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Three-dimensional lattice Boltzmann model for compressible flows
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A three-dimensional compressible lattice Boltzmann model is formulated on a cubic lattice. A very large
particle-velocity set is incorporated in order to enable a greater variation in the mean velocity. Meanwhile, the
support set of the equilibrium distribution has only six directions. Therefore, this model can efficiently handle
flows over a wide range of Mach numbers and capture shock waves. Due to the simple form of the equilibrium
distribution, the fourth-order velocity tensors are not involved in the formulation. Unlike the standard lattice
Boltzmann model, no special treatment is required for the homogeneity of fourth-order velocity tensors on
square lattices. The Navier-Stokes equations were recovered, using the Chapman-Enskog method from the
Bhatnagar-Gross-Krook~BGK! lattice Boltzmann equation. The second-order discretization error of the fluc-
tuation velocity in the macroscopic conservation equation was eliminated by means of a modified collision
invariant. The model is suitable for both viscous and inviscid compressible flows with or without shocks. Since
the present scheme deals only with the equilibrium distribution that depends only on fluid density, velocity, and
internal energy, boundary conditions on curved wall are easily implemented by an extrapolation of macro-
scopic variables. To verify the scheme for inviscid flows, we have successfully simulated a three-dimensional
shock-wave propagation in a box and a normal shock of Mach number 10 over a wedge. As an application to
viscous flows, we have simulated a flat plate boundary layer flow, flow over a cylinder, and a transonic flow
over a NACA0012 airfoil cascade.
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I. INTRODUCTION

The lattice Boltzmann method~LBM ! @1–3# is a relatively
new numerical approach for simulating complex flow a
transport phenomena in cases where direct solution of
Navier-Stokes equations is not practical. Unlike conventio
computational fluid dynamics~CFD! methods based on mac
roscopic continuum equations, the LBM uses a mesosc
equation, i.e., the Boltzmann equation, to determine ma
scopic fluid dynamics. The LBM is flexible, has broad app
cability, and may be easily adapted for parallel computing
has been successfully applied to multiphase and multic
ponent fluids, flows through porous media, and solid part
suspensions.

The LBM originated from a Boolean model known as t
lattice gas automata~LGA! @4,5#. In a LGA method, the loca
equilibrium distribution is described by the Fermi-Dirac s
tistics. As a result, LGA has several shortcomings: high s
tistical noises, the violation of Galilean transformation i
variance in their resulting hydrodynamics equations, and
failure in high Reynolds number computations. To elimina
noise, the Boltzmann equation was used to simulate
lattice-gas automata@6,7#; however, other problems, i.e
non-Galilean invariance and low Reynolds number,
mained. These difficulties led to the development of the
method@1–3#. Higuera, Succi, and Benzi and Benzi, Suc
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and Vergassola@3# simplified the collision term by a linea
operator. Chen, Chen, and Matthaeus@1# and Qian,
d’Humiéres, and Lallemand@2# used a simpler collision op
erator of the Bhatnagar-Gross-Krook~BGK! type @8#. The
equilibrium distribution was an approximation of the Ma
wellian equilibrium distribution. Galilean invariance wa
guaranteed in these LB models. The LB models of BGK ty
@1,2# have only a single ratio of viscosity to thermal condu
tivity, while the models of linear collision operator@3# allow
for independently varying viscosities and thermal cond
tivities. The LB models have been successfully applied
various physical problems, such as single component hy
dynamics, multiphase and multicomponent fluid flows, ma
netohydrodynamics, reaction-diffusion systems, flo
through porous media, and other complex systems at s
Mach numbers@9,10#.

Unfortunately, as a new CFD tool, the general LB meth
developed in the past suffered from the constraint of sm
Mach number because the particle velocities belong to a
nite set, and the resulting macroscopic velocity is alwa
much smaller than the speed of sound calculated from
microscopic diffusion velocity.

Efforts have been made to increase the allowable M
number range and to incorporate the effects of tempera
into lattice Boltzmann simulations. Choosing a modifi
equilibrium distribution, Alexander, Chen, and Doolen@11#
replicated the Burger’s equation with a controllable sou
speed. Yu and Zhao@12# introduced an attractive force t
reduce the sound speed and to alleviate the small Mach n
ber restriction; however, the energy equation was not rec
ered in their formulation. Palmer and Rector@13# formulated
a thermal model that can simulate temperature variations
flow, but high Mach number effects were not included in th
study.
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Two schemes related to the LB method, the gas-kin
theory @14,15# and the discrete-velocity model@16,17#, had
been used to simulate the compressible Euler equation
both of the above works, the flux-splitting approach w
total variation diminishing~TVD! flux limitation was em-
ployed to determine the mean flux to neighboring cells. N
diga @16,17# introduced an adaptive-velocity concept in t
discrete-velocity model for compressible inviscid flow
Huanget al. @18# similarly used adaptive discrete velocitie
to simulate one-dimensional shock waves. Only under s
cial circumstances, the Boltzmann equation used in th
methods is equivalent to the lattice Boltzmann equation@19#,
but the lattice Boltzmann equation is much easier to solv

Recently, we proposed a locally adaptive LB model
hexagonal lattice@20# based on a large particle-velocity se
so that the mean flow may have a high velocity; however,
support set of the equilibrium distribution is quite small a
similar to the adaptive velocities of Nadiga’s Euler solv
@17#. This model is suitable for a wide range of Mach num
bers and does not consume much computer resource. C
pressible Navier-Stokes equations including the energy e
tion are derived from the BGK lattice Boltzmann equatio
therefore, this model can simulate compressible visc
flows that include heat transfer@21,22#. If the viscous terms
are considered as discretization error and a slip wall co
tion is employed, the solution can be compared with co
pressible Euler solutions. The numerical simulations show
that the model has the capability of solving compressi
Euler flows with strong shocks@20,23,24# and has high par-
allel computing efficiency@25,26#. This locally adaptive LB
model has been also formulated on a two-dimensional sq
lattice @27#. All the previous simulations were carried out fo
periodical or flat wall boundary conditions, or a combinati
of the two.

In LBM, the boundary conditions have been direc
adopted from the lattice-gas automaton method. A comm
method of modeling no-slip walls in LBM simulations is t
use the bounce-back boundary condition in which partic
that stream into the walls ‘‘bounce back’’ and exit the wall
the direction from which they came. It has been noted t
the bounce-back boundary condition is second order
walls aligned with the lattice; however, it gives only firs
order accuracy at the curved boundaries@28,29#. Several
boundary treatments have been proposed for achie
second-order accuracy for no-slip velocity conditions
curved walls@30–33#. In these treatments boundary cond
tions for the particle distribution function had to be handl
with given macroscopic quantities. In complicated flu
flows, boundary conditions might include a combination
velocity, density, temperature, and their derivatives. To a c
tain degree, achieving self-consistent boundary conditi
with a given accuracy is as important as developing num
cal schemes themselves.

In the present work, we establish a three-dimensional
model on a cubic lattice. Due to the simple form of t
equilibrium distribution, the fourth-order velocity tensors a
not involved in the formulation. Unlike traditional lattic
Boltzmann models, no special treatment is required for
homogeneity of fourth-order velocity tensors on square
01630
ic

In

-

.

e-
se

.

e

r
-
m-
a-
;
s

i-
-
d
e

re

n

s

t
r

g

f
r-
s
i-

B

e
t-

tices. In this formulation, the second-order discretization
rors in velocity have been eliminated so that the mode
more accurate for viscous flows. The model is capable
simulating both viscous and inviscid compressible flows, a
is shock capturing. In the traditional LB models the boun
ary conditions must be given in terms of the particle dis
bution function, while the present scheme deals only with
equilibrium distribution that depends only on fluid densi
velocity, and internal energy. The boundary condition on
curved wall is easily treated by extrapolating macrosco
variables.

II. THREE-DIMENSIONAL COMPRESSIBLE LB MODEL

A. Basic equations

Conventionally, the LB method solves a discretized BG
type of the Boltzmann equation, where the unknown varia
is the particle density distribution functionf (x,cj ,t), where
x is the location of the lattice node, andcj is the particle
velocity. In the conventional LB models, the particle veloc
magnitude is restricted tocj5 l /Dt, wherel is the length of
the side of the lattice. The macroscopic velocity obtain
from this model can only be less thancj . On the other hand
the speed of sound, in general, is of the order ofl /Dt. Thus,
the Mach number of the solution is severely limited a
high-speed compressible flows cannot be solved.

In order to overcome this limitation on the macroscop
velocity, we introduce a larger particle velocity set,S5$c%,
in the present model, wherec is the migrating velocity of the
particles. The migrating velocityc, unlike cj of the standard
LB models, is unrestricted so that the particles are allowe
travel any number of lattice lengths.

In the final LB model, only a discrete finite subset of th
migrating velocityc is used; this causes errors in the mac
scopic solution. In order to minimize the discretization err
we introduce a continuous massm, momentumj, and energy
z, transported by a particle. The migrating velocityc is only
used to calculate the location of the particle.

We havej andcPD1 , whereD1 is a bounded domain in
R3; m andzPD0 , whereD0 is a bounded domain inR. In
a standard LB model, space, time, and the particle velo
are all discrete. If we letj and z take the valuesmc and
mc2/2, respectively, then the present model will be consist
with the conventional LB model; however, the velocity s
S(c) is still larger than that of the conventional model.

With the above definition of velocities, momentum, a
energy, we now definef (x,c,m,j,z,t) as the particle density
distribution function for particles located atx, with a con-
tinuous massm, momentumj, and energyz to be transported
at a migrating velocityc. In other words, these particles wi
move tox1cDt afterDt, and transporting with them a mas
m, momentumj, and energyz.

The macroscopic quantities, i.e., massr, momentumrv,
and energyrE, are defined as

Y[(
c
E

D
hf ~x,c,h,t !dh, ~1!
3-2



d
a

iv

o

o-

g

e
he
-

ys

nds

qua-

ws
er
ity

f
e-
-

,

,
etic
ter-
st
e-
e a

e

e
ce
ic

e
a

or-

the
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whereD[D03D13D0 , Y[(r,rv,rE), andh[(m,j,z),
dh[dm dj dz, and f (x,c,h,t)[ f (x,c,m,j,z,t).

In an LB model, the Boltzmann equation is written as

f ~x1cDt,c,h,t1Dt !2 f ~x,c,h,t !5V, ~2!

where

V52
1

t
@ f ~x,c,h,t !2 f eq~x,c,h,t !#, ~3!

and f eq(x,c,h,t) is the equilibrium distribution determine
by the macroscopic mass, momentum, and energy, and s
fies

(
c
E

D
hf eq~x,c,h,t !dh5Y. ~4!

The macroscopic conservation equations can be der
by the Chapman-Enskog expansion of Eq.~2! as follows: we
chooseDt5«T, whereT is a reference time scale and« is a
typical small parameter. We write the solution of Eq.~2! in
an asymptotic expansion near the equilibrium distribution
the form @34,35#

f 5 f ~0!1« f ~1!1«2f ~2!1¯ , ~5!

]Y

]t
5F~0!1«F~1!1«2F~2!1¯ , ~6!

where f (n) and F(n) depend only onY and its successive
gradients.f (0)5 f eq is completely determined by the macr
scopic variablesr, rv, andrE and satisfies Eq.~4!.

Substituting Eq.~5! into Eq. ~1!, and subtracting Eq.~4!
from the resulting equation, we obtain

(
c
E

D
hf ~n!~x,c,h,t !dh50, ;n>1. ~7!

Multiplying Eq. ~3! by h and integrating, and considerin
Eqs.~1! and ~4!, we have

(
c
E

D
hV dh50. ~8!

A function f(c,h) defined onS3D is called acollision
invariant if it satisfies the following relation:

(
c
E

D
f~c,h!V dh50. ~9!

From Eq. ~8! we know that all the components of th
vector h are collision invariants. We hope that they are t
only collision invariants in the LB model. A collision invari
ant other than the components of the vectorh, if it exists, is
called spurious collision invariant that may cause nonph
cal phenomena.

Using Taylor expansion in the left-hand side of Eq.~2!
and considering Eqs.~7! and ~8!, we can determinef (1),
F(0), andF(1). Up to order 1, Eq.~6! is written as@20,22#
01630
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]Y

]t
52“•(

c
E

D
f eqchdh

2«TS 1

2
2t D“•F“•(

c
E

D
f eqcchdh

1(
c
E

D

] f eq

]Y
•F~0!chdhG1O~«2!. ~10!

This is the macroscopic conservation equation. It depe
on the distribution off eq. When the equilibrium distribution
is properly determined, Eq.~10! becomes the continuity
equation, the Navier-Stokes equations, and the energy e
tion. If we neglect the first-order term in«, the Euler equa-
tions can be recovered.

B. Equilibrium distribution

The basic idea of the present LBM for compressible flo
is to allow particles to travel a distance that is much larg
than the grid size of the lattices, and by doing so the veloc
can now be arbitrarily larger~or smaller! than the speed o
sound, which is determined by the molecular diffusion v
locity. In order to achieve this goal, we symbolically decom
pose the discrete migrating velocityc of a particle into two
components:

c5v1c8, ~11!

where the first componentv is the macroscopic fluid velocity
and the second componentc8 is the molecular diffusion ve-
locity.

The macroscopic velocityv is a continuous quantity
which can be used to evaluate the momentum and kin
energy carried by a particle, but it cannot be used to de
mine particle migration since in an LB model a particle mu
move from one node to another at a time step of a tim
marching procedure. To address this issue, we introduc
discrete macroscopic velocityvk as an approximation tov.
Supposing that the macroscopic velocityv carries a particle
from its originating node into an interior point of a lattic
cube, we introduce a set of correction velocity vectorsvk8
(k51,2,...,8) that will carry fractions of the particle from th
interior point to the eight nodes of the destination latti
cube~see Fig. 2!. We then define the modified macroscop
velocity as the sum of the exact macroscopic velocityv and
the correction velocityvk8 :

vk5v1vk8 . ~12!

For high-speed flows the fluctuating velocitiesvk8 are small
compared tov.

With this modification to the macroscopic velocity, th
molecular diffusion velocity can now easily be defined on
uniform lattice. We consider a symmetric vector set$cj8 , j
51,...,n% connecting a node to its equal distanced neighb
ing nodes, wheren is the number of vectors. If we takeDt
51, then these vectors are equivalent to the length of
lattice sides. In the following description,Dt51 is implied,
3-3
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and velocities are used as distances without further expl
tion. We choose the number of vectorsn512, with two ve-
locity levels and six directions for each level. The modu
of cj8 is c18 for j 51,...,6 andc28 for j 57,...,12~see Fig. 1!. c18
andc28 must be a multiple of the grid length. The symmet
particle velocity set$cj8% defined here is similar to a particl
velocity set of the traditional lattice Boltzmann or lattice g
methods with multivelocity levels@34#.

With the above definitions of macroscopic and micr
scopic velocities, analogous to Eq.~11!, we define a discrete
velocity setS0(cjk) through the following relation:

cjk5vk1cj8 . ~13!

Here S0(cjk) is a subset of the velocity setS(c) defined in
Sec. II A.

Figures 1 and 2 demonstrate how the discrete particle
locities cjk ensure the particle to move from one node
another during one time step. In summary, the indexk vary-
ing from 1 to 8 is associated to the discretization of t
macroscopic velocityv and the indexj varying from 1 to 12
represents the 12 vectorscj8 with six symmetric directions
and two levels. Thus, the quantitycjk represents an array o
96 numbers.

In the following, we will define the equilibrium distribu
tion f eq. Our goal here is to design a model that is as sim
as possible under the condition that the correct macrosc
equations~Navier-Stokes equations! can be recovered. We

FIG. 1. Definition of symmetric velocitycj8 for j 51,...,12 with
two velocity levels. The length of the vectors must be a multiple
the grid length.x is a lattice node.vk is an approximation ofv and
is defined in Fig. 2.

FIG. 2. Definition ofvk andvk8 , for k51,...,8.vk is an approxi-
mation ofv and connects the lattice nodex to another node on the
cubic of 1 grid in size. Onlyv4 is drawn in the figure.vk8 is the
difference betweenvk andv.
01630
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restrict ourselves to the set of particles atc5cjk , m5mjk ,
j5jjk , andz5z jk , wheremjk , jjk , andz jk are mass, mo-
mentum, and energy carried by a particle with a velocitycjk ,
and, as is shown later in this section, can be determined
the macroscopic variablesr, v, andE.

The equilibrium distribution is defined as follows:

f eq~x,c,h,t !

[H djkd~m2mjk!d~j2jjk!d~z2z jk! for c5cjk

0 for other c,

~14!

where d~j! is a d function, d(j)50 for jÞ0, and
*g(j)d(j)dj5g(0), anddjk is defined as the following: We
introduce a density fractionak5rk /r and supposedjk to
have a factorized form related to the density fractionak as

djk5akd1 , j 51,...,6 anddjk5akd2 , j 57,...,12.
~15!

The quantityrk in the density fraction can be regarded as t
amount of mass carried by the fractional particles that
sent to the eight vertices of a lattice cube and can be de
mined from the following relations:

r15ruu78v78w78u, r25ruu88v88w88u,

r35ruu58v58w58u, r45ruu68v68w68u,

r55ruu38v38w38u, r65ruu48v48w48u,

r75ruu18v18w18u, r85ruu28v28w28u, ~16!

whereuk8 , vk8 , andwk8 are the components ofvk8 in the x, y,
and z directions, respectively. The redistribution of ma
based on Eq.~16! ensures the conservation of mass.

Internal energy can be defined as

e5E2 1
2 v2. ~17!

The coefficientd1 andd2 used in Eq.~15! are defined as
function of densityr and internal energye:

d15r
c28

22D~g21!e

b~c28
22c18

2!
, d25r

D~g21!e2c18
2

b~c28
22c18

2!
,

~18!

wherec18 and c28 are the modulus of the particle velocitie
b56 is the number of velocity directions for each level, a
g is the specific heat ratio. In order to ensure the positivity
d1 and d2 , c18 and c28 must satisfyc18

2,D(g21)e,c28
2.

However,c18 andc28 are not completely determined. In pra
tice, c18 is set to be the integer part ofAD(g21)e and c28
5c1811. Therefore,c18 and c28 are adaptive to the interna
energye.
The particle mass, momentum, and energy (mjk , jjk , and
z jk) in Eq. ~14! are defined as

mjk512x jk , ~19!

f

3-4
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jjk5v1cj82x jkv, ~20!

z jk5 1
2 ~v212cj8•v1 c̄82!1F2x jk@ 1

2 ~v21 c̄82!1F#,
~21!

where

x jk5
D

2cj8
2 ~cj8•vk8!, ~22!

c̄825
1

r
b~d1c18

21d2c28
2!, ~23!

F5@12~g21!D/2#e. ~24!

F is a potential energy introduced to help obtain an arbitr
specific heat ratio.c̄82, the mean value ofc82, is used in Eq.
~21! in order to recover the correct conduction term in t
energy equation. The terms ofx jk in Eqs.~19!, ~20!, and~21!
are introduced to compensate the second-order discretiz
errorsvk8vk8 in the final macroscopic conservation equation

At this point, the equilibrium distributionf eq is com-
pletely defined by Eq.~14! and we have following remarks t
make.

~1! The equilibrium distribution defined by Eq.~14! is a
function of macroscopic variablesr, rv, andrE only. It is
similar to the beam method@36,37# and is much simpler than
that of traditional LB models, which is generally a secon
order polynomial in fluid velocityv. It can be shown that Eq
~14! is equivalent to the equilibrium distribution of trad
tional LB models whenv is null.

~2! f eq(x,c,h,t) is defined for allc, m, j, z in S3D0
3D13D0 . However, f eq(x,c,h,t) is nonzero only for
(c,m,j,z) in $cjk%3$mjk%3$jjk%3$z jk%, which is called the
support set off eq(x,c,h,t). The support set is discrete an
relatively small. The particle velocitycjk is similar to the
adaptive particle velocity in Refs.@17,18#.

~3! Now we are in a position to comment on the size
the velocity setS(5$c%): By definition cjk5vk1cj8 , where
vk depends onv and the modulus ofcj8 depends on interna
energye. Thereforecjk varies from node to node and from
time to time because of the variation inv ande. We define a
nontrivial velocity set S0 as the set of all the possiblecjk for
all nodes and all time steps in consideration. We suppose
the setScontainsS0 at least. The elements inSbut not inS0
are calledtrivial velocity. The greater the variation inv and
e, the larger the setS0 . For example,S0 is large in the case
of strong shock.

The setS may contain trivial velocities in it, but they do
not affect the model because for a trivial velocityc the equi-
librium distribution f eq(x,c,h,t) always remains zero, and s
doesf (x,c,h,t), according to the lattice Boltzmann equatio
~2!, if f is initialized by the equilibrium distributionf eq at t
50, which is a common practice for initial condition.

In general, we do not know the exact size ofS0 before
simulation. It is a good idea to make a rough estimation ofS0
and to consider a larger setS that surely containsS0 . Other-
wise, we have to resize the setSwhenever a newcjk outside
01630
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Sappears during the simulations. This construction of the
S ensures the recovery of the Navier-Stokes equations f
the lattice Boltzmann equation with any relaxation timet
.1/2. ButS is not practical to handle in simulations. In Se
III A we discuss the technique to implement this scheme i
simple and efficient way in a special case witht51, in
which case the size of the velocity set, at any given time s
and given node, is restricted to 96.

~4! One will see in the following that withS defined
above, the Navier-Stokes equations can be recovered
with such a simple equilibrium distribution as given in E
~14! because the effect of the fluid velocityv is taken into
account in the particle velocitycjk . Due to the simple form
of the equilibrium distribution, the fourth-order velocity ten
sors do not appear in the formulation. Unlike the stand
lattice Boltzmann model on cubic lattices that usually
quires 18 particle velocities to obtain the homogeneity
fourth-order velocity tensors, six directions of particle velo
ity cj8 with two levels~see Fig. 1!, are symmetric enough to
recover the Navier-Stokes equations. In fact, to recover
Navier-Stokes equations in the present LB model, we o
have to enforce the following relations forcj8 :

(
j 51

6

cj85(
j 57

12

cj850,

(
j 51

6

cj8cj85
b

D
c18

2Id , (
j 57

12

cj8cj85
b

D
c28

2Id , ~25!

(
j 51

6

cj8cj8cj85(
j 57

12

cj8cj8cj850,

whereD is the space dimension,D53 for the present model
Id is a unit tensor of second order.

The equilibrium distribution has the following propertie
Property 1. rk defined by Eq.~16! satisfies

(
k51

8

rk5r, (
k51

8

rkvk5rv, ~26!

(
k51

8

ak51, (
k51

8

rkvk850. ~27!

Proof. The components of the vectorvk8 satisfy the follow-
ing relations~see Fig. 2!:

uu18u5uu28u5uu58u5uu68u,

uu38u5uu48u5uu78u5uu88u,

uv18u5uv48u5uv58u5uv88u,

uv28u5uv38u5uv68u5uv78u,

uw18u5uw28u5uw38u5uw48u, ~28!

uw58u5uw68u5uw78u5uw88u,
3-5
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uu18u1uu48u51,

uv18u1uv28u51,

uw18u1uw58u51.

Equation~26! can be obtained by using the relations abo
and the definition ofrk @Eq. ~16!#. Equation~27! is a direct
result of Eq.~26!.

Equation ~27! is important to eliminate the first-orde
terms ofvk8 in the macroscopic conservation equations. T
reason why we assume a factorized form ofdjk in Eq. ~15! is
to make use of Eq.~27! in deriving the macroscopic conse
vation equations.

Property 2. The following equations hold forx jk defined
by Eq. ~22!:

(
j 51

6

x jk50, (
j 57

12

x jk50, (
k51

8

rkx jk50. ~29!

Proof. The first two equations are true due to the symm
try of cj8 , i.e., the first equation of Eq.~25!. The last equation
holds because of the last relation of Property 1.

Property 3. Equation~4! holds for the equilibrium distri-
bution f eq defined by Eq.~14!, i.e.,

(
c
E

D
hf eq~x,c,h,t !dh5(

k, j
fjkdjk5Y,

where

fjk[@mjk ,jjk ,z jk#. ~30!

The proof can be achieved by substitutingf eq, defined by
Eq. ~14!, into the left-hand side of Eq.~4!, and then consid-
ering the definitions offjk , djk , d1 , and d2 successively
and using Property 1 and Property 2.

Property 4. The model satisfies the following equation
state for a perfect gas with specific heat ratiog:

p5~g21!re, ~31!

wherep is the pressure defined by

p5
1

D
b~d1c18

21d2c28
2!. ~32!

The proof is obvious ifd1 and d2 defined in Eq.~18! is
substituted into Eq.~32!.

Now we are ready to derive the macroscopic conserva
equations. After the substitution off eq into Eq. ~10! and the
calculation of the integrals we obtain

]Y

]t
52“•(

k, j
H djkcjkfjk1«TS 1

2
2t D •F“•~djkcjkcjkfjk!

1F~0!
•

]

]Y
~djkcjkfjk!G J 1O~«2!, ~33!
01630
e

e

-

n

whereO(«2) is the error term derived from the Chapma
Enskog expansion andfjk is defined by Eq.~30!.

Considering Properties 1–4, we have the following co
tinuity, momentum, and energy equations after substitut
fjk into Eq. ~33!:

]r

]t
1“•~rv!5O~«2!, ~34!

]rv

]t
1“•~rvv!1“p

5“•$m@“v1~“v!T2~g21!“•vId#%1O~«2!, ~35!

]rE

]t
1“•~pv1rEv!

5“•$mv•@“v1~“v!T2~g21!“•vId#%

1“•$k“e2~g21!e“k%1O~«2!, ~36!

where

m5k5«T@t2~1/2!#
1

D
b~d1c18

21d2c28
2!, ~37!

m andk are the viscosity and heat conductivity, respective
«T is the time step; andO(«2), the error terms derived in the
Chapman-Enskog expansion, is of higher order than the
cous term and heat conduction term in Eqs.~35! and ~36!
@see Eq.~37!#.

In Eq. ~36!, the first term and the second term of th
right-hand side corresponds to the dissipation and the
conduction, respectively.

From the above analysis, one may conclude that a s
tion of the Boltzmann equation~2! is equivalent to a solution
of the Navier-Stokes system, Eqs.~34!–~36!. Nevertheless, if
the viscous terms are considered as discretization error a
slip wall condition is used, the solution can be compar
with compressible Euler solutions. Therefore, this model c
simulate both viscous and inviscid flows.

III. SIMULATION SCHEME AND BOUNDARY
CONDITIONS

A. The simulation scheme

The Boltzmann equation~2! is defined for all (c,m,j,z)
in S3D03D13D0 , which is a very large set; therefore, E
~2! is difficult to solve for the general case. Fortunate
whent51 the Boltzmann equation~2! is simplified:

f ~x1cDt,c,h,t1Dt !5feq~x,c,h,t !. ~38!

Since f eq depends only on the macroscopic fluid densi
velocity, and internal energy, the particle distribution fun
tion f at t1Dt is also determined by them. Therefore,f at t
1Dt is independent of the particle distributionf at timet. In
this way, the requirement for computer memory and com
tation time is considerably reduced. During the numeri
simulations, only mass, momentum, and energy are sto
3-6
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and transported by the particles, and there is no need to s
the particle distributionf itself. As soon as we have the mas
momentum, and energy distributions, we knowf eq via the
definition given by Eq.~14!. Then, we can evaluate the ne
distribution f by Eq. ~38! and, in turn, we know mass, mo
mentum, and energy to be transported by the particles for
next time step. Due to the fact thatf eq50 for cÞcjk , the
mass, momentum, and energy transported by the part
from a nodex to x1cjkDt are the components of the vect

E
D

hf eq~x,cjk ,h,t !dh5fjkdjk . ~39!

In fact, in the simulations we only have to calcula
fjkdjk , for j 51,...,12, andk51,...,8 @see Eqs.~30! and
~19!–~21! for the definition offjk], i.e., 96 particle veloci-
ties are treated for each lattice node. The solution obtaine
this way is the exact solution of the Boltzmann equation,
~2!, whent51. And the solution of Eq.~2! is equivalent to a
solution of the Navier-Stokes system, Eqs.~34!–~36!.

The simulations presented in this paper are all carried
under the conditionst51 andg51.4.

B. Boundary conditions

For no-slip walls, the bounce-back boundary condition
second order for walls aligned with the lattice. We succe
fully simulated viscous flows with flat walls, using th
bounce-back boundary condition@21,22,27#. In the case of
curved walls, an easy way to deal with curved boundarie
to approximate them by a series of stairs and apply a bou
back condition. However, this treatment leads to a redu
computational accuracy.

Bounce-back condition. In the present work, we firs
tested the conventional bounce-back condition at an arbit
curved solid wall that is not approximated by stairs,
shown in Fig. 3. If a particle is moving from a nodex to a
nodeA through the wall, it is bounced back from the wall
point A8, where OA52OA8. Usually, pointA8 is not a
lattice node. The particle is then redistributed to the neigh
nodes,P1,P2,..., of pointA8 with portions defined in a simi-
lar manner to Eq.~16!.

FIG. 3. Bounced-back boundary condition on a curved wall
particle moving from a nodex to a nodeA in the wall is bounced
back precisely from the wall to pointA8, whereOA52OA8. The
particle is then redistributed to the neighbor nodes,P1,P2,... .
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Because the particle is bounced back precisely from
curved wall, the boundary condition is more accurate th
that approximated by stairs. However, simulations dem
strate instabilities near the wall, as shown in the followi
example.

A flow over a NACA0012 airfoil was simulated for Mac
number 0.5 and Reynolds number 600 at a zero angle
attack. The pressures are shown in Fig. 5. In Fig. 5~a!, we see
a significant noise at the wall and an asymmetry distributi
Figure 5~b! shows the pressure distribution along upper w
surface.

This noise is due to the nonuniformity of the lattice at t
wall. To resolve this problem we propose the following im
proved boundary condition for curved wall.

Extrapolated boundary condition. In order to keep the
uniformity of the lattice at the wall, we introduce auxiliar
nodes inside the wall, as shown in Fig. 4. The macrosco
variables on the auxiliary nodes are extrapolated from
values in the computational domain. The following cond
tions have to be satisfied at the solid wall during the extra
lation:

v50,
]r

]n
50,

]e

]n
50, ~40!

where n is the normal direction of the wall surface. An
particle moving from a node in the computational domain
a node inside the wall is disregarded. Its effect is taken i
account by the nodes inside the wall~marked byd in Fig. 4!
that are involved in the computation such as ordinary nod

Unlike the standard LB models in which boundary con
tions must be given in terms of particle distribution functio
f @30–33#, the present scheme deals only with the equil
rium distribution f eq that depends only on the macroscop
fluid density, velocity, and internal energy. The bounda
conditions imposed on macroscopic variables, such as th
given in Eq. ~40!, can be directly implemented in th
scheme.

The same flow over a NACA0012 airfoil was simulate
for Mach number 0.5 and Reynolds number 600 using

FIG. 4. Extrapolated boundary condition. A particle movin
from a nodex to a nodeA in the wall is disregarded. Its effect i
taken into account by the auxiliary nodes inside the wall~marked
by d! that are involved in the computation in the same way
ordinary node would. The macroscopic variables on the auxili
nodes are extrapolated from the values in the computatio
domain.
3-7
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FIG. 5. ~Color online! Pressure distribution of a flow ove
NACA0012 using bounced-back wall condition for Mach numb
0.5 and Reynolds number 600.~a! Pressure on a lattice of 40
38033 nodes. Periodical boundary condition is imposed inz di-
rection. ~b! Dimensionless pressure on the wall. The significa
noise at the wall is due to the nonuniformity of the lattice at t
wall.

FIG. 6. ~Color online! Pressure distribution of a flow ove
NACA0012 for the same Mach number and Reynolds number a
Fig. 5, but using extrapolated wall condition.~a! Pressure,~b! di-
mensionless pressure on the wall. The distribution is more symm
ric and the noise at the wall is much less than that in Fig. 5.
01630
new boundary condition. The pressure contours are show
Fig. 6. In Fig. 6~a!, we see that the pressure distribution
more symmetric and the noise at the wall is much less t
the previous case, and line plots of the pressure distribu
along the wall surface presented in Figs. 5~b! and 6~b! fur-
ther illustrate this point.

The comparison of these two cases indicates that the
trapolated boundary condition is more stable. All the sim
lations presented in the following section were carried o
using the auxiliary node boundary condition.

IV. NUMERICAL SIMULATIONS

Validation cases for the three-dimensional model are p
sented in this section. CasesA, B, and C are inviscid flow
simulations. When the viscous terms and the diffusion ter
of the right-hand sides of Eqs.~35! and~36! are regarded as
discretization errors, Eqs.~34!–~36! become the inviscid Eu-

r

t

in

t-

FIG. 7. ~Color online! Three-dimensional shock wave propag
tion on a lattice of 10031003100 att520. ~a! Density, ~b! pres-
sure. At the initial time, the velocity is zero, the pressure and d
sity inside a 50350350 box in the center is one-tenth and on
eighth of that outside the box, respectively. The shocks m
toward the center from four directions and they interact at the c
ners.
3-8
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FIG. 8. Three-dimensional shock wave propagation att520. ~a! Density,~b! pressure,~c! internal energy,~d! velocity distribution vsx
at y50.5 andz50.5. Solid lines are exact solutions. The variables are dimensionless.
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ler system, where the artificial viscosity and diffusivity are
order (t21/2)l 2/Dt, with l the lattice length andDt the time
step. The slip wall boundary condition is applied at the so
surface for these inviscid flow simulations.

CasesD –F deal with viscous flows and the no-slip co
dition proposed in the preceding section is applied at
walls.

Test caseA is a genuine three-dimensional flow, while th
other cases are two-dimensional flows solved, using a th
dimensional flow solver. These two-dimensional flows a
chosen for validation purposes, for lack of better thre
dimensional data for comparison. In the two-dimensio
flow cases, periodical boundary conditions were used iz
direction.

All the variables are dimensionless. The lattice lengtl
and the time stepDt are taken as characteristic length a
time scales, respectively.

A. Three-dimensional shock-wave propagation

As a first test case for the three-dimensional model, fl
caused by a cubic-shock box is simulated. The simula
was carried out on a lattice of 10031003100 nodes unde
01630
f

d

e

e-
e
-
l

n

the conditionst51 andg51.4. At the initial time, the ve-
locity is zero, the pressure and the density inside a 50350
350 box in the center of the computational domain is on
tenth and one-eighth of that outside the box, respectiv
i.e., (r,p,v)5(0.125,0.025,0) for 25,x,75, 25,y,75,
and 25,z,75; (r,p,v)5(1,0.25,0) for others, where0 rep-
resents a zero vector.

Figure 7 shows the density and the pressure contour
t520. The shocks move toward the center from four dire
tions and they interact at the corners.

At the central line defined byy50.5 andz50.5, where
the shocks have not yet interacted with each other at timt
520, the solution similar to shock-tube problems@38# can be
compared with the exact Riemann solutions. Here, the c
putational domain 10031003100 is normalized to 131
31. Figure 8 compares the density, pressure, internal ene
and velocity distributions versusx, at the central line with the
exact Riemann solutions. The points and the solid lines r
resent the numerical and the exact solutions, respectiv
The present solution and the exact Riemann solution ag
well. The shocks are captured within only three points in
present solution.
3-9
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C. SUN AND A. T. HSU PHYSICAL REVIEW E68, 016303 ~2003!
The simulation takes 50 s per iteration on a Pentium
366 computer for the case of 10031003100 nodes, i.e.,
5.031025 seconds per node. The computation time is p
portional to the number of nodes.

The CPU time reported here is for the three-dimensio
Navier-Stokes solver. For a two-dimensional projection@27#
of this model, the CPU time required is 1.4431025 s per
node, i.e., 3.47 times faster. Moreover, in the cases wh
only an Euler solution is of interest, the correction termsx ik

in Eqs. ~19!–~21! may be neglected, andmjk , jjk , andz jk

become independent of the indexk; as a result, the compute
code is at least two times faster than the Navier-Stokes c
Neglecting termsx jk introduces additional terms in the form
of vk8vk8 in the macroscopic conservation equations, wh
influence the viscous and thermal conductive terms
Navier-Stokes equation and energy equation but do not a
the accuracy of an Euler solution@20#.

B. Double Mach reflection „MaÄ10…

This example is a double Mach reflection@39#, i.e., a nor-
mal shock of Mach number 10 passing a 30° wedge. T
example was also simulated in our previous paper@26# where
the wall was aligned with the lattice and particles were
flected on the wall in the same way as a beam of light
flected on a mirror.

In the present case, the wall is inclined and a slip bou
ary condition is imposed for macroscopic variables at
wall, i.e.,

vn50,
]v t

]n
50,

]r

]n
50,

]e

]n
50, ~41!

wherevn and v t are the normal velocity and the tangent
velocity of the fluid at the wall, respectively.

Figure 9 shows the pressure, density, and entropy di
butions. They agree with the results of other numerical me
ods @15,39# and our previous results@26#.

C. Propagation of a shock wave at a Mach number 1.09

This example is to validate the model for the flow regim
with Mach number;1. This is a one-dimensional shock
wave case. Periodic boundary conditions are imposedy
and z directions on a lattice of 2003333. The following
initial condition is imposed: t50: (r2 ,p2 ,u2)
5(1.152,0.0544,0.03595) for 0<x,25 and (r1 ,p1 ,u1)
5(1.0,0.0446,0.0) for 25<x<200, corresponding to a shoc
wave Mach number 1.09. The shock moves at a spee
0.2725 grids per iteration. Figure 10 shows the density, p
sure, internal energy, and velocity distributions fromt50 to
500 at an interval of 125. The solid lines are exact solutio
The results agree well with the theoretical values. The p
sure ratio and the density ratio are 1.2194 and 1.152, res
tively. If we look at the simulation in a coordinate movin
with the shock, the Mach number is 1.09 before the sh
and 0.9197 after the shock.
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D. Boundary layer flow

A boundary layer flow over a flat plate is simulated usi
the current scheme. On the wall, the no-slip boundary c
dition given by Eq.~40! was employed. The plate was place
at an arbitrary angle with respect to the grid, i.e., the bou
ary does not coincide with any grid line, to test the capabi
of the scheme of dealing with complex geometry. The co
tours of the fluid velocity parallel to the plate are plotted
Fig. 11. The dimensionless velocityu/U versus h

FIG. 9. Double Mach reflection (Ma510) over a 30° wedge on
a lattice 360330033. ~a! Pressure,~b! density,~c! entropy.
3-10
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FIG. 10. Propagation of a shock wave at a Mach number 1.09.~a! Density,~b! pressure,~c! internal energy, and~d! velocity distributions
from t50 to 500 at an interval of 125. Solid lines are exact solutions. The shock moves at speed of 0.2725. The variables are dime
as
ha

lu-
FIG. 11. Boundary layer flow. Velocity contours. The plate w
placed at an arbitrary angle to justify the boundary condition t
does not coincide with any grid line.
01630
t
FIG. 12. Boundary layer flow. Comparison to the Blasius so

tion. The dimensionless velocityu/U vs h(5yAU/(nx)), the di-
mensionless distance.
3-11
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C. SUN AND A. T. HSU PHYSICAL REVIEW E68, 016303 ~2003!
(5yAU/(nx),n5m/r), the dimensionless distance from th
wall, is shown in Fig. 12, where the square symbols are
numerical results, and the solid line represents the Bla
solution. Good agreement is observed between the pre
numerical results and the Blasius solution.

E. Flow over a cylinder

This example is a flow over a cylinder inside a chan
for which benchmark results were reported in Ref.@40#. The
simulation was performed on a lattice of 500310033 nodes
with a cylinder of a diameter 20 located atx550 and y
550. The Reynolds number based on the averaged inle
locity and the diameter of the cylinder is 100, at which t
flow is periodical in time and there is a vortex street dow
stream of the cylinder. Figure 13 shows an instant distri
tion of the pressure and velocity componentsu and v. The
normalized lift force coefficient versus time is plotted in Fi

FIG. 13. ~Color online! Flow over a cylinder.~a! Pressure,~b! u,
~c! v.

FIG. 14. Flow over a cylinder. Normalized lift coefficient Cl v
t. The period is 900, Strouhal number St50.314.
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FIG. 15. ~Color online! Transonic flow with a inflow Mach
number 3.0 over a NACA0012 cascade on a lattice of 400380
33. ~a! Pressure,~b! Mach number,~c! density contours and
streamlines. Detached oblique shocks are formed in front of bla
Across these shocks, the pressure increases and the Mach nu
decreases. The streamlines show the flow deviations crossing
shocks and formation of a slight boundary-layer separation
lowed by a reattachment at the lower surface of the blade.
3-12
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14. The periodicity is 900 Hz, which corresponds to a Str
hal number of 0.314. The predicted Strouhal number ag
well with the values of 0.295–0.310 given in Ref.@40#.

F. Transonic flow over a NACA0012 cascade

For the cascade simulation, the blade shape is taken f
NACA0012 airfoil. At the upstream, constant boundary co
ditions are imposed for density, pressure, and veloc
(r,p,u)5(1.0,0.25/1.4,1.5). The angle of attack is zero, a
inflow Mach number is 3. Periodical boundary conditions a
imposed on the upper and lower boundaries. Initial condit
is set up to be the same as the upstream boundary cond
Figure 15 shows the lattice Boltzmann solution for pressu
Mach number, and streamlines through the cascade.
blades are plotted. A lattice of 40038033 is used for each
blade field. Detached oblique shocks are formed in fron
the blades. Across these shocks pressure, density, and
nal energy increase, while the Mach number decreases.
flow changes direction crossing the shocks and forms a s
boundary-layer separation and reattachment at the lower
face of the blade due to shock-boundary layer interact
which can be observed from the streamline plots.

V. CONCLUSIONS

A three-dimensional compressible LB model on a squ
lattice is proposed in the present paper. A large partic
velocity set is used to enable the simulation of high Ma
number flows. Meanwhile, in order to make the computat
more tractable, a small support set for the equilibrium dis
bution is employed. This model can handle flows over a w
range of Mach numbers and capture jumps through sh
tt.
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waves. Because of the simple form of the equilibrium dis
bution, the fourth-order velocity tensors are not involved
the calculations. Unlike the standard lattice Boltzma
model on square lattices, no special treatment is required
the homogeneity of fourth-order velocity tensors. Therefo
the Navier-Stokes equations and energy equation were re
ered with only six symmetric particle velocity direction
The second-order discretization errors in velocity have b
eliminated to improve the accuracy in viscous flow simu
tions. The model is valid for both viscous and inviscid com
pressible flows with or without shocks.

The present scheme requires only the equilibrium dis
bution that depends on fluid density, velocity, and inter
energy. We proposed a boundary condition based on an
trapolation of the macroscopic variables for curved wa
This boundary condition treatment is self-consistent, eas
implement, and suitable for both slip wall and no-slip wa
boundary conditions. Moreover, it can be easily extended
complex flows with moving walls, mass injection from th
walls, and heat exchange with the walls.

To verify the scheme for inviscid flows, we have succe
fully simulated a three-dimensional shock-wave propagat
in a box, a normal shock of Mach number 10 over a wed
and a one-dimensional shock of Mach number 1.09. As
application to viscous flows, we have simulated a flat pl
boundary layer flow, flow over a cylinder, and a transon
flow over a NACA0012 cascade.
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