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Angular momenta creation in relativistic electron-positron plasma
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Creation of angular momentum in a relativistic electron-positron plasma is explored. It is shown that a chain
of angular momentum carrying vortices is a robust asymptotic state sustained by the generalized nonlinear
Schralinger equation characteristic to the system. The results may suggest a possible electromagnetic origin of
angular momenta when it is applied to the MeV epoch of the early Universe.
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I. INTRODUCTION seem to be essential constituents of the Universe, (2nhd
under certain conditions, even an ultrarelativistic electron-
The problem of electromagnetiEM) wave propagation proton plasma can behave akin toesp plasmal9].
and related phenomena in relativistic plasmas has attracted Recently, we found dark soliton as well as vortex soliton
considerable attention in the recent past. From the nonthesolutions ine-p plasmag10]. In Ref.[11], it is also shown
mal emission of the high-energy radiation coming from aanalytically that the dark soliton is the natural nonlinear co-
variety of compact astrophysical objects it has become posherent structure in unmagnetized caep plasmas. How-
sible to deduce the presence of a population of relativisti@ver, it is conceivable that soliton solutions obtained in a
electrons in the plasma created in the dense radiation fieldsne-dimensional formulation will turn out to be unstable in
of those sourcefl]. The principal components of these plas- higher dimensions, which may lead to the creation of vortex
mas could be either relativistic electrons and nonrelativisticolitons. Since dark and vortex solitons are asymptotically
ions (protong or relativistic electron-positronefp) pairs. nonvanishing, they have received much less attention than
Relativistic e-p dominated plasmas may be created in atheir localized cousins due to the generally accepted require-
variety of astrophysical situations. The-p plasmas are ment that the fields be localized in a physical system. How-
likely to be found in pulsar magnetosphef&$ in the bipo-  ever, in recent experiments studying laser field dynamics in
lar outflows (jets) in active galactic nuclef3], and at the different kinds of optical media, it was demonstrated that
center of our own galaxj4]. The presence @&-p plasmais dark and vortex solitons can be readily created as superim-
also argued in the MeV epoch of the early Universe. In thepositions upon a localized field backgroud@®]. Vortex soli-
standard cosmological model, temperatures in the Me\on solutions have been also found in imperfect Bose gas in
range T~10'°K—1 MeV) prevail up to times=1 sec af- the superfluid§13] and have been extensively investigated
ter the Big Band5]. In this epoch, the main constituent of and discussefil4]. In this paper, we systematically investi-
the Universe is the relativistie-p plasma in equilibrium gate the instability of dark solitons and show that it can lead
with photons, neutrinos, and antineutrinos. to the formation of vortex solitons. We speculate about an
Contemporary progress in the development of supeinteresting application of the vortex soliton in the early
strong laser pulses with intensitiés- 10?223 W/cn? has  Universe.
also made it possible to create relativistic plasmas in the In arecent papdrl0], we had developed an argument for
laboratory by a host of experimental techniqliés At the  the creation of domains of nonzero angular momentum in the
focus of an ultrastrong laser pulse, the electrons can acquitdeV era of the early Universe when it was supposed to be
velocities close to the speed of light, opening the possibilitydominated by a plasma @fp pairs. We first showed that in
of simulating in the laboratory the conditions and phenom-such a plasma the dynamics of a pulse of electromagnetic
ena that, generally, belong to the astrophysical rdaln radiation, with a frequency much larger than the plasma fre-
Elucidation of the electromagnetic wave dynamics in aguency, is controlled by a generalized nonlinear Sdimger
relativistic plasma will, perhaps, be an essential tool for unequation(GNSE with a defocusing nonlinearity. Then, bor-
derstanding the radiation properties of astrophysical objectsowing a result of nonlinear optid4 2], where the standard
as well as of the media exposed to the field of superstrongonlinear Schrdinger equatiofNSE) with a cubic nonlin-
laser radiation. Although the study of wave propagation inearity has been investigated in great depth and detail, we
relativistic plasmas has been in vogue for some time, it isonjectured that even the GNSE, whose nonlinearity is simi-
only in the recent years that the nonlinear dynamics of EMar in nature to that of NSE, will allow vortex soliton solu-
radiation ine-p dominated plasmds8] has come into focus. tions with an angular momentum that is conserved during
The enhanced interest stems from two fati$.e-p plasmas propagation. The latter system also allows dark soliton solu-
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tions in one dimension which are known to be unstable taand n~10°°-10*® cm™3), the radiation pressureT* is
two-dimensional2D) perturbations and eventually evolve to small compared to the kinetic pressund, and was ne-

2D vortex chains. glected in Eq(2); inclusion of the photon gas in the system
In this paper we demonstrate that the arguments given ignly leads to a small modification of the effective “mass” of
Ref.[10] are actually borne out by the direct solutions of theparticles.
derived GNSE. We begin by analytically showing that the  The low-frequency motion of the plasma is driven by the
1D dark solitons of the GNSE are, indeed, unstable to 2Donderomotive pressur{%(pevp)z] of the high-frequency
perturbations. In the process, we derive the instability crite£nM field, and is independent of the sign of the particles’
rion which agrees with the numerical solution of the linear-charge. It is perfectly natural to assume that the electron and
ized system. the positron fluids have equal temperatur@ge(,=To) in
The main part of the demonstration, however, comes frompquilibrium so that their effective masseSd,=G) will
a numerical simulation of our GNSE. Starting from a broada|so be equa|_ The radiation pressure will impart equa| low-
variety of initial conditions, we find the eventual emergencefrequency momenta to both fluids allowing the possibility of
of angular momentum carrying vortex solitons. That is, thegyerall density changes without producing charge separation.
stipulated solitonic structures are readily accessible withinrhe charge neutrality conditions,=n,=n, =0 have
the framework of this general equation with a nonlinearityheen assumed by neglecting the small inequality of the
more complicated than that of NSE. Thus we can state witltharge due to baryon asymmetry. It is also evident that the
much greater confidence that electromagnetism, operative §ymmetry between the two fluids keeps their temperatures
the MeV era, could easily be the primordial source of angugjways equal T, ,=T) if they were equal initially. In deriv-
lar momentum associated with various structures of the obng Egs.(1) and(2), we have also assumed that the plasma is
servable universe. transparenti.e., > w,), and that the longitudinal extent of

We again stress that the present results are quite generalghe pulse is much shorter than its transverse dimensions
the nonlinear dynamics in an electron-positron plasma. (Ly<L,).

Defining the normalized variables
Il. SINGLE-VORTEX SOLITON
2
In the envelope approximation, a finite amplitude, circu- “e tt We r—r € 1 AL A, (4
larly polarized EM pulse propagating in a relativistep 20Gq cV2G, mec? Y9Go
plasma obeysfor details, see Ref.10])

and noting that even with the assumptigg>V, , the dif-

. 202 c? ) ng Gg n fractive term can be of the same order or even greater than
2iwd A +CVIA + ?%ANL Gy 1- 3G ng Ar=0. the dispersive one for a highly transparent plasmg{(1),
g 1) Eq. (1) converts to the following GNSE;G>G):
whereA, is the slowly varying amplitude of the perpendicu- i0A+3VIA+T(|A[2)A=0, ®)

lar (to the propagation directigrvector potentiaI,szai ) ) .

+3;, andé=z—v,t is the “comoving” (with group veloc- with the nonlinearity

ity vg) coordinate withr=t. Here we=(4mnoe?/mg)*? is

the electron Langmuir frequencilp=nge=Ng, is the num- f(|A[2)=—2 q )
ber density of the unperturbed backgrouisdbscript 0 de- m '

notes the value at infinijy y is the Lorentz factor, an

=K3(mec?/ T)/Kp(mec?/ T) with K,,, denoting theth-order  Note here thaA| <1 is necessary for the regularity ofsee
modified Bessel functions of the second kind, is the enthalp¥q. (2)]. According to Eq.(14) of our previous papef10],

density. o o _ ~ momentump becomes complex whei\|>1, implying the
In this approximation, the continuity equation, determin-multistream motion of the fluid.
ing the number density, becomes Equation(5) admits a symmetric two-dimensional solitary
wave solution. For stationary solitons, the ansatz
1 n UgYg/C @
YG ng [)’SGS—62—92|AL|2/(meC2)2]1/2, A=A(r)exp(imé—i\t) @)

and the system is closed by the adiabatic equation of stater®duces Eq(d) to

2 d? 1 m?
nmyc/ngT /
me—zoexp( —m.c?G/T)=const. ©) “SATVI(A)=—— ar F A (8)
yKo(mec?/T) dr r
Here, just like Ref[15], we have assumed that the tempera-with potentialV(A) defined as
ture variation in the system is negligibly small. Furthermore,
in the density and temperature range of interést (n.c2 V(A)=(N+2)A%+41-A’—4, 9)
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with the prime denoting the derivative with respect to itsSince we are examining the linear stability of the solution
argument, and. representing the nonlinear frequency shift. with the least number of nodeg,is assumed to be an odd
A numerical analysis of the solution of this eigenvaluefunction with a single node at the origin.

problem is given in Ref[10]. Because of the absence &f Let us perturb the one-dimensional solution by
derivatives in Eq.(5), any pulselike localized structure is .
allowed in the propagation direction. In the direction perpen- A=(g+u+tiv)e ', (12

dicular to the propagation, on the other hand, the amplitude ) )

was shown to approach a constant value. Since there do¥é1ere the small perturbationsandv are real functions ok

exist a small baryon asymmetry in the early Universe tha@ndy.: . . ) .

acts on a longer characteristic lendttb,16), the extent of Assuming sinusoidal behavionicosky—Qt) and v

the constant amplitude region may be considered to be finiteSinky—Qt), the linearized GNSE could be reduced to the
Due to the single valuedness of the vector potential, following eigenvalue problem:

must be an integer andl must vanish at the origin for non- 2 4
zero values ofm. The nonzeram solutions are particularly Q% =L1Lov — = (Lo+ L))o+ —v, (13)
important because they carry the orbital angular momentum 2 4
M,
where
i 1 92
(M)Z:—f dr[r, X(A*V ,A—c.c)],. (10 Lo=\+ = —+1(g?), (14
2 2 (9)(2
2

It is straightforward to show that syste(®) conserves angu- _ 10 2 2612
lar momentum, and expressi@hO) is just the paraxial ap- Ly=ht 2 (9X2+f(g )+2971(99). (15)

proximation for the orbital angular momentuidgz= fdr[r

X (EXB)], of the EM field[17]. The angular momentum Remembering that’,g=0 and £,9,=0, we can con-
carried by the vortex i81,=mN, where the photon number struct from Eq.(13) the relation

N=fdr, |A|? is another conserved quantity;is also known
as the “topological charge.” Strictly speaking, one must re-
define the integrals of motion for nonvanishing boundary QZ<9x|U>=Z(gx|v>+<gx|£1£00>—E(gx|2[,11}>
conditions[18], but such a renormalization is not important
here because of the fact that an infinite-extent solution is just (g~ 207" v) (16)
a formal approximation. The presence of a small fraction of 2 O —egty

ions makes the physical solution decay at infirjitp,16).

4 k2

2

by multiplying g, on both sides and integrating with respect
to x. Self-adjointness of; reduces Eq(16) to
IIl. DYNAMICS OF ANGULAR MOMENTA CREATION
, K K (g, —2g°f'v)
It is already suggested in RdfL0] that dark stripe soli- V=773 (gylvy (1
tons are unstable and break into vortex filaments. When the
amplitude is small |A|<1), the nonlinearity reduces to provided(g,v) exists. A necessary condition for an expo-
simple Kerr-type, and the vortex dynamics of NSE with suchnential instability, then, is
a nonlinearity has been studied in a variety of numerical o
calculations[12,18-2Q. Our full nonlinearity is somewhat (9x —29%f"v)
different and has to be independently investigated. For this (gy|v)
section, our goal is to show that the one-dimensional dark
stripe solution is unstable against transverse perturbations it is true, then, for sufficiently smalk|, we would have an
two dimensions. Such an instability causes the breakup dhstability, i.e., Eq.(18) is also a sufficient condition. More-
the stripe, leading to a chain of vortex solitons with alternat-over, it is explicitly shown thato—0 in the limitk—0 un-
ing polarity. less(gy|v) diverges.
We now make an approximate estimate of the ratio on the
left hand side of Eq(18). Let us assume that operatofg
A. Transverse instability and £, are of order unity and)? andk? are, in some sense,

The one-dimensional stationary solution for the GNSE ~ Small. In this limit, we could estimate by solving
has the formg(x)e~'*(\>0), where the real functiog(x)

>0. (18

satisfies L1Lov =0, (19
1 d%g which has the solutiom =g+ ¢, where
Ag+ 5 — +f(g?)g=0. (11)
2 dx? Lo0=0x- (20)
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Notice that, forv =g, the integrals occurring in Eq17) are 0.3
zero and this part will not contribute to the integral; oy 0.25
will. From Eg. (20), we can deduce the following. The first
consequence o 0.2
g 015
<gx|gx>:<gx|£0q>:<gx|(£0_ﬁl)Q>:<gx|_ZngIQ> 0.1
=(94—2g%f"v) (21) 0.05
converts Eq(17) into 0 1.2
k
2_k_4_ k_z w FIG. 1. Dispersion relation fox=0.2, 0.5, and 1.
= . (22
42 (gylv)
) ) =0). It is clear from Eq(28) that the complex conjugate of
To derive the second, we notice that the eigenfunction is also an eigenfunction; namelywfis
an eigenfunction of Eq(28) corresponding to eigenvalue
(9ulv)y=(gula)=(ay/ L ay). (23)  Q,, thenw} is also an eigenfunction of E(R8) correspond-

o . ) ing to eigenvalue} , where the asterisk denotes the com-
In principle, one can evaluate E(23) in a rather straight-  plex conjugate.

forward way. But a very approximate estimate can be made forx—, + <, g approaches a constant valyg which can

by simply droppingd; in £, so that be expressed as
(g 9 / 2 \2
<gx|v>_<gx Nt > (24 Jo= 1—(m) , (29
and where the inhomogeneity due to the potential vanishes. In
this region,x also becomes an ignorable direction, and we
k* k2 (9x/9y) B k* can assumevece “* for the point spectra>0). Plugging

QZ:Z BRI ak?. (29 itinto our eigenvalue problem, we obtain the following “dis-
e persion relation,” which is applicable for large
In Eqg. (25) we have overestimated the denominator. The ei-
genvalue is — 0P =[O+ 3 (KN Q0+ 3 (k2= K2) + 205 (95)],

(30)
27172

1-— (26)  where the subscripts and i denote the real and imag-
4a inary part, respectively, and we have used the relation
f(gg)= —\. By solving it for «, we obtain

Q=iak

implying a window 0<k<2a'? in k, where instability is

possible. From the property that the one-dimensional solu-
tion is stable to one-dimensional perturbation, the growth — «={k?—2Q,—2g2f'(g2) = 2\gi[ f'(g3) 12— Q212
rate () approaches zero as the wave numib&nds to zero. (31
In order to accomplish the numerical analysis, we intro-
duce a complex-valued function=u-+iv in Eq.(12). Then, Wheref’(g?) is explicitly shown as
the linearized equation looks
f'(u)y=—(1—u) 32 (32)

i - 12 2 2£1 02
low=Aw+zViw+H(gHw+ 297 (g Re(w), 27) The asymptotic argument o is also determined by

where the prime denotes derivative with respect to its argu- 20).
ment. Puttingy,= —iQ andd, =ik yields a linear eigenvalue argw) =arcta 2—'2) . (33)
equation forw: k+2Q,—«

With this information, we have solved E(8) numeri-

, cally. First, we fix an arbitrary value on the real partvoft
+H(@HWH+2g%"(g)ReW). 10 For an expected eigenvalue, the imaginary paw of

(29) is calculated from Eq(33). Then, the derivativelw/dx is

estimated by using Eq31), and Eq.(28) integrated fromx
We have numerically solved E(R8) by the shooting method =10 tox=0 by the fourth-order Runge-Kutta formula. The
with boundary conditionsv—0 (x—«) anddw/dx=0 (x  data ofg(x) is drawn from the numerical solution of Eq.

1(dw
—Qw=Aw+ | — —kw
dx?

2
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1.2

Re(w) —— t=2
1t Im(w) -
08 B e - d X
0.6
w
04t
0.2t
0 Y
0.2 . . . . FIG. 3. Zero lines of real and imaginary parts of the field at
0 2 4 6 8 10 time t=2.

* becomes wider and wider ds—0, which agrees qualita-
tively with the analytical estimate. Since we are performing
the numerical shooting in a finite domain, it becomes diffi-

""""""" cult to estimate the correct eigenvalue in this regime.
B. Nonlinear evolution
w We will now present the numerical simulation of the dy-
namics of angular momentum creation from one-dimensional
dark stripe solitons by solving the full nonlinear syste(®s
at ] and(6). The calculation was carried out on a 20200 spa-
tial mesh placed in a calculation box of sike=28. The
-1.5 : : : : boundary conditions’,A=0 (d,A=0) are imposed at the
0 2 4 6 8 10 edgesx=+L (y==+L). Note that these boundary condi-
x tions numerically respect the constants of motion in the do-
main of integration. As an input, we choose the one-
4 =07 Re(w) dimensionalx dependent stationary solution wii=0.5. It
2 - Im{w) 1 is to be noted that the photon number and the Hamiltonian
0 — are conserved to order 18 during the calculation. Since the
21 J initial value of the integrated angular momentum is zero,
4l ] it is found to always remain zerdgwithin an error of
w order 10 19).
6T ] Strictly speaking, the eigenfunction in the preceding sec-
8 T tion (see Fig. 2 contains cores of angular momenta, i.e.,
10 1 crossings of the real and imaginary zeros of the field due to
12 ) the periodic form of the perturbation in tlyedirection. Thus,
14 ; . , ; the growth of small amplitude perturbation itself does not
0 2 4 6 8 10 exactly mean the “creation” of angular momenta. In order to

check the real creation of angular momenta from an exact

zero everywhere, we have first carried out the calculation
FIG. 2. Eigenfunctions fok =0.5 corresponding te=0.1, 0.5, ~ With an initial condition of the form

and 0.7.

iy : ~ dg ,

(11). At x=0, the boundary conditiodw/dx=0 is checked.  A(x,y,0)=«a 90 +A; 3o exp(— By?) |+iV1—a’g(x),
If this boundary condition is not satisfied, we guess the next X (34)
eigenvalue by Newton’s method and carry out the shooting
again. -

The dispersion relation is shown in Fig. 1. We can see avith «=0.9, 5=0.0875, andh; =0.1. This initial condition
good qualitative agreement with the analytic evaluation withiS S0 arranged that there is no crossing of the real and imagi-
the fact that the growth rate begins from zerokas0, ex- ~ hary zeros. It is done by imposing a real-valued perturbation
periences a maximum value with respecki@nd the mode Ona Complex-valued Stationary solution. The zero line of the
is finally stabilized for a sufficiently largke. The eigenfunc-  imaginary part exactly coincides with theaxis, while that
tions corresponding tk=0.1, 0.5, and 0.7 for the parameter of the real part deviates from tlyeaxis byA;. As the system
A=0.5 are illustrated in Fig. 2. From Fig. 1, the mode with evolves, we observe the creation of crossings and the appear-
k= 0.5 gives the maximum growth rate 1@)=0.137. Asis ance of vortex solitons. As the initial conditions are changed
seen from Fig. 2, the imaginary part of the eigenfunction(always starting form no crossingsthe main qualitative
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t=40

FIG. 4. Crossing of zeros at
timet=40, 44, 48, and 72.

t=72

Y y

result—the emergence of angular momentum carrying vorteges approach the origin. Finally the remaining six vortices

soliton chains—is found to be fairly robust. tend to spread and align with equal intervortex spacseg
Next we investigate the evolution of the system undert=72 in Fig. 4.
transverse perturbations of the form The amplituddA| corresponding to this sequence is illus-

trated in Fig. 5. Att=48, the vortices do not quite look like
_dg nar vortex solitons, even though the number of vortices has been
A(x,y,o):g(x)+Ad7 cog(y), (35) reduced to six. Since the distance between adjacent vortices
X L is still small, they overlap and are not quite independent. The
central hump around~y~0 is the remnant of the second
with A=0.1 andn=6. The zero lines of the real and imagi- annihilation event. With time, the peaks tend to expand to the
nary parts at=2 are shown in Fig. 3. As we noted in Sec. Il, central region and are sufficiently apart to look and behave
the crossing points of two zero lines correspond to the vorteXike vortex solitons. Byt~72, we observe the formation of
centers. We initially have 12 crossings, suggesting 12 vortisix solitonic structures as predicted in Rgff0] (seet=72 in
ces. These 12 vortices, however, do not have well-formedFig. 5. Notice that the vortices disappear only when annihi-
solitonic structures since they are too close and overlappindated by another with opposite polarity.

As the system evolves, the vortices move and we see After t=80, a propagating wave is clearly seen in the
annihilations of pairs of opposite polarity. The first annihila- regiony< — 10 andy>10 where the field was originally flat
tion event was observed in the interval2B< 34; two of the  (see Fig. 6. This propagating field is the trace of the Cher-
vortices destroy one another near the center, and the othenkov radiation which comes from the nonintegrability of
two seem to disappear near the edge; the annihilation of twthe systeni20]. The radiation will propagate away from vor-
pairs removes four from the original 12 &t 2. tices. In the finite calculation domain, the radiation will be

The second annihilation event occurs durings4&:48. reflected back at the boundary.

As is depicted in Fig. 4, the zero lines of the real and imagi- When we extend the time evolution further, we observe
nary parts tend to separate around the ceywte®. Here two  the third annihilation event arounth160. However, this

vortices approach the origin around 20<44, and then annihilation may be an artifact of the finite size of the do-
they are annihilated. After the annihilation, two inner vorti- main. When we carry out the simulation in a domain larger

FIG. 5. Amplitude|A| at time
t=48 and 72.
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|A| standard nonlinear Schdimger equation, are unstable to
transverse perturbations. By carrying out a linear analysis,

0.7 we have found that there exists an instability window of
0.6 transverse wave numbers for the system. By a numerical
05 simulation of the fully nonlinear equation, we have shown
04 that the transverse instability will yield, after a few annihila-
03 tion events, a well-separated chain of vortex solitons with
8? alternating, singly charged polarity or topological charge
o (m==1). These singly charged vortex solitons are topo-

logically stable and do not disappear unless they collide with
their complements and annihilate. The number of the created
vortex solitons seem to be determined by the inverse of the
FIG. 6. Radiation appears after 80. wave numbek,, with the maximum linear growth rate. For
the box size. =28, the six vortex soliton state is found to be

than (L=28) but with the same initial conditions, the third "°PUSt . . .
LS . . . We have suggested a simple and plausible mechanism of
annihilation event takes place at a later time, while the times

of the first and the second annihilation events remain ungngular moment.m generation in the MeV epach of the Uni-

changed. The third annihilation event is likely to be driven Y€rS€- Electromagnetism, operating through the versatile

; o substrate of the electron-positron plasma, seems to readil
by the reflection of the Cherenkov radiation at the boundary, [ - .o highly interestingp Iong-livgd objects, which are ca—y

Equivalently, it may be concluded that six vortex solitons are?

stable in our domain and may stay forever. It is noted that thgable of carrying large amounts of mass, energy and angular

. . . : momentum. Since an initial localization of mass, energy, and
distance among vortices at the final stage approximately co-

incides with the inverse of the wave number with the maxi_angular momentum 1s preC|§er the seed that_gravny needs
for eventual structure formation, electromagnetism may have
mum growth ratek,.

provided a key element in the construction of the large-scale
map of the observable Universe.
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