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Integrable version of Burgers equation in magnetohydrodynamics
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It is pointed out that for the case cdompressiblemagnetohydrodynamig®IHD) with the fieldsv,(y,t)
andB,(y,t), one can have equations of the Burgers type which are integrable. We discuss the solutions. It turns
out that the propagation of the nonlinear effects is governed by the initial vel@sityn Burgers caseas well
as by the initial Alfven velocity. Many results previously obtained for the Burgers equation can be transferred
to the MHD case. We also discuss equipartitign=*B, . It is shown that an initial localized small scale
magnetic field will end up in fields moving to the left and the right, thus transporting energy from smaller to
larger distances.
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The Burgers equatiofl] has been much studied. It can be [11] that the above equations are not integrable. For a review
applied to a variety of phenomena, see, e.g., R&¥s4]. of some of the consequences of these equations, we refer to
Although this equation satisfies a number of propertieRef.[12].
which are similar to hydrodynamics, it is known to be inte- In the following, we consider a different form of
grable. Hence, the Burgers equation does not have the propi+1)-dimensional MHD, where there are really two di-
erties characterizing chaotic dynamical systems. However, tmensionsx andy, but where the fields are restricted to de-
some extent such properties may be simulated by randomend only ony. We restrict ourselves to field3,(y,t) and
boundary condition$5,6]. Also, the long time behavior of vy(y,t). The equation of motioh
decaying solutions of the Burgers equation with an initial
velocity which is homogeneous and Gaussian has been stud- v+ (VV)v=(VXB)XB+ v Vv, 2
ied and many interesting properties of the spectrum have
been found7]. Also, a general statistical theory of the Sto- then becomes
chastic Burgers equation in the inviscid limit has been devel-
oped[8]. For a recent review of “burgulence,” we refer to
the paper by Frisch and B¢8]. These results make it clear
that a number of properties of the Burgers equation ar
highly nontrivial. With this in mind, we present an integrable 9B=V X (VXB)+ (Llo) V2B, (4)
generalization of the Burgers equation. The new equations

are related to magnetohydrodynami@®HD) in a way  whereo is the conductivity of the fluid, becomes
which is analogous to the relation between the Burgers equa-

dwytvydyw,=—BydyBy+ V&ivy . ©)

gimilarly, the equation

tion and the Navier-Stokes equations. Essentially, all proper- 9B, = —ay(vyBX)+(1/o)0§Bx. (5)
ties found for the Burgers equation can be applied to the new
equations, but they also contain some new features. The coupled set of equatiori8) and (5) can be interpreted

MHD in (1+1) dimension has been considered by Tho-by saying that Eq(3) is a Burgers equation with a magneti-
mas[10] long time ago. The fields have the velocity(x,t)  cally generated pressure, governed by E). Like in the

and the magnetic fiel@,(x,t), which satisfy case of Thomas'’s (+1) dimensional equations, dix=0 is
not satisfied, and we have also disregarded a possible varia-
OV Uy = By 3 By + Vﬁivx, tion of the density. Notice, however, that d8~0 is satis-
fied in our approach and that the magnetic pres&/@ is
kept.
9B+ 0 0yBy =B, o+ (L) 42B, . (1) P

The main difference between our equations and those dis-
cussed by Thomas is that his E@) includes a ternB,d,v
The first of these equations is similar to the Burgers equawhich stretches the magnetic field lines and which competes
tion. Both the equations are modeled from the incompresswith the termw,d,B, which (in higher dimensionsbreaks or
ible MHD equations. However, since incompressibility leadstwists the field lines. On the other hand, in our case the
to triviality in (14 1) dimensions, equation div=0 is not  magnetic field is divergence-free, and we included the mag-
enforced, and the totdlncluding the magneticpressure is  netic pressure.
considered to vanish. Also, in these equations it is implicit
that variation of the density is disregarded. Similarly, equa-
tion div B=0 is not satisfied. It has been shown by Passot 1 Egs. (3) and(5), the densityp and the vacuum permeability
o should occur. Thus,N{ X B)XB on the right-hand side should
be multiplied by 14,p. We assume a constamt Then, the follow-
*Email address: polesen@nbi.dk ing rescalings “remove’p and uq: oug— o andB—B/ \//L_op.
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The reduced modéLl) introduced by Thomas is in corre- equal to 1 is primarily that this allows a nontrivial solution of
spondence to special subclasses of solutions to the full MHIEQs. (3) and (5). Furthermore, one space dimension is any-
equations. In our case, Eq®) and (5) are, of course, de- how not realistic.
rived from the real MHD equations, but they do not directly  Adding and subtracting Eq$3) and(5), we obtain in the
correspond to known subclasses of solutions of the MHDspecial cas&9)
equations. However, the reduced model proposed in this pa-
per may have some physical interest, which we shall discuss d(vy+ By +3dy(vy+BYZ=vis(vy+By)  (11)
at the end of this paper after having given the analytic solu-
tion of Egs.(3) and (5). It turns out that the model predicts and
that the magnetic energy which is initially localized at small
scales is moved to large distances by the nonlinear dynamics.

Conservation of energy can be easily checked from Eq
(3) and(5). With

d(vy=By) +3dy(vy—B2=vd(vy—B,). (12

SThese two equations are of the Burgers type.
We remind the reader that the solution of the Burgers

® equation
Frolt)= f_w dy(vy+By), © U+ Uudyu=vgu (13
one has is
dEéoi(t) :Zf: dy(—%ﬁyvi’—ﬁy(vyBiHv vydyvy U(y,t)=%[y—§(y,t)], (14)
1, where
+ ;BxayBx) . (7)

g(y,t):fw ae[(ya)21/4vt+(1/2v>w(a>da/
Assuming no “diffusion at infinity,” i.e., assuming that, —

andB, vanish fory— *o, then -
. . f e [(y=a)2ant+ (V20 p(a) g a. (15)
tot L * -

d"t =—2J wdy( y(ayvy)2+;(aysx)2 .

Here,u(y,t=0)=—d,y(y). For the case where=0, we

. . - have
Thus, energy is conserved in the limifl/oc—0.

The idea is now to compare Eg8) and (5) to the well u(y,t)=u(b(y,t),t=0), (16)
known solution of the Burgers equation found by Hpp8|
and Cole[14], where the diffusive terms in these equationswhereb(y,t) solves the implicit equation
are included. We can show that if

b(y,t)=y—tu(b(y,t),0). (17

Here,b(y,t) can be interpreted as a Lagrangian coordinate,
then the equations are integrable. We do not know if thewith b(y,0)=y for t=0. This solution can be obtained by
equations are still integrable if+ 1/c and/or if variations of  the methods of characteristics or from the saddle point in Eq.
density p are included according to the conservation equa{(15) for »—0. In this case,b(y,t)ﬁg(y,t)_ In the case

v=1/o, 9

tion where there are more than one solution of E&j7), for
b(y,t) one should consider the solution which maximizes the
dp+dy(pv,)=0. (100 expression
Of course, the full set of equations can be studied numeri- (y—b)?
cally. — o T ¥, (18

In the following, we shall consider the case where &Y.

is satisfied. It should be emphasized that this assumption igjth respect tdb, as is obvious from the saddle point expan-
not supposed to represent a realistic estimate of the magnetigon of Eq.(15).

Prandtl numbef,,= o v, which, e.g., for liquid metals is of  For the MHD case, the solution can be found in terms of
the ordef of 107°. Our excuse for having a Prandtl number the initial values

Uy(y,t = O) =- £7y‘1[/v0(y)1
2lt can be mentioned that in numerical simulations of Earth’s dy-

namo with Prandtl number-10"%, one actually uses a value of Bu(y,t=0)=—dy¢go(y). (19
P,~0.1 (not so far from }, since this is what is numerically trac-
table. See, e.g., Ref15]. The Hopf-Cole solution of Burgers equation then gives
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11— —
vy(y,)=1|Y~ 5la+s(y,t)+a,-p(y,1)]

1
== §[¢'uo+Bo(y:t) + ¢ yo-goly,t)] (20

and
1 — _
Bx(ylt):_Z[av-FB(yvt)_av—B(ylt)]
1 — —
=- E[l/f vo+8o(Y,) =4 o-go(Y,D)].  (21)
Here,
a,.a(Y.t)
- f e [(y=a)2ant+ (U20)[0y0(@) = veo(@] g g
) -1
X f e [y-a)2an+ (12000 *vso@lga|  (22)
and similarly,

Wio-po(Yit)
- |7 i@ vig(a

x @ [(y=2)21/ant+(120) [ 4,0(2) = Yo(@)] g 5

-1

% J' " e [-a At (U2 ho@ = vo@llga| . (23)

— o0

The last forms of Eqs20) and(21) follow from

f ) e [(y-a)avt+ (1120 [,0(@) = Vgo(@l g =0, (24)

In case where’ is considered to nearly vanish, the resulting
saddle point simplifies solution®0) and (21), anda’s are

replaced by solutions of the equations

a,p=Y [ o(ay=p)* Yio(@y=p)]- (25)
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1
vy(y,0)=5[vy (b (y,1),0+0vy(b_(y,1),00+ By(b. (y,1),0

—Bx(b_(y,1),0)], (27)
whereb_ (y,t) solve the equations
b.(y,t)=y—toy,(b-(y,1),00+tBy(b~(y,1),0). (28

Like in Burgers caseb-(y,0)=y. Also, there is a simple
Lagrangian interpretation of Eq28), since the right-hand
side involves the initial velocity subtracted or added to the
usual Alfven velocity B,(b-.,0), where it should be remem-
bered that constant {fop was absorbed irB,. In the
saddle point of Eq.(22) for »—O0, we again have
a,-g(y,t)—b.(y,t), with b. given by the dominant saddle
point, as discussed below E@L7). It is, of course, easy to
show directly that Eqs(26) and (27) satisfy the original
equationg3) and (5) with v=1/0=0.

From solutions(26) and (27), one can read off a few
simple properties. If the initial magnetic field,(y,t=0)
vanishes, no magnetic field is generated at other times. This
is already quite obvious from the original equatids and
(5). To see this result from the solution by characteristics, we
notice that ifB, vanishes at=0, it follows from Eq.(28)
thatb,=b_, and Eq.(26) then givesB,(y,t)=0. The ve-
locity field will then behave as a solution of the “pure” Bur-
gers equation foo,, .

A less trivial case is when the initial velocity field
vanishes,

vy(y,t=0)=0. (29)

Then, we obtain both a magnetic and a velocity field as a
consequence of the dynamics, namely,

1
Bx(y, 1) = 5[Bx(b.(y,1),00+B(b-(y,1),0],

1
vy(Y,0)=5[Bx(b+(y,1),00=Bx(b-_(y,),0], (30
with
b..(y,t)=y+t By(b-(y,1),0). (31
We see that if the initial magnetic field is constant, no veloc-

ity field is generated. However, in general, a varying initial
magnetic field is able to generate a velocity field.

These solutions can also be obtained by solving the original In MHD, it has often been discussed whether there is

equations without diffusion®=1/o0=0) by the methods of

equipartitiony, = =B, after a long time. In realistic MHD

characteristics. These solutions can be written in a fornsimulations, one does not find equipartition in all cases. A

analogous to Eq(16),

1
BX(yit) = E[Bx(b+(yvt)1o)+ Bx(bf(yit)io)—i_ Uy(b+(y1t)10)

—vy(b_(y,1),0)] (26)

and

recent study 16] finds that in nonhelical hydromagnetic tur-
bulence in the inertial range the magnetic energy exceeds the
kinetic energy by a factor of 2 to 3. The helical case has
recently been discussed in REL7]. In our case, it follows,
rather trivially, that if the initial fields satisfy equipartition,
then this will be true for all times. In general, we see from
Egs. (26) and (27) that equipartition in the exact sense
requires
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By(b_(y,t),0=v,(b_(y,t),0) We see that the first order changes in the fields do not pre-
serve the initial proportionality. If we start with a magnetic
and field which is much smaller than the velocity<1, then the
_ relative change is larger iB, than inv,. If, on the other
By(b i (y,1),0), wvy(b,(y,t),0) arbitrary hand,\~1, i.e., the initial fields are comparable, then the
corrections found in Eq(36) are of the same order. X is
large, i.e., the initial magnetic field is much larger than the
initial velocity, then the correction to the velocity is larger
than the correction to the magnetic field. Thus, it seems that
the nonlinearity in the basic equations tends to increase the
smallest initial field, for small times.
By(b_(y,1),0), vy(b_(y,1),00 arbitrary, (32 We mention that the contributions to the energy from the
O(t) corrections in Eq(36) is proportional to

or

Bx(b+(ylt) 10): Uy(b+(y,t)'0)

and

for vy=B, andv,=—B,, respectively. In the first case it

follows from Eq.(28) thatb_=y. Hence, from the first line * 2 ot 3

in Eq. (32), it follows that B,(y,0)=v,(y,0), so the initial t]  dyoy(y,0% duy(y.0=50,(y.0%",  (37)

fields are equal. Thus, equipartition requires very special ini-

tial fields and is not possible for general initial conditions. \which vanishes since,(y,0) must approach zero at infinity
The considerations above do not, however, answer thg order that the energy is finite. Thus, the corrections in Eq.

question concerning equipartition after some time hag3g) give no contribution to the total energy. In this argu-

passed. This requires the study of E81) for b. after the  ment, we have disregarded that the perturbation may not be

passage of sufficient time. Let us consider the ag%§.,0)  valid very close toy=0.

=0 and let us take the initial fielB,(y,0) to be localized in We have also investigated the situation numerically, tak-

a domainD in'y. Then, Eq.(31) shows thab.. receive non- ing the initial fieldsv,(y,0)=siny and B,(y,0)=Av,(y,0)

trivial contributions fromb. e D, and these contributions with — w/2<y< 7/2. We find that after a long time the fields

have different signs, i.e., the nontrivial partypbpace move flyctuate considerably. In general, there is no equipartition,
to the right and to the left, so the original dom&@rsplits up  except forh =1. The (fluctuating ratio

into right and left moving domaing,e Dr andy e D . After

some time has passed these domains have no overlap. Using B2
result (30), we then see thaB,(y,t) also moves to the left R= 2—X2 (39
(right) with valueB,(b_,0)/2 (B,(b_,0)/2). Thus, the value vy +By

of the magnetic field has decreased by a factor of 2. At the
same time, it follows from Eq(30) that the velocity has is maximally of the order of 0.006 fok=0.2 after a long
increased from zero teB,(b.)/2. Therefore, one has eq- time (t=14). ForA=0.9 one gets a maximurR value
uipartition. around 0.37. Finally, forx=1.1 one gets a maximaR

If the initial velocity is nonvanishing, it is more difficult around 0.5. Of course, ik=1 the numerical calculations
to estimate the result from Eq80) and(31). We shall there-  give equipartition withR=0.5 for all y.
fore ask what is the tendency after a short time. We start by It is clear that the usual Burgers shock waves are present
considering initial fields which are proportional, in our case too. From E@28), one has that the derivatives of

b (y,t) become infinite for

BX(YaO):)\Uy(yyO)y (33)
1
where \ is some parameter. We now want to solve EQs. t=t(b.)=— - - . (39)
(26)—(28) perturbatively for smalt. Assuming that is not vy(b+,00=B,(b.,0)

too close to zero, E(28) can be solved approximately,
In general, there will actually be more shocks than in the

b.(y,t)=y—(1=Mtvy(y,0), (39 “pure” Burgers case, since derivatives of solutiof2y) and
. o ~ (26) containdyb, as well asdb_ which are infinite at
where the assumption thgtdoes not vanish is needed in t(b.) as well ast(b_).
order that the second term on the right-hand side is small In our case the usual conservation form of the Burgers
relative toy. The fields in Egs(26) and (27) can then be equation are generalized to
expanded, using

1
vy(b.,0~vy(y,0[1-t(1=N)dyu,(y,00] (39 doy=dy| =505

1
—B>2<+ vé’yvy). (40

to obtain the results
Moreover, we also have

Bx(Y,)=Avy(y,0[1-2tdyv(y,0)],

1
0y (Y.) =0 (Y. O[1-t(1+)\) a0 (y.0)].  (36) IBx=dy _UVBXJranBX)' (41)
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In the last equation, one needs, of course, to replagdy/y  tion fyo(k) has similar properties. The energy spectrum at
in order to apply the solutions found in this note. times different from zero can now be analyzed completely as
As already mentioned, the many highly nontrivial proper-in Ref.[7]. For example, for £n<2 the spectrunt,(k,t)
ties of the Burgers equation are shared by the solutions,for has three scaling regions. The first is for very smied,
andB, . This follows simply from the fact that Eqél1) and  where the large eddies are conserved and the behavior agrees
(12 are of the Burgers type, so any property previously dewith the original|k|" with a time-independent constant. The
rived can be applied to fields,+ B, andv,—B,. Thus, second region is & region and the third region is charac-
except for accidental cancellations these properties also holérized by a behaviok 2, associated with the shocks. The
for fieldsvy, andBy. To give an example, consider the cor- switching from the first to the second region occurs fdt a

relation function value around ~ 22" whereas the shift to the last region
occurs around 1/t, except for logarithmic corrections. For
Cly, ) =(vy(y,hoy(O) +Byx(y,)BL(01)), (42 _1<n<1 there is no inner region and the spectrum devel-

ops in a self-similar fashion. For a much more complete
description, we refer to the original pagdén. It would be of
interest to see if somewhat similar results are valid in higher-
dimensional MHD. It should also be emphasized that Egs.
(11) and(12) are the independent equations, and hence, one
{[oy(y: ) +By(y.)][v, (00 +B,(0D]) “3 has the possibilty to study more general situations than those
and discussed in the previous literature. For example, fielgds
+ B, andv,—B, may be started out with different random
([vy(y,t) =By(y,t)][vy(0;) =By (01)]). (44)  initial fields and their spectra will then develop in different

) ] o ways. We have already seen an example of this phenomenon
Each of these two correlation functions contain fields that arg, the perturbative calculation.

solutions of the Burgers equatiofsl) and(12). Hence, we Concerning the use of results obtained from the study of

can use known results from burgulence, for example, fromMhe Burgers equation we mention that in E8), one can add
Refs.[7,9], to obtain information orC(y,t). The total en- 3 forcing termf on the right-hand side. A very interesting

where we take homogeneous random fieldgy,t) and
B,(y,t) with ensemble average€(y,t) can be obtained
from the sum of the correlation functions

ergy spectrum is then given by study of the forced Burgers equation in RgS] can then be
1 (= used in Egs(11) and(12), which would have on the right-
Er(k )= _f C(y,t)evdy. (45) hand. side. The master equation fqr the probability density
2m) = functions ofv,+B, andv,—B,, their differences and gra-

o ) ) ) dients, can then be derived as[B]. Again we refer to the
The total kinetic and magnetic energy is then given by literature[8] for more information.

. We now return to the question as to whether our proposed
Ewol(D)=(v,(y,1)2+B,(y,1)?) = f Ewi(k,t)dk. (46) equations haye some physical releyance', disregarding the ob-
—o vious restrictions due to the low-dimensional structure. Our
i i approach has the property that although the fields depend
By subtracting Eqs(43) and (44), we can also obtain the only on one dimensiog, the magnetic field, (y) points in
correlator a different direction. Thus, we can construct an initial state
_ where the magnetic field in thedirection is localized iry
D(y, ) =(Bx(y.1)vy(01) + B«(0)vy(y.1)) and ask how this field propagates from the equations of mo-
% tion. We take the initial field to be

=f F(k,t)e "vdk. (47

—o0

B,(y,00=Bg=const for —L<y<L,

The functionF is related to the Lorentz force
B,(y,00=0 otherwise, (50

F(O=2(v,(y.DBY(Y,1) = J,ﬂki)dk “9 vy(y,0=0 forall y,

It is now possible to repeat, for example, the arguments ijyhich is a small scale localized field if is not too large.
Ref. [7] to obtain information orC(y,t) andF(y,t), if we  This field is a rudimentary version of a flux tube, which
assume initial fields which are homogeneous and Gaussiagalistically would be a magnetic field locally pointing, e.g.,
with initial spectra of the form in the x direction with a cross section in tlyez plane. In our
o o1in case, this cross section degenerates to a line segment
Ewn(k,t)=a*[K|"eo(k) and F(k,t)=pB%k|"fo(k). <y<L. Ignoring diffusion, the time-dependent solution can
be obtained from Eqg30) and (31),

Here,n is the spectral index aney(k) is an even and non- 1 1
negative function witheg(0)=1 assumed to be even and _= _ =
decreasing faster than any powerkoét infinity. The func- Bx(y,D=5Bo, vy(y,)=3B0 (52)
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for —L+tBy<y<L+tBy, ing energy from small to large distances. This is similar to
the phenomenon of an inverse cascade in higher dimensions.
This effect has been observed in two and three dimensions in

Bx(y,t) = EBO' vy(y,0)=- EBO realistic simulations of MHD. Since this phenomenon occurs
in our reduced model one can say that our model given by

for —L—tBy<y<L-—1Bg, Egs. (3) and (5) has some physical relevance. However, in
three(but not twg dimensions, the inverse cascade is usually

Bx(y,t)=vy(y,t)=0 outside these intervals. linked to helicity, which does not exist in our case for obvi-

Thus, the initial flux “tube” d into tubes, O-o Casons.
I ) ) - nght. AISo, MHD in one and in higher dimensions. For example, in the
initial magnetic energy is converted into kinetic energy, an . . o ;

atter casddifferential), rotation is possible and one can have

equipartition Is ac“!a”y obta[ned. We see that the onginay, dynamo effect. Further, important topological changes of
localized configuration turns into a less localized configuras

) . , . Hux tubes are possible. Also, the higher-dimensional MHD
tion. This example can be generalized to more compllcatee uations exhibit genuine chaotic behaviag], which can
initial localized fields whereB, has different values in dif- q g '

. . . . only be simulated to some extent {fi+1) dimension by
ferent nearby intervals. In such cases again tRgfields in : e
. : . having random initial fields.
each interval start to split and move out to larger distances to
the left and the right. In this way, a fairly localized initial | thank Axel Brandenburg for informing me about the
magnetic field will end up as a rather delocalized state, movwork in Ref.[12].
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