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Fractal dynamics of electric discharges in a thundercloud
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We have investigated the fractal dynamics of intracloud microdischarges responsible for the formation of a
so-called drainage system of electric charge transport inside a cloud volume. Microdischarges are related to the
nonlinear stage of multiflow instability development, which leads to the generation of a small-scale intracloud
electric structure. The latter is modeled by using a two-dimensional lattice of finite-state automata. The results
of numerical simulations show that the developed drainage system belongs to the percolation-cluster family.
We then point out the parameter region relevant to the proposed model, in which the thundercloud exhibits
behavior corresponding to a regime of self-organized criticality. The initial development and statistical prop-
erties of dynamic conductive clusters are investigated, and a kinetic equation is introduced, which permits us
to find state probabilities of electric cells and to estimate macroscopic parameters of the system.
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[. INTRODUCTION ducting walls) of a discharge space and flows down easily
into the spark channel. It is not clear what mechanism could
Many systems in nature such as physics, chemistry, biolprovide the electric charge gathering over all intracloud vol-
ogy, and even social sciences reveal some common featurase (or over its considerable parto the leader channel.
in their spatiotemporal dynamics, which are now characterApparently, a certain important process which supplies this
ized by a common definition as fractal dynamics. The impor-gathering takes place during the preliminary breakdown
tant class of such systems are nonlinear systems with sourstage. This stage lasts from tens to hundreds of milliseconds,
and sink of free energy, which are able to generate internand consists of numerou@p to 10000 relatively short
dynamic structure§l—3]. The examples are neuron sets in (with duration about microsecondsdischarges (pulse$
biology, convective streams in hydrodynamics, and multi-grouped in trains of various durations. Radio images re-
flow systems in plasma. These systems demonstrate a setfieved with the help of these pulses reveal a strongly forked
organizing and self-tuning critical behavior when a systemntracloud network of microdischarges, resembling the struc-
comes to the state with universal management of its interndlre of fractal clusters. This stage is just discussed in our
structures, which does not depend on the peculiarities of itpaper. We suggest a model, which can supply the electric
separate elemenfd —6|. charge gathering over the entire volume of a cloud and bring
The thunderstorm cloudTC) seems to be a bright ex- this charge to the leader channel. This model is based on a
ample of such systems. The source of free energy in a TC isvo-scale structure of a TC electric field where there exist
updraft convective flow, which forms multiflow streams con- electric cells with sizé ~10 m much smaller than the cloud
sisting of air molecules, light droplets, ice crystals, andsize in addition to the large-scale field. Microdischarges
heavy hail stones. Interaction of these streams with eactvhich are observed during a breakdown preliminary stage
other leads to the electrical charging of cloud particles and7,8,10 can be actually considered as indirect evidence of
generation of an electric fielgZ]. A lightning flash that in-  the existence of such small-scale electric cells. There is the
cludes leader progression, return strokes, and microdighysical background for our model based on the beam-
charges inside of the small-scale cells supply dissipation andlasma instability in a T§11-13. This instability predicts
sink of free energy in a TC. the generation of a short-scale electric structure of sizes
Processes in a TC are very diverse and complicated. A-1—1F m. It is borne in mind that the electrical breakdown
classical cloud to ground lightning discharge includes threenodel which is considered in the paper differs principally
stages: preliminary breakdown, leader formation, and returfrom the famous dielectric breakdown mod&#]| which is
stroke[7,8]. The existing theoretical models of lightning dis- based on the step-by-step solution of the Laplace equation
charges are based on its similarity with a laboratory longAU=0 (U is electrical potential with the self-consistent
spark[9]. It actually relates to the leader formation and re-moving boundary between infinitely conducting and neutral
turn stroke. But there is a very important difference, whichparts of air. In our case, the Laplace equation is modified by
concerns a preliminary stage of the discharge. In the case af background air conductivity and by a current of charged
a laboratory spark, electrical charge is accumulated on a comloud particles. The solution of this modified equation is
given (in linear approximationby relation (7), and it pre-
dicts the generation of small-scale electric cells. Thus, an
*FAX: +81-424-43-5783; electronic address: intracloud discharge is developing in the electric field, which
hayakawa@whistler.ee.uec.ac.jp is initially strongly inhomogeneous. It is natural to suppose
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-1 T T ' T T T Sec. V, the properties of a dynamic cluster followed from the
(@) computer experiment are discussed from the viewpoint of the
2k i percolation theory, and we summarize the obtained results in
Sec. VI.
3 T [l. MULTIFLOW INSTABILITY IN A THUNDERCLOUD
It is well known that a thunderstorm cloud in its mature
T 4 ’ state consists of different components, which include con-
X ducting air, charged heavy particles such as large droplets
> sk J and hail stones, and charged light particles such as small
droplets and ice crystals. The updraft air flow, which is typi-
s cal for a TC in its mature stage, supplies particle charging

'S{ - and leads to the appearance of a large-scale electric field due
R ) to charge separation on the cloud boundaries. The numerical
7k i three-dimensional3D) cloud model was developetsee
Refs.[16,17] for detail9, which permits to obtain the distri-
g h butionNg(r) of macroscopic electrical charge over the cloud
4 0 1 2 3 4 5 5 and valueE(r) of the macroscopic electric field. A lightning
x(km) initiation arises in the point, where the magnitude of the

o electric field is close to the breakdown value. The develop-
FIG. 1. Plan projection of flash development detected by a VHF,

: Jes ment of lightning discharge in such a formulation was con-
mapping systenil5]. Letters indicate a sequence of development. sidered by Mansell, MacGorman, and Str4k8] on the ba-

. L . o §is of improved dielectric breakdown mod€DBM),
in such a situation that discharges appear inside a Separasﬁggested by Niemeyer, Pietronero, and Wiestnjadhand

most intense electric cell and can stimulate discharges in th\?/iesmann and Zellef19]. This model, however, does not

neighboring cells due to activation processes. In the real a.E'ake into account the important peculiarity of a TC, which is

mosphere,. S.UCh processes can include local inhomogene_inggnnected with a multifliow character of the TC medium. The
of conductivity or runaway electrons generated by microdis; xperience with similar multiflow plasma systems shows that

charge inside a neighboring cell. The suitable mathematice{ ere exists a plasma-beam instability, which leads to the

[S)%d?rll;%;f‘n@%iﬁsigflf:e”j L)n;ﬁ)rv?lcflnor(')lﬁ iocﬂlljﬂflerra:;gg?:generation of electrostatic waves, drifting together with the

ments. We will show below that this svstem reveals. in aflow. Trakhtengert§11,12 and Mareev, Sorokin, and Trakht-
A Y S engerts[13] considered this instability as applied to a TC.
wide range of TC parameters, the features of universal dy=

namics tvpical for percolation fractals with self-or anizedThese waves organize the small-scale electric structure in-
imics typ per 1019 side a cloud. To illustrate the effect of electric cell generation
criticality (SOQ behavior. In our case, percolation refers to

. L is olve consider a simple TC model, which includes two charged
the process of a TC dynamic metallization on the basis o : : :
components: heavy particlgglroplets and hailstongsus-

short-living conducting elements, which appear as a CONSEended in the updraft air flow and filling mainly the lower

quence of Qlectrlcal m|cr_od|scharges. S.UCh a metalhzanoﬁalf of the cloud, and the fraction of light particléasir ions,
forms a drainage conducting system, which gathers a macro-

scopic electric charge over the entire volume of the cloud’ zr?lgs,[ﬁgliltzhgnd ice crystalhat are carried to the upper
a_nd determines the deyelopment of a facroscoplic Ilghtnt The initial system of equations includes the equation of
discharge. There are important experimental evidences of .. : .
. . . motion for charged heavy and light particles,

such a scenario, which are seen at the preliminary stage of a
lightning flash. Those are multilayer electric field structures oy
that are seen in thi situ experiments, and numerous mi- —2 4+ (Vo V)Va= — (q/M)VU +g—Fg, /M,
crodischarges on the preliminary stage of lightning flash at
which are not accompanied by any change in the static elec- n
tric field. Figure 1 is taken from Proctdd5], which illus- ov ] _ _
trates this microdischarge activity inside a TC. ot V-V (e/MVU+g=vvtFp/M, @

This paper is organized in the following way. Section ||
contains a brief description of the features of a TC multiflowthe continuity equations for species, including the continuity
instability, which we need for the quantitative formulation of equations for the space chargend the electric current
a cellular automation model. This model is described in Sec.
[ll, and some results of the computer experiment are given, aip
which demonstrate the universal behavior of the system. Sec- ot +divj=0, 2
tion 1V is devoted to the analysis of the model in the mean-
field approach. The kinetic equation is introduced for thewhere
potential difference distribution function, which permits us to
obtain important mean-field characteristics of the process. In p=en+gN, j=env+qNv,, 3

ho
e
o
b
o
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and the Poisson equation for the electric potential

i u
VU 4ap. (4) 1-1j
I I I

In system(1), v, is the velocity,q andM are the charge and

mass of heavy particleg, is acceleration due to the gravity, U .M U . HY .

andF, is the friction force in the updraft air flow; accord- 1]-1 1) 1+l

ingly, v is the velocity ande andm are the charge and mass | | |

of light particlesFp is the force creating the updraft air flow. U

In relation(3), n and N are the densities of light and heavy i+1j

particles accordingly.

tioxvsvﬁgﬁli/:rri]::?:)znes tgfe tf:rélttl:%lnit:r?t?a?i];r?lzflglghge\lllelgoi?t?/rﬁf _FIG. 2. Square-latticg model. Each site of the lattice is related to
’ . . . a time-dependent electric potentld); .

heavy and light particles are small, that is, !

ticles has shown this instability to be universal in a wide
range of the cloud parameters. At the nonlinear stage, a

whereNy,n, are the stationary concentrations of heavy andgsmall-scale electric field. amplitude is determined by a bal-
light charged particles, which follow, for example, from 3D ance between the _electrlc force and the force of gravity act-
calculations[16—18, v, is updraft velocitys=v —v, and  INg on a large partcheE~Mg/q~1.06 Vim. Therefore, the

7, are the velocity variations of heavy and light chargeg@mPplitude of the small-scale electric field can be much larger
particles accordingly. In this approach, from the initial sys-than the mean magnitude of a large-scale intracloud field. We
tem of equationg1)—(4), we obtain the Poisson equation for 8SSUme that the amplitude growth of the small-scale field is

the electrical potential with the self-consistent space charghimited at some critical value beyond which a spark dis-
that is not taken into account in the traditional DBM: charge between the electric-wave maxima and minima is de-

veloped. These breakdowns limit the instability development

N/No<1, [A|/ng<1, [T]lve<l, [Tallve<l, (5)

d 5 d - and determine the microdischarge activity on the lightning
51 T (Vo V) +4mo VAU =4mq —+ (Vo V)N, preliminary stage.

J[a < IIl. MODEL

i — 2

&t(ﬁt+v N=(Nyq/M)V-U, (6)

We suggest that the evolution of a small-scale electric

where ¢ is air conductivity (without charged heavy par- Structure during the preliminary stage of a lightning dis-
ticles), v is the effective collision frequency that is equal to charge is determined by competition between the growth

v=glv,, for suspended particles. If we are interested in SIOOnprocess caused by the beam-instability development and the

taneous generation of electric cells with scale much less thaheutralization process related to the appearance of small-

the cloud scale, the boundary conditions are not important. [§¢&/€ Preakdowns in the intracloud medium. Below, we ana-

frame of Eq.(6), the electric cell generation manifests itself lyze th? Qetails of this intgraction using the modeling based
as the instability that leads to the exponential growth ofoN a finite-automata lattice. For clarity, we S|mula_1te the
small variations otJ. The wave potentidl and the variation Small-scale structure of a cloud by the square-lattice ele-
~ . . . L ments(see Fig. 2 The lattice step corresponds to the size of
N during the linear stage of the instability development car, oo of the small-scale electric structure and amounts to
be presented in the fortd, N~exp(-iwt+ik-r), wherer  apout 10 m. With allowance for the fact that the maximum
andt are the spatial coordinate and time, respectively. Subspatial scale of the system is determined by the size of the
stituting this presentation into E¢6), we obtain the follow-  active part of the TC, which is about a few kilometers, we
ing dispersion relation between the wave vedtoof the  find that the linear size of the model lattice should be about

electric wave and its frequenay [11,12): a few hundred of the spatial period. Each site of the lattice is
02 L related to a time-dependent scaldf; characterizing the

1— 4 o -0 ) electric potential. In our model, the potential differences be-

o(otiv) o—k-vg tween the neighboring sites are growing due to the instability

_ effects, as discussed in the preceding section, but the ques-
where Q2=47qg°N/M is the square of the “heavy particle tion is what law describes this growth. The fact of the matter
gas” plasma frequency. The instability threshold is given bythat the scale of a TC is very large in comparison with the
the condition (2/v)?2=1 and the instability growth rate cell's scale and the conditions for the instability development
is derived asy=2wo(/v) for the optimal spatial period could be occasional in different parts of a cloud. This prob-
a~mlk=mvy/Q. For particle radius ~0.5 cm and lemis needed in a special consideration, which is beyond the
N~10® m 3, the instability threshold is achieved for scope of this paper. We consider below the simplest random-
q~10 10 C. Putting vy~10m/s and O~2v, we find growth model, in which random values with a normal distri-
v~1s ! a~10m, andy~4mo s 1. Our further research bution are added to the electric potentiélg at the lattice
[13] with taking into account charge exchange between parsites at each step of the model time. In this case, each site,
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independently of its neighbors, undergoes Brownian motion
in the space of electric-potential values. The potential differ-
encesAU between the neighboring sites is described by the -
relation

d(AU 05441 :
(dt - (8) !

where the stochastic foreg(t) is a white noise with constant o5
dispersion:

<7](t)>:0’ <772(t)>:D- €) 1.20

The brackets in Eq€8) and(9) mean the averaging. In this
case, the energy of the electric field is growing linearly in
time:

(U2(t))=Dt. (10) FIG. 3. Potential relief realized on a 3®0 square lattice.

The potential difference growth is limited by some critical is the backgrqund for fast relaxation processes caused by the
value U,. As soon as this critical value is reached for anySmall-scale discharges. The model parameters are chosen
two neighboring sites on the lattice, breakdown between théuch that a relatively fast dissipation and a slow growth of
sites takes place and the lattice bond between the sites bile potential are ensured. The time step of the automata’s life
comes a conductor. Its conductivity exponentially disappear§0rresponds to the characteristic time of the excitation trans-
for a few model-time steps and corresponding potential giffer to |.ts nc_aarest neighbors. In this case, the vgr|at|0n in the
ference levels down. We assume that such a fine scale spapRtential difference between the neighboring sites during a
discharge can initiate breakdowns of the neighboring latticéingle step of the model time is smaller theiy by a few
bonds(“infect” the neighbors. It occurs if the potential dif- ©rders of magnitude. Taking into account that the cell size is
ference between them exceeds some activation B\l apout 10 m and assuming that the excitation is transferred
which is less than the critical one. Here it is appropriate toVith a streamer velocity of about 1@n/s, we can estimate
mention analogy with the experimeri20] on the laser-beam the model-time step to have a value of aboujd. The
initiation of a spark discharge, in which the breakdown fieldduration of the preliminary stage of a lightning discharge,
is decreased several times under the action of the radiatioffSting from about tens to hundreds of milliseconds, deter-
After a breakdown, the corresponding lattice bond returns ténines the total duration of the model calculation, which
the deactivated state with zero potential difference. therefore should comprise tens to hundreds of thousand of

So, each bond of the lattice can be in one of the threSt€Ps. _ _
different states: the bond can be an insulator with voltage Let us tumn to the results of our numerical experiment.
drop absolute value that is less than the activation levefigure 5 shows the evolution of the specific number of
U,—passive bond; the bond can be an insulator with voltage
drop absolute value that exceeds the activation leieénd 25
is less than the critical valud .—activated bond; the bond  2p
can be a conductor with voltage drop absolute value that

exceeds the critical valug .—metallized bond. The lattice is activation l l
updated simultaneously according to the following algo- 10 )
rithm. 5 W ]
(a) An activated bond becomes a metallized one if at least | \ \l u
one of its nearest neighbor sites is metallized. oy r "Wm;;m A l’l
(b) A metallized bond becomes a passive one in the suc- -5} J "\ w 1
ceeding model-time step. The corresponding voltage dr0|o_1E| ‘
goes down to zero. activation ¥
(c) The potential difference random growth ensures tran--15} T
sitions from the activated bonds to metallized ones and be-_2qt

tween passive and activated bonds. Open boundary condi
tions are assumed. 25
Figure 3 shows the typical potential relief realized in the -30 i 5 3

. . . ) . 4 5
numerical experiment. The behavior of the potential differ- time 100
ence on a single-lattice bond of the network as a function of
the model time is shown in Fig. 4. The cloud electrification  FIG. 4. Time evolution of the potential difference on a single-
and the growth in the small-scale potential relief determingattice bond of the network. Arrows indicate the moments when
the slow evolution of the intracloud medium which, in turn, breakdown takes place and the lattice bond becomes a conductor.
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FIG. 5. Time evolution of activated lattice bonds’ specific num- or ]

ber (heavy ling and evolution of extreme cells’ numbé#-shaped 151
splashes of simple length 1ol

activated-lattice bonds. The vertical lines in this figure mark
the time instants of the appearance of the critical lattice ’ 71000 71500 72000 72500 73000 73500 74000 74500 75000 75500
bonds initiating metallization. It is easy to see that the ap-
pearance of critical lattice bonds is an extremely rare event
compared to the total number of the small-scale discharges. |
Moreover, it is seen that the specific value of the activated-
lattice bonds fluctuates near the lepet p.=0.5. This criti- 15}
cal level is determined by the combined operation of the
external drive(potential relief growthand the internal relax-
ation of the threshold dynamidgqualization of the poten- 5|
tials of neighboring cells between which a breakdown oc-
cury. The appearance of new activated-lattice bonds is
balanced by their disappearance due to metallization. One
can say that the medium is populated by activated elements. F|G. 6. Intracloud-discharge number temporal evolutian-(c)

The corresponding temporal evolution of the intracloud-the scale interval of the horizontal axis varies from 10 000 model
discharge number is presented in Fig. 6. In the case of a lowme steps in the upper plot to 20 steps in the lower one.
temporal resolution, the events at large times look like
spikes[see Fig. 62)] whose frequency is inversely propor- neous pumping, i.e., the randomly homogeneous growth of
tional to the amplitude. On the contrary, if a high temporalthe potential relief, results in the formation of inhomoge-
resolution is used at short time intervals, the fine structure ofieous fractal dissipative structures. Such a clustered dissipa-
individual intracloud discharges can be seen, as determineibn in a cloud is caused by the fact that the inverse growth
by the metallization of a distinct cluster of activated-lattice rate of the small-scale potential relief is a few orders of mag-
bonds[see Figs. &,0)]. A cluster of activated-lattice bonds nitude greater compared to the time of the excitation transfer
is such an aggregate of the activated network elements th&om the broken-down element to its nearest neighbors. In
any two of these elements can be connected by a continuotisis case, even the largest cluster of activated-lattice bonds
chain of the activated-lattice bonds belonging to the aggre*degrades” faster than the time, when new activated network
gate. Of principal importance here is the fact that activatedelements appear among its nearest neighbors. We emphasize
lattice bond clusters appear to be fractal structures. A snhaphe principal importance of such a drastic difference in the
shot of the process of metallization of an activated-latticetime scales in the system considered, which, together with
bond cluster is shown in Fig. 7. The white points in thisthe threshold form of the fast dissipative processes, is gener-
figure correspond to the ionization front, i.e., the local break-ally typical of strong nonequilibrium systems manifesting
downs during a given step of the model time. The fractalcritical behavior. In Sec. IV, we will see that a big difference
dimension of metallized clusters calculated with allowancen the characteristic time scales characterizing pumping and
for the simulation results is equal th=1.9, which is almost dissipation is a necessary condition for the spatiotemporal
equal to the dimensions of a two-dimensional percolatiorself-similarity of dissipative structures. If this condition is
cluster, as will be seen in Sec. V. not realized, the system dynamics changes drastically. In-

It is not evident that a temporally and spatially homoge-deed, if an activated-lattice bond cluster did not degrade until

72360 72380 72400 72420 72440 72460 72480 72500 72520
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frequency of events

101
10

cluster size

FIG. 9. Occurrence frequency of the metallized clusters as a
0 10 20 30 40 5 € 70 8 90 110 function of their sizes in log-log scale. The slope of the spectrum is
equal to—1.
FIG. 7. Metallization process. Gray pixels indicate the area of ] o
breakdown spreading; white points correspond to the ionizatiorSPONds to the experimental results on the laser initiation of
front. spark discharge A smooth increase iJ,/U; leads to a

rapid shrinking of the metallized regions, though their dy-

new activated network elements grew among its nearedtamics do not show any serious qualitative changes. How-
neighbors, then the metallization process would never termieVver, a decrease of the ratib, /U, at a fixed growth rate of
nate even in the absence of new spontaneous spikes. In tHf3e potential relief leads to disrupting the critical dynamics
case, repeated ionization fronts of quasiregular spiral fornﬁlnd establishing the regime of relaxation autooscillations in
would propagate over the systeisee Fig. 8 Note that the Which the entire network behaves as a single lumped-
characteristic scale of the spirals and the typical distanc@arameter element. Such a synchronization of the automata
between them are inversely proportional to the growth rate ofs caused by the fact that all these automata overcame the
the small-scale relief. activation level before the first spontaneous breakdown. The
To obtain the realizations shown in Figs. 6 and 7, we usedeestablishment of the critical dynamics under the fixed
a ratio of the activation leveU, to the critical potential Ua/U. requires an even smaller value of the potential-relief

difference U, of about 10%(the valueU,=0.1U, corre- ~ growth rate. Let us turn again to the sequence of metalliza-
tion spikes shown in Fig. 6 and analyze the statistics of the

0 events. The bilogarithmic plot of the occurrence frequency of
metallized clusters comprisiny elements as a function of
20 the element numbeX is presented in Fig. 9. Evidently, this
dependence is a power law, which reveals the self-similarity
40 of the space-time dynamics. It is impossible to point out the
typical cluster size or typical frequency of their appearance
60 in a wide range of their values. The scaling regime is limited,

on the one hand, by the system size and the computing time
and, on the other hand, by the size of the one-element clus-
ters and the appearance frequency of such unit clusters. The
characteristic time between frequent small eveihe ap-
120 pearance of clusters consisting of no more than ten elepnents
is about a few hundred of model-time steps.
140 It is interesting that the scaling properties of the metalli-
zation process of a single activated cluster were also ob-
160 served at a higher resolution at short-term intervals from one
to a few hundred of model-time steps. For example, we cal-
180 culated the average length of the pN(t), the number of
lattice bonds metallized at a specified step, as a function of
the averaging interval and find that this value grows faster
than a linear function, i.eN(t) is a fractal of dimension
FIG. 8. Formation of quasiregular spiral waves in the network ofD¢=1.28 (see Fig. 10 Using the well-known definitiorD
finite-state automata upon violation of the condition that the time=2—H, where H is the Hurst exponent of a generalized
scales of pumping and dissipation are drastically different: snapshdBrownian proces$§6], we arrive at the following asymptotic
of the system on a 200200 square lattice. relation confirmed by the numerical experiment:

100

0 50 100 150 200
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1d - : fraction of the activated-lattice bonds is given by

slope 1.28

UC
p=f f(U)du (12)
Ua

and plays the role of a specific critical parameter of the sys-
1 tem. Taking into account the random-growth mo(&H(10)

and the character of neighboring cell’'s interaction, it is pos-
sible to write the kinetic equation for the distribution func-
1d tion f in the form

é’f—D(?2f | f 13
d at - Pz ti—oh (13

0 1 2 3

10 10 10 10
time (steps)

whereD is the absolute value of potential difference, and the
FIG. 10. Dependence of the length of the piit) on the time  1ast two terms on the right hand side characterize the source

interval, obtained numerically. The slope of the bilogarithmic plot @nd the sink, which are equal to
of the obtained dependence determines the fractal dimer3jon
yomdé(U), usU,

=1.28 of the plot.
=10, UgsUsU; (14
Uozpf, chu

N(t)~t%"2 (1)
: . ..._and
In Sec. V, we compare obtained results with the regularities
which follow from the percolation theory. 0, usuU,
v=4 yymz, U,sU=U, (15

IV. MEAN-FIELD APPROXIMATION
. . . . . . o, chua
In this section, we intend to point out the general criteria
for the appearance of critical dynamics. For example, thewheremszjcf(u)du is the number of metallized bonds,

numerical experiment revealed the existence of a criticals the [attice coordination numbes(U) is the Dirac delta
population level such that fluctuations near it have scaling,ction pis determined by Eq(12) andvgl is the model-
properties. Moreover, the experiment revealed the depenye grep(quration of a bond breakdowriThe three regions

dence of this level on the number of nearest neighbors for 8f U we use in Eqs(14) and (15) correspond to the three
given automata lattice, i.e., on the lattice coordination nums,

y ypes of bonds we consider. For example, the tegmzin
bgrz. The more the e_Igments COT.taCt the “lnfected. one, theEq. (15) describes the loss density of activated bonds due to
higher is the probability of the “infection” spreading and,

therefore, the lower is the critical population level. The co-the breakdown spreading from one of i neighbor met-

e . o ) i _ allized bonds. The number of passive cells is equal to
ordination number increases with increasing lattice dimen-

sion. In the limit of large coordination numbers, the mean- U,

field approach can be applied to calculate the critical Q=j f(U)du. (16)
population level. The mean-field approach is interesting for 0

the estimation of other mean characteristics of our Systerge. se all lattice bonds of the model fall into one of three

such as the number of passw[laona(.:u.v.atebj and critical complementary categories, the densities must add up to
(metallized cells as well for the definition of parameters, unity. That is

where the system reveals features of SOC behavior. Let us

introduce the distribution functiofi(U) of lattice bonds over p(t)+q(t)+m(t)=1. (17
the magnitude of potential difference on them. The quantity

f(U)dU determines the fraction of lattice bonds with a po- It is easy to find the stationary solution of EG3) by requir-
tential difference magnitude in the interval frobh to U ing the continuity off and gf/dt and puttingf—0 at U
+dU, and it is evident thatf;f(U)dU=1. The specific —. Using the dimensionless variable-U/U,, we obtain

mr(1-y)+(mr2)¥41+a)/(1-a) if O=sy<1,
f={ ymr/z{exd —Vymrz(y—1)]+aexg ymrz(y—1)]}/(1—a) if 1<y<y,, (18
2\mrizexd - Jmrz(y.— 1) ]x exd V(1= p2)(yo— ) [(1-a)J1+(1-pZm2)] if ycsy=e,
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wherer=U2v,/D, m= [ f dy is the number of metallized 14 " ' . ————
¢ . O simulation
cells,y.,=U./U,, and parametea is equal to — theary
ymz—+/1—-pz c
a= ———=exd —2Vvmrz(y.—1)]. (19 o .
o
Integrating Eq.(18) we find p, ‘E i
i}
1 1 2\J1—pzexd — vmrz(y.—1)] 20 2 1
P72 (1-a)(ymz+\1-pz) | Z ]
©
The number of nonactivated cells is determined by the fol-
lowing relation: i
- 1ta —- 0068 1 15 2 25 3o aggnrE)
q= | fdy=m/2+ 1-a mr/z. (21 Potential difference ( relative units)

Ye

Relations(20) and (21) together with conditior(17) give us FIG. 11. Comparison between mean-field theory and simulation.
the particular values df, p, mas functions of the parameters

z, 7, andy,. Function(18) together with the analysis of the p~z~'. (23
nonstationary problem of Eq13) permits us to investigate

all possible solutions which take place for different values ofRelations(17), (21), and(23) give us the value of:

z, t andy,, including the solutions which were obtained in

our computer experimeni$igs. 7 and 8 We restrict our- 2(z—+2z-1)/rz. (24
selves to the analysis of only the case when our system re-

veals the fractal and self-tuned behavior. As it follows fromNow inequality(22) can be written in the form

the computer experiment, such a behavior takes place when

7>1 andp>m. According to relationg18)—(21), both in- 1
equalities are fulfilled under the following condition: 6=(2z-22z-1)"*> o1’ (25)
Cc
ymrz(y.—1)>1. (22

In our computer experimentg=3, y.=10, and §=1.2
Just in this case the system reveals SOC dynamics and a&-(y.—1) '=0.11, so that inequality22) is fulfilled. The
cording to Eq.(20) is determined only by the coordination distribution function(18) in the limit of Eq.(22) is simplified
number with the exponential accuracy to the following form:

)
E[ﬁ(l—y)+5] if 0sy<1,

5
f=q zexd-oly-DHl+exd—25(yc—y)]} if 1=y=y., (26)

5
2_exg— oy —A(y—yol if y=Ve,

whereA =27 exd — 8(y.—1)]. Function(26) is illustrated in  of such a discrepancy is apparently the same as the mismatch
Fig. 11 by a thin line forz=3 (d=1.2), y.=10, andr in the values of the critical parameteg, which is deter-
=25. Here the distribution function is shown as well asmined in the mean-field approach by relati¢@3), p.
squares in the figure, which is obtained in the computer ex=z"1, and considerably differs from the computed value,
periment for the same values mfy., and7=25. One can (p)~0.44, close to the percolation threshdkig. 5. This

see a rather good coincidence in the main part of distributiongause is in strong fluctuations of a connection number, which
but the difference grows at the tail of distribution fgr  exists in the systems with low values for the coordination
>y, . In particular, it follows from the theoretical mod@6)  parameter. The similar situation appears in SOC forest-fire
that the number of critical cellsn=2x10"2; at the same models[16]. Indeed, we should take some effective value of
time, the computer experiment gives=10"“. The reason Z<z Wwhich is close toz for z>1. In particular, a much
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better agreement of the mean-field approach with the com- 290
puter experiment takes place foyz=1/p)~2.3. The distri-

relative number of

obtained from the computer experiment, with the well-
known percolation fractdl6,21,23. Actually we have three

parameters for such a comparison: the averaged number ¢ s}
activated cells, the fractal dimensiom; of dynamic acti-

bution function for this case is shown in Fig. 11 by a thick ol aetvated bonds
line.
V. PERCOLATION STRUCTURE OF METALLIZED g 150
CLUSTERS ff
. . g
Now we compare the properties of our dynamical fractal s |
€

vated cluster, and the Hurst numbér It is borne in mind A
that we are dealing with a dynamic fractal, while the perco- #w  zs =, 2650 2900 2950 3000 3050
lation is usually considered as a geometrical phase transition. Time ( steps )

So, let us discuss the percolation process with this point of
view. When our system comes to a stationéwp average
state, the clusters are generated in time as a dynamic pro

erty of the system. In this case an ensemble of realizations, ; 4nq we can see that the Hurst exponent in relatidh
which is needed to get the averaged characteristics of afra%'oir{cides with the power exponent in E(8) following

tal, is ok_)tain_ed actually as z_a_temporal consequence. The oy m the percolation theor§6,22,23. So we can agree quite
rect estimation of fractal critical parameters demands a sufx

s N ; >Y'Certainly that we are dealing with the percolation dynamic
ficiently long temporal realization. Here the situation ¢o.iq
reminds ergodic processes, when the average over an en-
semble is equal to the average over time. So, we can obtain
the critical parameters of our system, using the time averag-
ing, as it has been done in Sec. Ill. Acting so, we obtained The important question is the process of switching on of a
the number of activated cells, which characterizes in our casgrainage system, especially in application to a lightning
the phase transition from the dielectric state to the electriflash. The preliminary stage of a lightning discharge in the
cally conducting state of a TC medium. According to ourform of numerous electrical microdischarges lasts
computer experiment, this value is equal(f)~0.44 (see  ~10-300 mg24] up to the appearance of a leader. At the
the realization in Fig. b which is close to the percolation same time, the growth rate of electric cefs-0.1's corre-
thresholdp.=0.5 for bonds in a 2D case. Similarly, we sponds to the time scalg™ !> 7. However, it is borne in
found the fractal dimensiod;, using the averaging over the mind that the preliminary stage in our model is associated
temporal series of activated clusters. It turns out to be equalith the development of a conducting percolation cluster,
to the fractal dimension of two-dimensional percolation clus-which is switched on by explosive manngimilar to the
terdP=1.89[6]. The important indication of SOC systems is phase transition Figure 12 demonstrates the temporal
the power spectrum of occurrence frequency of the clustergrowth of conducted cells’ number. We can see that a drain-
as a function of their sizes with the power exponent age system as a long chain of conducting cells is switched on
— 1. The close dependence is revealed in our experiments, &sr a time 7,< v~ L. In real situation, one needs to take into
shown in Fig. 9. account the real value of an ionization front velocity inside a
To obtain additional information on the structure of acloud. According to Proctor’s datflQ], this velocity v;
cluster, formed in the course of the metallization, let us re—~10°—10° km/s (the velocity of intracloud streamerFor a
mind some properties of a fractal as geometrical object. Weloud sizeL ~10 km, it givesr, min~10—1G¢ ms. The fur-
consider the shortest patio-called chemical distancée-  ther behavior of a conducting percolation cluster is deter-
tween two points of the cluster along the cells, belonging tamined by a large-scale electric field, but this question is be-
this cluster. According to the fractal theory, the cluster massgond our present consideration.

FIG. 12. Temporal growth of the conducted cell number in com-
Barison with the evolution of the activated bond relative number.

VI. THE INITIAL PROBLEM

M (the number of the cluster’s cellss changing as It is easy to understand the results in Fig. 12, coming from
g the mean-field approactsec. IV). It follows from the con-

M(1)ecl®, (27) tinuity condition for the distribution functiofi undery=y,
wherel is the chemical distance length, and the chemicafhat the number of conducting cells is equal to
dimensiond,=1.72 for the percolation cluster. The relation af(t)
can be rewritten as n=-D W (1—-zp L. (29

y=Y¢
N()edM/dl=IH, (29

One can see from Eq§26) and (29) that whenzp#1, nis
where the Hurst exponeit=0.72 characterizes our fractal exponentially small, anth—o, whenp~p.~z 1. It says
formation as a generalized Brownian procgsls In our case  about the explosive behavior oft).
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VII. CONCLUSION \Vj

F= , 30
In this paper, we have studied the electric-discharge dy- yan (30

namics inside a TC as a universal approach to the description

of nonequilibrium systems with a developed small-scale 'n.'wherey describes the growth rate of the electric field in a

cakly dependent on the processes inside individual CeII(S:eII,V is the volume of the active part of the TC, in which a
weakly dep P SSEs Inside Individu ﬁ1stabi|ity is developed, angdis the fraction of the activated

filgg I'Srr?:tri;ngltni?’r? rgr?;rr‘:ty fggttjhrg ggtﬁlgggess Sot];:;esll ig“ﬁ;i?(fells. During the stage considered, when the activated-cluster
j P y e\ength is comparable to the cloud size;-p., where p.

dynamics with transition to the self-organized criticality state:O.25 corresponds to the percolation threshold in the three-

near the p_ercolat|on threshold. In a general form_ulatlon OUL: ensional case. Assuming~101° m?, y~0.1s !, and
model reminds the popular forest-fire models, which demoné~ 10m. we obtainE—~25x1F s which aarees well
strate the features of SOC behavior as wWaB]. But this ith th ' . g7 8.1q Th iy tant 9 on |
similarity is more as outward. In essence, our initial systemwt') f] expelrlmefn h ' I ” elllmpor an qu’es lon 15
describes a wide type of distributed nonlinear systems with Y out the scale of the electric celis. In Proctor's experi-
hard excitation, when appearance of local excitation dements, the siza corresponds to the scale of elementary dis-

creases sharply the excitation threshold in neighboring cells(’tharge' Basing on the achieved spatial resolullti, it is

A similar situation can be, for example, in the case of un—pOSSIbIe to say thad<60 m. Our investigations of Edy)

stable plasma systems, when the instability threshold is de{i—c:: ﬁézegggl( pﬁ)rsr:ge::%rr? d%fcg\%thaﬁle d?:f? fsk')Zv\E; \c/);((:)lgi?divzar—
termined by an electron-ion collision frequency, which de- ~1’ 13 mg hich is in ooc)i/, gl'tat' e a reeme?\t ith
creases with a temperature growth. So, the instabilit o e; erimén\&vlol] l\/llealsu?emen?é 1'0] ;\%ow%hat e ar\gtle
threshold decreases in neighboring cells due to the Ioc:’H‘ per . T para
heating. pulses with duration~1 us are _u_nlted in groups, which in-
Another point in our consideration is introducing the con—%l;'g;;?r?s ﬁ]nedars]lljredr:]eednstfg gj}'\éﬁ:\zl trr?;r?hdézzhgﬁgfs‘ !;Ler-
sideration of a kinetic equation for a cell state probability, ~ " . S .
quivalent to spatial trains that extend up to some kilometers

which permits us to obtain in a self-consistent approach th&° : .
mean Eharacteristics of fractal dynamics PP with the velocity 2x10'—2x10® m/s. We can associate

At the same time. we have demonstrated the importanwese trains with separate clusters which appear in our model.
physical background for application of the suggested modellea(rj the p(lafrcola_tmndt_hr(:]shold, a clusterdle?gtr] runs Llipdﬁo
to the description of electric-discharge dynamics insideaTC(.:r?u S'Ze.ih ahmlcr? I'S(t:' alrge c;l)rrespon S c;. etspart_ IS-
The principal result of our consideration is the agreemenf arge with characteristic lengey we can estimate a tp

. — — 7 — - _
that a TC as an electrically conducting medium reaches eIOCd"Fy T]Svt "’:j/T 30 "_]I_/ﬁ th.reTt. lpsis ?r.] elemtend.
percolation threshold and contains in its mature state a m ary discharge duration. This estimation 1S not in contradic-

jority of dynamical conducting clusters. These clusters formto" with experiment data. Precise measurements of a fine

a so-called drainage system for transport and gathering Oftalectric structure in TC With_spatial resolution better than 1
macroscopic electrical charge inside a cloud and can serve _an_d 3D computer _S|mulat|ons are needed to get more S0
a real basis for explanation of the preliminary stage of Iight-p.'St'Cated quantitative r_esults. We hope our model wil
ning discharge. stimulate these investigations.

It is possible to point some particular evidences in proof
of this announcement. According to R¢24], preliminary
stage of a lightning flash starts often in form of numerous
discharges without any visible dc field change. It corre- This work was partly supported by the Russian Founda-
sponds to a high level activity of small-scale discharges in dion for Basic ResearcfProject No. 01-02-1740Q3D.1.1. is
big volume of a cloud. The experimeft0,24 gives the grateful to the University of Electro-Communications for
appearance frequency of these microdischarges abotheir support, and V.VY.T. is grateful to the Japanese Govern-
10° s~ L. In our model, this frequency is determined in our ment for their support through the University of Electro-
model by the relationship Communications.
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