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Integrable version of Burgers equation in magnetohydrodynamics

P. Olesen*
Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen O” , Denmark

~Received 7 April 2003; published 23 July 2003!

It is pointed out that for the case of~compressible! magnetohydrodynamics~MHD! with the fieldsvy(y,t)
andBx(y,t), one can have equations of the Burgers type which are integrable. We discuss the solutions. It turns
out that the propagation of the nonlinear effects is governed by the initial velocity~as in Burgers case! as well
as by the initial Alfvén velocity. Many results previously obtained for the Burgers equation can be transferred
to the MHD case. We also discuss equipartitionvy56Bx . It is shown that an initial localized small scale
magnetic field will end up in fields moving to the left and the right, thus transporting energy from smaller to
larger distances.

DOI: 10.1103/PhysRevE.68.016307 PACS number~s!: 47.65.1a, 05.45.2a
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The Burgers equation@1# has been much studied. It can b
applied to a variety of phenomena, see, e.g., Refs.@2–4#.
Although this equation satisfies a number of propert
which are similar to hydrodynamics, it is known to be int
grable. Hence, the Burgers equation does not have the p
erties characterizing chaotic dynamical systems. Howeve
some extent such properties may be simulated by ran
boundary conditions@5,6#. Also, the long time behavior o
decaying solutions of the Burgers equation with an init
velocity which is homogeneous and Gaussian has been s
ied and many interesting properties of the spectrum h
been found@7#. Also, a general statistical theory of the St
chastic Burgers equation in the inviscid limit has been dev
oped@8#. For a recent review of ‘‘burgulence,’’ we refer t
the paper by Frisch and Bec@9#. These results make it clea
that a number of properties of the Burgers equation
highly nontrivial. With this in mind, we present an integrab
generalization of the Burgers equation. The new equati
are related to magnetohydrodynamics~MHD! in a way
which is analogous to the relation between the Burgers eq
tion and the Navier-Stokes equations. Essentially, all prop
ties found for the Burgers equation can be applied to the n
equations, but they also contain some new features.

MHD in (111) dimension has been considered by Th
mas@10# long time ago. The fields have the velocityvx(x,t)
and the magnetic fieldBx(x,t), which satisfy

] tvx1vx]xvx5Bx]xBx1n]x
2vx ,

] tBx1vx]xBx5Bx]xvx1~1/s!]x
2Bx . ~1!

The first of these equations is similar to the Burgers eq
tion. Both the equations are modeled from the incompre
ible MHD equations. However, since incompressibility lea
to triviality in (111) dimensions, equation divv50 is not
enforced, and the total~including the magnetic! pressure is
considered to vanish. Also, in these equations it is impl
that variation of the density is disregarded. Similarly, eq
tion div B50 is not satisfied. It has been shown by Pas
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@11# that the above equations are not integrable. For a rev
of some of the consequences of these equations, we ref
Ref. @12#.

In the following, we consider a different form o
(111)-dimensional MHD, where there are really two d
mensions,x andy, but where the fields are restricted to d
pend only ony. We restrict ourselves to fieldsBx(y,t) and
vy(y,t). The equation of motion1

] tv1~v“ !v5~“3B!3B1n ¹2v, ~2!

then becomes

] tvy1vy]yvy52Bx]yBx1n]y
2vy . ~3!

Similarly, the equation

] tB5“3~v3B!1~1/s!¹2B, ~4!

wheres is the conductivity of the fluid, becomes

] tBx52]y~vyBx!1~1/s!]y
2Bx . ~5!

The coupled set of equations~3! and ~5! can be interpreted
by saying that Eq.~3! is a Burgers equation with a magnet
cally generated pressure, governed by Eq.~5!. Like in the
case of Thomas’s (111) dimensional equations, divv50 is
not satisfied, and we have also disregarded a possible v
tion of the density. Notice, however, that divB50 is satis-
fied in our approach and that the magnetic pressureBx

2/2 is
kept.

The main difference between our equations and those
cussed by Thomas is that his Eq.~1! includes a termBx]xvx
which stretches the magnetic field lines and which compe
with the termvx]xBx which ~in higher dimensions! breaks or
twists the field lines. On the other hand, in our case
magnetic field is divergence-free, and we included the m
netic pressure.

1In Eqs. ~3! and ~5!, the densityr and the vacuum permeability
m0 should occur. Thus, (“3B)3B on the right-hand side should
be multiplied by 1/m0r. We assume a constantr. Then, the follow-
ing rescalings ‘‘remove’’r andm0 : sm0→s andB→B/Am0r.
©2003 The American Physical Society07-1
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The reduced model~1! introduced by Thomas is in corre
spondence to special subclasses of solutions to the full M
equations. In our case, Eqs.~3! and ~5! are, of course, de
rived from the real MHD equations, but they do not direc
correspond to known subclasses of solutions of the M
equations. However, the reduced model proposed in this
per may have some physical interest, which we shall disc
at the end of this paper after having given the analytic so
tion of Eqs.~3! and ~5!. It turns out that the model predict
that the magnetic energy which is initially localized at sm
scales is moved to large distances by the nonlinear dynam

Conservation of energy can be easily checked from E
~3! and ~5!. With

Etot~ t !5E
2`

`

dy~vy
21Bx

2!, ~6!

one has

dEtot~ t !

dt
52E

2`

`

dyS 2
1

3
]yvy

32]y~vyBx
2!1n vy]y

2vy

1
1

s
Bx]y

2BxD . ~7!

Assuming no ‘‘diffusion at infinity,’’ i.e., assuming thatvy
andBx vanish fory→6`, then

dEtot~ t !

dt
522E

2`

`

dyS n~]yvy!21
1

s
~]yBx!

2D . ~8!

Thus, energy is conserved in the limitn,1/s→0.
The idea is now to compare Eqs.~3! and ~5! to the well

known solution of the Burgers equation found by Hopf@13#
and Cole@14#, where the diffusive terms in these equatio
are included. We can show that if

n51/s, ~9!

then the equations are integrable. We do not know if
equations are still integrable ifnÞ1/s and/or if variations of
densityr are included according to the conservation eq
tion

] tr1]y~rvy!50. ~10!

Of course, the full set of equations can be studied num
cally.

In the following, we shall consider the case where Eq.~9!
is satisfied. It should be emphasized that this assumptio
not supposed to represent a realistic estimate of the mag
Prandtl numberPm5sn, which, e.g., for liquid metals is o
the order2 of 1025. Our excuse for having a Prandtl numb

2It can be mentioned that in numerical simulations of Earth’s
namo with Prandtl number;1026, one actually uses a value o
Pm;0.1 ~not so far from 1!, since this is what is numerically trac
table. See, e.g., Ref.@15#.
01630
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equal to 1 is primarily that this allows a nontrivial solution
Eqs. ~3! and ~5!. Furthermore, one space dimension is an
how not realistic.

Adding and subtracting Eqs.~3! and~5!, we obtain in the
special case~9!

] t~vy1Bx!1 1
2 ]y~vy1Bx!

25n]y
2~vy1Bx! ~11!

and

] t~vy2Bx!1 1
2 ]y~vy2Bx!

25n]y
2~vy2Bx!. ~12!

These two equations are of the Burgers type.
We remind the reader that the solution of the Burg

equation

] tu1u]yu5n]y
2u ~13!

is

u~y,t !5
1

t
@y2ā~y,t !#, ~14!

where

ā~y,t !5E
2`

`

ae2[( y2a)2]/4nt1(1/2n)c(a)daY
E

2`

`

e2[( y2a)2]/4nt1(1/2n)c(a)da. ~15!

Here, u(y,t50)52]yc(y). For the case wheren50, we
have

u~y,t !5u„b~y,t !,t50…, ~16!

whereb(y,t) solves the implicit equation

b~y,t !5y2tu„b~y,t !,0…. ~17!

Here,b(y,t) can be interpreted as a Lagrangian coordina
with b(y,0)5y for t50. This solution can be obtained b
the methods of characteristics or from the saddle point in
~15! for n→0. In this case,b(y,t)→ā(y,t). In the case
where there are more than one solution of Eq.~17!, for
b(y,t) one should consider the solution which maximizes
expression

2
~y2b!2

2t
1c~b!, ~18!

with respect tob, as is obvious from the saddle point expa
sion of Eq.~15!.

For the MHD case, the solution can be found in terms
the initial values

vy~y,t50![2]ycv0~y!,

Bx~y,t50![2]ycB0~y!. ~19!

The Hopf-Cole solution of Burgers equation then gives

-

7-2
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INTEGRABLE VERSION OF BURGERS EQUATION IN . . . PHYSICAL REVIEW E68, 016307 ~2003!
vy~y,t !5
1

t Fy2
1

2
@ āv1B~y,t !1āv2B~y,t !#G

52
1

2
@c 8̄v01B0~y,t !1c 8̄v02B0~y,t !# ~20!

and

Bx~y,t !52
1

2t
@ āv1B~y,t !2āv2B~y,t !#

52
1

2
@c 8̄v01B0~y,t !2c 8̄v02B0~y,t !#. ~21!

Here,

āv6B~y,t !

5E
2`

`

ae2[( y2a)2]/4nt1(1/2n)[cv0(a)6cB0(a)]da

3F E
2`

`

e2[( y2a)2]/4nt1(1/2n)[cv0(a)6cB0(a)]daG21

, ~22!

and similarly,

c̄v06B08 ~y,t !

5E
2`

`

@cv08 ~a!6cB08 ~a!#

3e2[( y2a)2]/4nt1(1/2n)[cv0(a)6cB0(a)]da

3F E
2`

`

e2[( y2a)2]/4nt1(1/2n)[cv0(a)6cB0(a)]daG21

. ~23!

The last forms of Eqs.~20! and ~21! follow from

E
2`

` ]

]a
e2[( y2a)2]/4nt1(1/2n)[cv0(a)6cB0(a)]da50. ~24!

In case wheren is considered to nearly vanish, the resulti
saddle point simplifies solutions~20! and ~21!, and ā’s are
replaced by solutions of the equations

āv6B5y1t@cv08 ~ āv6B!6cB08 ~ āv6B!#. ~25!

These solutions can also be obtained by solving the orig
equations without diffusion (n51/s50) by the methods of
characteristics. These solutions can be written in a fo
analogous to Eq.~16!,

Bx~y,t !5
1

2
@Bx„b1~y,t !,0…1Bx„b2~y,t !,0…1vy„b1~y,t !,0…

2vy„b2~y,t !,0…# ~26!

and
01630
al

vy~y,t !5
1

2
@vy„b1~y,t !,0…1vy„b2~y,t !,0…1Bx„b1~y,t !,0…

2Bx„b2~y,t !,0…#, ~27!

whereb6(y,t) solve the equations

b6~y,t !5y2tvy„b6~y,t !,0…7tBx„b6~y,t !,0…. ~28!

Like in Burgers case,b6(y,0)5y. Also, there is a simple
Lagrangian interpretation of Eq.~28!, since the right-hand
side involves the initial velocity subtracted or added to t
usual Alfvén velocity Bx(b6,0), where it should be remem
bered that constant 1/Am0r was absorbed inBx . In the
saddle point of Eq. ~22! for n→0, we again have
āv6B(y,t)→b6(y,t), with b6 given by the dominant saddl
point, as discussed below Eq.~17!. It is, of course, easy to
show directly that Eqs.~26! and ~27! satisfy the original
equations~3! and ~5! with n51/s50.

From solutions~26! and ~27!, one can read off a few
simple properties. If the initial magnetic fieldBx(y,t50)
vanishes, no magnetic field is generated at other times.
is already quite obvious from the original equations~3! and
~5!. To see this result from the solution by characteristics,
notice that ifBx vanishes att50, it follows from Eq.~28!
that b15b2 , and Eq.~26! then givesBx(y,t)50. The ve-
locity field will then behave as a solution of the ‘‘pure’’ Bur
gers equation forvy .

A less trivial case is when the initial velocity fiel
vanishes,

vy~y,t50!50. ~29!

Then, we obtain both a magnetic and a velocity field a
consequence of the dynamics, namely,

Bx~y,t !5
1

2
@Bx„b1~y,t !,0…1Bx„b2~y,t !,0…#,

vy~y,t !5
1

2
@Bx„b1~y,t !,0…2Bx„b2~y,t !,0…#, ~30!

with

b6~y,t !5y7t Bx„b6~y,t !,0…. ~31!

We see that if the initial magnetic field is constant, no velo
ity field is generated. However, in general, a varying init
magnetic field is able to generate a velocity field.

In MHD, it has often been discussed whether there
equipartition,vy56Bx , after a long time. In realistic MHD
simulations, one does not find equipartition in all cases
recent study@16# finds that in nonhelical hydromagnetic tu
bulence in the inertial range the magnetic energy exceeds
kinetic energy by a factor of 2 to 3. The helical case h
recently been discussed in Ref.@17#. In our case, it follows,
rather trivially, that if the initial fields satisfy equipartition
then this will be true for all times. In general, we see fro
Eqs. ~26! and ~27! that equipartition in the exact sens
requires
7-3
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P. OLESEN PHYSICAL REVIEW E 68, 016307 ~2003!
Bx„b2~y,t !,0…5vy„b2~y,t !,0…

and

Bx„b1~y,t !,0…, vy„b1~y,t !,0… arbitrary

or

Bx„b1~y,t !,0…5vy„b1~y,t !,0…

and

Bx„b2~y,t !,0…, vy„b2~y,t !,0… arbitrary, ~32!

for vy5Bx and vy52Bx , respectively. In the first case
follows from Eq.~28! that b25y. Hence, from the first line
in Eq. ~32!, it follows that Bx(y,0)5vy(y,0), so the initial
fields are equal. Thus, equipartition requires very special
tial fields and is not possible for general initial conditions

The considerations above do not, however, answer
question concerning equipartition after some time h
passed. This requires the study of Eq.~31! for b6 after the
passage of sufficient time. Let us consider the casevy(y,0)
50 and let us take the initial fieldBx(y,0) to be localized in
a domainD in y. Then, Eq.~31! shows thatb6 receive non-
trivial contributions fromb6PD, and these contribution
have different signs, i.e., the nontrivial part ofy space move
to the right and to the left, so the original domainD splits up
into right and left moving domains,yPDR andyPDL . After
some time has passed these domains have no overlap. U
result ~30!, we then see thatBx(y,t) also moves to the lef
~right! with valueBx(b2,0)/2 „Bx(b2,0)/2…. Thus, the value
of the magnetic field has decreased by a factor of 2. At
same time, it follows from Eq.~30! that the velocity has
increased from zero to6Bx(b6)/2. Therefore, one has eq
uipartition.

If the initial velocity is nonvanishing, it is more difficul
to estimate the result from Eqs.~30! and~31!. We shall there-
fore ask what is the tendency after a short time. We star
considering initial fields which are proportional,

Bx~y,0!5lvy~y,0!, ~33!

where l is some parameter. We now want to solve E
~26!–~28! perturbatively for smallt. Assuming thaty is not
too close to zero, Eq.~28! can be solved approximately,

b6~y,t !'y2~16l!tvy~y,0!, ~34!

where the assumption thaty does not vanish is needed
order that the second term on the right-hand side is sm
relative to y. The fields in Eqs.~26! and ~27! can then be
expanded, using

vy~b6,0!'vy~y,0!@12t~16l!]yvy~y,0!# ~35!

to obtain the results

Bx~y,t !'lvy~y,0!@122t]yvy~y,0!#,

vy~y,t !'vy~y,0!@12t~11l2!]yvy~y,0!#. ~36!
01630
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We see that the first order changes in the fields do not
serve the initial proportionality. If we start with a magnet
field which is much smaller than the velocity,l!1, then the
relative change is larger inBx than in vy . If, on the other
hand,l;1, i.e., the initial fields are comparable, then t
corrections found in Eq.~36! are of the same order. Ifl is
large, i.e., the initial magnetic field is much larger than t
initial velocity, then the correction to the velocity is large
than the correction to the magnetic field. Thus, it seems
the nonlinearity in the basic equations tends to increase
smallest initial field, for small times.

We mention that the contributions to the energy from t
O(t) corrections in Eq.~36! is proportional to

tE
2`

`

dyvy~y,0!2 ]yvy~y,0!5
t

3
vy~y,0!3u2`

` , ~37!

which vanishes sincevy(y,0) must approach zero at infinit
in order that the energy is finite. Thus, the corrections in E
~36! give no contribution to the total energy. In this arg
ment, we have disregarded that the perturbation may no
valid very close toy50.

We have also investigated the situation numerically, t
ing the initial fieldsvy(y,0)5siny and Bx(y,0)5lvy(y,0)
with 2p/2,y,p/2. We find that after a long time the field
fluctuate considerably. In general, there is no equipartiti
except forl51. The~fluctuating! ratio

R5
Bx

2

vy
21Bx

2
~38!

is maximally of the order of 0.006 forl50.2 after a long
time (t514). For l50.9 one gets a maximumR value
around 0.37. Finally, forl51.1 one gets a maximalR
around 0.5. Of course, ifl51 the numerical calculations
give equipartition withR50.5 for all y.

It is clear that the usual Burgers shock waves are pre
in our case too. From Eq.~28!, one has that the derivatives o
b6(y,t) become infinite for

t5t~b6!52
1

vy8~b6,0!6Bx8~b6,0!
. ~39!

In general, there will actually be more shocks than in t
‘‘pure’’ Burgers case, since derivatives of solutions~27! and
~26! contain ]yb1 as well as]yb2 which are infinite at
t(b1) as well ast(b2).

In our case the usual conservation form of the Burg
equation are generalized to

] tvy5]yS 2
1

2
vy

22
1

2
Bx

21n]yvyD . ~40!

Moreover, we also have

] tBx5]yS 2vyBx1
1

s
]yBxD . ~41!
7-4
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INTEGRABLE VERSION OF BURGERS EQUATION IN . . . PHYSICAL REVIEW E68, 016307 ~2003!
In the last equation, one needs, of course, to replace 1/s by n
in order to apply the solutions found in this note.

As already mentioned, the many highly nontrivial prop
ties of the Burgers equation are shared by the solutions fovy
andBx . This follows simply from the fact that Eqs.~11! and
~12! are of the Burgers type, so any property previously
rived can be applied to fieldsvy1Bx and vy2Bx . Thus,
except for accidental cancellations these properties also
for fields vy andBx . To give an example, consider the co
relation function

C~y,t !5^vy~y,t !vy~0,t !1Bx~y,t !Bx~0,t !&, ~42!

where we take homogeneous random fieldsvy(y,t) and
Bx(y,t) with ensemble averages.C(y,t) can be obtained
from the sum of the correlation functions

^@vy~y,t !1By~y,t !#@vy~0,t !1By~0,t !#& ~43!

and

^@vy~y,t !2By~y,t !#@vy~0,t !2By~0,t !#&. ~44!

Each of these two correlation functions contain fields that
solutions of the Burgers equations~11! and ~12!. Hence, we
can use known results from burgulence, for example, fr
Refs. @7,9#, to obtain information onC(y,t). The total en-
ergy spectrum is then given by

Etot~k,t !5
1

2pE2`

`

C~y,t !eikydy. ~45!

The total kinetic and magnetic energy is then given by

Etot~ t ![^vy~y,t !21Bx~y,t !2&5E
2`

`

Etot~k,t !dk. ~46!

By subtracting Eqs.~43! and ~44!, we can also obtain the
correlator

D~y,t !5^Bx~y,t !vy~0,t !1Bx~0,t !vy~y,t !&

5E
2`

`

F~k,t !e2 ikydk. ~47!

The functionF is related to the Lorentz force

F~ t ![2^vy~y,t !Bx~y,t !&5E
2`

`

F~k,t !dk. ~48!

It is now possible to repeat, for example, the arguments
Ref. @7# to obtain information onC(y,t) andF(y,t), if we
assume initial fields which are homogeneous and Gaus
with initial spectra of the form

Etot~k,t !5a2ukune0~k! and F~k,t !5b2ukunf 0~k!.
~49!

Here,n is the spectral index ande0(k) is an even and non
negative function withe0(0)51 assumed to be even an
decreasing faster than any power ofk at infinity. The func-
01630
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tion f 0(k) has similar properties. The energy spectrum
times different from zero can now be analyzed completely
in Ref. @7#. For example, for 1,n,2 the spectrumEtot(k,t)
has three scaling regions. The first is for very smallk’s,
where the large eddies are conserved and the behavior a
with the originalukun with a time-independent constant. Th
second region is ak2 region and the third region is charac
terized by a behaviork22, associated with the shocks. Th
switching from the first to the second region occurs for ak
value aroundt21/[2(22n)] , whereas the shift to the last regio
occurs around 1/At, except for logarithmic corrections. Fo
21,n,1 there is no inner region and the spectrum dev
ops in a self-similar fashion. For a much more comple
description, we refer to the original paper@7#. It would be of
interest to see if somewhat similar results are valid in high
dimensional MHD. It should also be emphasized that E
~11! and ~12! are the independent equations, and hence,
has the possibilty to study more general situations than th
discussed in the previous literature. For example, fieldsvy
1Bx and vy2Bx may be started out with different random
initial fields and their spectra will then develop in differe
ways. We have already seen an example of this phenome
in the perturbative calculation.

Concerning the use of results obtained from the study
the Burgers equation we mention that in Eq.~3!, one can add
a forcing termf on the right-hand side. A very interestin
study of the forced Burgers equation in Ref.@8# can then be
used in Eqs.~11! and~12!, which would havef on the right-
hand side. The master equation for the probability den
functions ofvy1Bx and vy2Bx , their differences and gra
dients, can then be derived as in@8#. Again we refer to the
literature@8# for more information.

We now return to the question as to whether our propo
equations have some physical relevance, disregarding the
vious restrictions due to the low-dimensional structure. O
approach has the property that although the fields dep
only on one dimensiony, the magnetic fieldBx(y) points in
a different direction. Thus, we can construct an initial st
where the magnetic field in thex direction is localized iny
and ask how this field propagates from the equations of m
tion. We take the initial field to be

Bx~y,0!5B05const for 2L,y,L,

Bx~y,0!50 otherwise, ~50!

vy~y,0!50 for all y,

which is a small scale localized field ifL is not too large.
This field is a rudimentary version of a flux tube, whic
realistically would be a magnetic field locally pointing, e.g
in thex direction with a cross section in they,z plane. In our
case, this cross section degenerates to a line segment2L
,y,L. Ignoring diffusion, the time-dependent solution c
be obtained from Eqs.~30! and ~31!,

Bx~y,t !5
1

2
B0 , vy~y,t !5

1

2
B0 ~51!
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for 2L1tB0,y,L1tB0 ,

Bx~y,t !5
1

2
B0 , vy~y,t !52

1

2
B0

for 2L2tB0,y,L2tB0 ,

Bx~y,t !5vy~y,t !50 outside these intervals.

Thus, the initial flux ‘‘tube’’ decays into two new tubes
which move towards the left and the right. Also, half of t
initial magnetic energy is converted into kinetic energy, a
equipartition is actually obtained. We see that the origi
localized configuration turns into a less localized configu
tion. This example can be generalized to more complica
initial localized fields whereBx has different values in dif-
ferent nearbyy intervals. In such cases again theBx fields in
each interval start to split and move out to larger distance
the left and the right. In this way, a fairly localized initia
magnetic field will end up as a rather delocalized state, m
d

G.

th

01630
d
l
-
d

to

v-

ing energy from small to large distances. This is similar
the phenomenon of an inverse cascade in higher dimens
This effect has been observed in two and three dimension
realistic simulations of MHD. Since this phenomenon occ
in our reduced model one can say that our model given
Eqs. ~3! and ~5! has some physical relevance. However,
three~but not two! dimensions, the inverse cascade is usua
linked to helicity, which does not exist in our case for obv
ous reasons.

There are, of course, very important differences betw
MHD in one and in higher dimensions. For example, in t
latter case~differential!, rotation is possible and one can ha
the dynamo effect. Further, important topological changes
flux tubes are possible. Also, the higher-dimensional MH
equations exhibit genuine chaotic behavior@12#, which can
only be simulated to some extent in~111! dimension by
having random initial fields.

I thank Axel Brandenburg for informing me about th
work in Ref. @12#.
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