, coming fr
the mean-field approach~Sec. IV!. It follows from the con-
tinuity condition for the distribution functionf undery5yc
that the number of conducting cells is equal to

n52D
] f ~ t !

]y U
y5yc

~12zp!21. ~29!

One can see from Eqs.~26! and ~29! that whenzpÞ1, n is
exponentially small, andn→`, when p;pc;z21. It says
about the explosive behavior ofn(t).

FIG. 12. Temporal growth of the conducted cell number in co
parison with the evolution of the activated bond relative numbe
1-9
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VII. CONCLUSION

In this paper, we have studied the electric-discharge
namics inside a TC as a universal approach to the descrip
of nonequilibrium systems with a developed small-scale
ternal structure. The global behavior of such systems
weakly dependent on the processes inside individual c
and is determined mainly by the regularities of cell intera
tion. The most important feature of these systems is fra
dynamics with transition to the self-organized criticality sta
near the percolation threshold. In a general formulation
model reminds the popular forest-fire models, which dem
strate the features of SOC behavior as well@23#. But this
similarity is more as outward. In essence, our initial syst
describes a wide type of distributed nonlinear systems wi
hard excitation, when appearance of local excitation
creases sharply the excitation threshold in neighboring c
A similar situation can be, for example, in the case of u
stable plasma systems, when the instability threshold is
termined by an electron-ion collision frequency, which d
creases with a temperature growth. So, the instab
threshold decreases in neighboring cells due to the lo
heating.

Another point in our consideration is introducing the co
sideration of a kinetic equation for a cell state probabil
which permits us to obtain in a self-consistent approach
mean characteristics of fractal dynamics.

At the same time, we have demonstrated the impor
physical background for application of the suggested mo
to the description of electric-discharge dynamics inside a
The principal result of our consideration is the agreem
that a TC as an electrically conducting medium reache
percolation threshold and contains in its mature state a
jority of dynamical conducting clusters. These clusters fo
a so-called drainage system for transport and gathering
macroscopic electrical charge inside a cloud and can serv
a real basis for explanation of the preliminary stage of lig
ning discharge.

It is possible to point some particular evidences in pro
of this announcement. According to Ref.@24#, preliminary
stage of a lightning flash starts often in form of numero
discharges without any visible dc field change. It cor
sponds to a high level activity of small-scale discharges i
big volume of a cloud. The experiment@10,24# gives the
appearance frequency of these microdischarges a
105 s21. In our model, this frequency is determined in o
model by the relationship
ca
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F.g
V

a3 p, ~30!

whereg describes the growth rate of the electric field in
cell, V is the volume of the active part of the TC, in which
instability is developed, andp is the fraction of the activated
cells. During the stage considered, when the activated-clu
length is comparable to the cloud size,p;pc , where pc
50.25 corresponds to the percolation threshold in the thr
dimensional case. AssumingV;1010 m3, g;0.1 s21, and
a;10 m, we obtainF;2.53105 s21, which agrees well
with the experiments@7,8,19#. The important question is
about the scalea of the electric cells. In Proctor’s experi
ments, the sizea corresponds to the scale of elementary d
charge. Basing on the achieved spatial resolution@10#, it is
possible to say thata,60 m. Our investigations of Eq.~7!
for the real parameters of TC~charge and size of cloud par
ticles, background conductivity, updraft flow velocity! give
a;1 – 102 m, which is in good qualitative agreement wit
the experiment@10#. Measurements@8,10# show that separate
pulses with duration;1 ms are united in groups, which in
clude tens and hundreds of individual microdischarges. In
ferometric measurements@10,24# show that these bursts ar
equivalent to spatial trains that extend up to some kilome
with the velocity 23107– 23108 m/s. We can associat
these trains with separate clusters which appear in our mo
Near the percolation threshold, a cluster length runs up
cloud size. If a microdischarge corresponds to the spark
charge with characteristic lengtha, we can estimate a tip
velocity asv t;a/t;107 m/s, wheret;1 ms is an elemen-
tary discharge duration. This estimation is not in contrad
tion with experiment data. Precise measurements of a
electric structure in TC with spatial resolution better than
m and 3D computer simulations are needed to get more
phisticated quantitative results. We hope our model w
stimulate these investigations.
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