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Three-dimensional lattice Boltzmann model for compressible flows
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A three-dimensional compressible lattice Boltzmann model is formulated on a cubic lattice. A very large
particle-velocity set is incorporated in order to enable a greater variation in the mean velocity. Meanwhile, the
support set of the equilibrium distribution has only six directions. Therefore, this model can efficiently handle
flows over a wide range of Mach numbers and capture shock waves. Due to the simple form of the equilibrium
distribution, the fourth-order velocity tensors are not involved in the formulation. Unlike the standard lattice
Boltzmann model, no special treatment is required for the homogeneity of fourth-order velocity tensors on
square lattices. The Navier-Stokes equations were recovered, using the Chapman-Enskog method from the
Bhatnagar-Gross-KroolBGK) lattice Boltzmann equation. The second-order discretization error of the fluc-
tuation velocity in the macroscopic conservation equation was eliminated by means of a modified collision
invariant. The model is suitable for both viscous and inviscid compressible flows with or without shocks. Since
the present scheme deals only with the equilibrium distribution that depends only on fluid density, velocity, and
internal energy, boundary conditions on curved wall are easily implemented by an extrapolation of macro-
scopic variables. To verify the scheme for inviscid flows, we have successfully simulated a three-dimensional
shock-wave propagation in a box and a normal shock of Mach number 10 over a wedge. As an application to
viscous flows, we have simulated a flat plate boundary layer flow, flow over a cylinder, and a transonic flow
over a NACAO0012 airfoil cascade.
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I. INTRODUCTION and Vergassol@3] simplified the collision term by a linear
operator. Chen, Chen, and Matthae(i$] and Qian,
The lattice Boltzmann methddBM) [1-3] is a relatively ~ d’Humiéres, and Lalleman{] used a simpler collision op-
new numerical approach for simulating complex flow anderator of the Bhatnagar-Gross-KrogBGK) type [8]. The
transport phenomena in cases where direct solution of thequilibrium distribution was an approximation of the Max-
Navier-Stokes equations is not practical. Unlike conventionalvellian equilibrium distribution. Galilean invariance was
computational fluid dynamic&FD) methods based on mac- guaranteed in these LB models. The LB models of BGK type
roscopic continuum equations, the LBM uses a mesoscopid,2] have only a single ratio of viscosity to thermal conduc-
equation, i.e., the Boltzmann equation, to determine macrotivity, while the models of linear collision operatf3] allow
scopic fluid dynamics. The LBM is flexible, has broad appli- for independently varying viscosities and thermal conduc-
cability, and may be easily adapted for parallel computing. Itivities. The LB models have been successfully applied to
has been successfully applied to multiphase and multicomvarious physical problems, such as single component hydro-
ponent fluids, flows through porous media, and solid particlelynamics, multiphase and multicomponent fluid flows, mag-
suspensions. netohydrodynamics, reaction-diffusion systems, flows
The LBM originated from a Boolean model known as thethrough porous media, and other complex systems at small
lattice gas automatd GA) [4,5]. In a LGA method, the local Mach number$9,10].
equilibrium distribution is described by the Fermi-Dirac sta-  Unfortunately, as a new CFD tool, the general LB method
tistics. As a result, LGA has several shortcomings: high staeeveloped in the past suffered from the constraint of small
tistical noises, the violation of Galilean transformation in- Mach number because the particle velocities belong to a fi-
variance in their resulting hydrodynamics equations, and thaite set, and the resulting macroscopic velocity is always
failure in high Reynolds number computations. To eliminatemuch smaller than the speed of sound calculated from the
noise, the Boltzmann equation was used to simulate thenicroscopic diffusion velocity.
lattice-gas automat#6,7]; however, other problems, i.e., Efforts have been made to increase the allowable Mach
non-Galilean invariance and low Reynolds number, rennumber range and to incorporate the effects of temperature
mained. These difficulties led to the development of the LBinto lattice Boltzmann simulations. Choosing a modified
method[1-3]. Higuera, Succi, and Benzi and Benzi, Succi, equilibrium distribution, Alexander, Chen, and Doolgii]
replicated the Burger’s equation with a controllable sound
speed. Yu and Zhaf12] introduced an attractive force to
*Present address: Steele Lab., Department of Radiation Oncologgeduce the sound speed and to alleviate the small Mach num-
Massachusetts General Hospital and Harvard Medical Schoober restriction; however, the energy equation was not recov-
Cox 7, Fruit St. Boston, Massachusetts 02114, USA. Email addresred in their formulation. Palmer and Recf@B] formulated

csun@hms.harvard.edu a thermal model that can simulate temperature variations in a
TCorresponding author: FAX: 317-274-9744; email addressflow, but high Mach number effects were not included in that
anhsu@iupui.edu study.
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Two schemes related to the LB method, the gas-kinetidices. In this formulation, the second-order discretization er-
theory[14,15 and the discrete-velocity modgl6,17, had  rors in velocity have been eliminated so that the model is
been used to simulate the compressible Euler equations. more accurate for viscous flows. The model is capable of
both of the above works, the flux-splitting approach with simulating both viscous and inviscid compressible flows, and
total variation diminishing(TVD) flux limitation was em- is shock capturing. In the traditional LB models the bound-
ployed to determine the mean flux to neighboring cells. Naary conditions must be given in terms of the particle distri-
diga[16,17] introduced an adaptive-velocity concept in the bution function, while the present scheme deals only with the
discrete-velocity model for compressible inviscid flows. equilibrium distribution that depends only on fluid density,
Huanget al. [18] similarly used adaptive discrete velocities velocity, and internal energy. The boundary condition on a
to simulate one-dimensional shock waves. Only under spezurved wall is easily treated by extrapolating macroscopic
cial circumstances, the Boltzmann equation used in theseariables.
methods is equivalent to the lattice Boltzmann equdtich,
but the lattice Boltzmann equation is much easier to solve.

Recently, we proposed a locally adaptive LB model on j 14reg-pIMENSIONAL COMPRESSIBLE LB MODEL
hexagonal latticé20] based on a large particle-velocity set,
so that the mean flow may have a high velocity; however, the A. Basic equations

support set of the equilibrium distribution is quite small and Conventionally, the LB method solves a discretized BGK

similar to the adaptive velocities of Nadiga's Euler solveryy e of the Boltzmann equation, where the unknown variable
[17]. This model is suitable for a wide range of Mach num- is the particle density distribution functidr{x,c; ,t), where
bers and does not consume much computer resource. Con-

; ; . . X "Wis the location of the lattice node, amg is the particle
pressible Navier-Stokes equations including the energy equa-,” . . . :
tion are derived from the BGK lattice Boltzmann equation;veIOC'.ty' In Fhe conyenhonal LB models, the particle velocity
therefore, this model can simulate compressible viscou%:agn_'tUde IS restnc_ted to =I/At, where! s the I_ength O.f
flows that include heat transf€21,22). If the viscous terms the S|d_e of the lattice. The macroscopic velocity obtained
are considered as discretization error and a slip wall condifom this model can only be less thap. On the other hand,
tion is employed, the solution can be compared with com{he speed of sound, in general, is of the ordel/aft. Thus,
pressible Euler solutions. The numerical simulations showef’® Mach number of the solution is severely limited and
that the model has the capability of solving compressibldligh-speed compressible flows cannot be solved. _
Euler flows with strong shock®0,23,24 and has high par- In _order t(_) overcome this Ilmltat.|0n on thg macroscopic
allel computing efficiency25,26|. This locally adaptive LB~ Velocity, we introduce a larger particle velocity s8t{c},
model has been also formulated on a two-dimensional squafB the present model, wheteis the migrating velocity of the
lattice[27]. All the previous simulations were carried out for Particles. The migrating velocity, unlike ¢; of the standard
periodical or flat wall boundary conditions, or a combination LB models, is unrestricted so that the particles are allowed to
of the two. travel any number of lattice lengths.

In LBM, the boundary conditions have been directly In the final LB model, only a discrete finite subset of the
adopted from the lattice-gas automaton method. A commofigrating velocityc is used; this causes errors in the macro-
method of modeling no-slip walls in LBM simulations is to SCOPIC solution. In qrder to minimize the discretization error,
use the bounce-back boundary condition in which particlegV€ introduce a continuous mass momenturg, and energy
that stream into the walls “bounce back” and exit the wall in ¢, transported by a particle. The migrating veloaitjs only
the direction from which they came. It has been noted that/Sed to calculate the location of the particle. .
the bounce-back boundary condition is second order for We havegandceD,, whereD, is a bounded domain in
walls aligned with the lattice; however, it gives only first- °; mand{e Dy, whereDy is a bounded domain ifR. In
order accuracy at the curved boundar[@8,29. Several @ standa.rd LB model, space, time, and the particle velocity
boundary treatments have been proposed for achievingre all discrete. If we le€ and { take the valuesnc and
second-order accuracy for no-slip velocity conditions onMc?/2, respectively, then the present model will be consistent
curved Wa||s[30_3a In these treatments boundary condi- with the conventional LB model; however, the VelOCity set
tions for the particle distribution function had to be handledS(c) is still larger than that of the conventional model.
with given macroscopic quantities. In complicated fluid With the above definition of velocities, momentum, and
flows, boundary conditions might include a combination ofénergy, we now definé(x,c,m,,¢,t) as the particle density
velocity, density, temperature, and their derivatives. To a cerdistribution function for particles located at with a con-
tain degree, achieving self-consistent boundary conditiongnuous massn, momentung, and energy, to be transported
with a given accuracy is as important as developing numeriat a@ migrating velocity. In other words, these particles will
cal schemes themselves. move tox+ cAt afterAt, and transporting with them a mass

In the present work, we establish a three-dimensional LBM, momentumé, and energy.
model on a cubic lattice. Due to the simple form of the The macroscopic quantities, i.e., mgssnomentumpv,
equilibrium distribution, the fourth-order velocity tensors areand energypE, are defined as
not involved in the formulation. Unlike traditional lattice
Boltzmann_models, no special tregtment is required for the YEE f 7f(x,c,p,)dn, 1)
homogeneity of fourth-order velocity tensors on square lat- c Jo
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whereD=DXD;XDg, Y=(p,pV,pE), and =(m,£,{), aY
dp=dm déd¢, andf(x,c, »,t)=f(x,c;m, & ¢,1). W:—V.E f fe%ydy
In an LB model, the Boltzmann equation is written as ¢ 7P
f(x+CAL,C, pt+ AL — F(x,C, 1) =00, @) T %—r)v.[v-Z j -
c D
where e
1 +> f P FOcydy|+0(e?). (10)
Q:_ ;[f(x,c,n,t)_qu(X’C’ﬂ,t)], (3) ¢ D

This is the macroscopic conservation equation. It depends
and f*%(x,c, n,t) is the equilibrium distribution determined on the distribution o ®%. When the equilibrium distribution
by the macroscopic mass, momentum, and energy, and satig- properly determined, Eq(10) becomes the continuity
fies equation, the Navier-Stokes equations, and the energy equa-
tion. If we neglect the first-order term i#y the Euler equa-
> j nfedx,c,pt)dy=Y. (4)  tions can be recovered.
c D

. . . . B. Equilibrium distribution
The macroscopic conservation equations can be derived q

by the Chapman-Enskog expansion of E2).as follows: we The basic idea of the present LBM for compressible flows
chooseAt=¢T, whereT is a reference time scale aads a IS to allow particles to travel a distance that is much larger
typical small parameter. We write the solution of Eg) in than the grid size of the lattices, and by doing so the velocity
an asymptotic expansion near the equilibrium distribution ofcan now be arbitrarily largefor smalley than the speed of

the form[34,35 sound, which is determined by the molecular diffusion ve-

locity. In order to achieve this goal, we symbolically decom-

f=fO+efM4e2f@ ... (5)  pose the discrete migrating velocityof a particle into two
components:
Y
E:F(O)‘f‘SF(l)"‘SZF(Z)‘F"‘ , (6) c=v+c, (11)

where f™ and F™ depend only onY and its successive where the first componentis the macroscopic fluid velocity,
gradients f(©=fe9 is completely determined by the macro- and the second componetitis the molecular diffusion ve-

scopic variableg, pv, andpE and satisfies Eq4). locity.

i ; ; The macroscopic velocity is a continuous quantity,
Substituting Eq(5) into Eq. (1), and subtracting Eq4 . o
from the resugllting(eczuation qwé )obtain g Ed4) which can be used to evaluate the momentum and kinetic

energy carried by a particle, but it cannot be used to deter-
mine particle migration since in an LB model a particle must
move from one node to another at a time step of a time-
marching procedure. To address this issue, we introduce a
Multiplying Eq. (3) by # and integrating, and considering d|screte_ macroscopic velocity as an approximation tg.
Egs.(1) and(4), we have Suppqsmg_that Fhe macroscopic \{eloqmcarrl'es a partlclg
from its originating node into an interior point of a lattice
cube, we introduce a set of correction velocity vectafs
(k=1,2,...,8) that will carry fractions of the particle from the
interior point to the eight nodes of the destination lattice
cube(see Fig. 2 We then define the modified macroscopic
velocity as the sum of the exact macroscopic veloeignd
the correction velocityy, :

> f 7f™M(x,c,p)dyp=0, Vn=1. (7)
c D

2 fDnan=0. (8)

c

A function ¢(c, ) defined onSXD is called acollision
invariant if it satisfies the following relation:

EC JD¢(c,n>n dn=0. (9)

V=V V. (12

From Eg.(8) we know that all the components of the For high-speed flows the fluctuating velocitigs are small
vector 5 are collision invariants. We hope that they are thecompared tov.
only collision invariants in the LB model. A collision invari- With this modification to the macroscopic velocity, the
ant other than the components of the vecpif it exists, is  molecular diffusion velocity can now easily be defined on a
called spurious collision invariant that may cause nonphysiuniform lattice. We consider a symmetric vector $ej’t,j

cal phenomena.

Using Taylor expansion in the left-hand side of Eg)

and considering Eqs(7) and (8), we can determing(®),
F©, andF™). Up to order 1, Eq(6) is written as[20,27]

=1,...n} connecting a node to its equal distanced neighbor-
ing nodes, whera is the number of vectors. If we takkt
=1, then these vectors are equivalent to the length of the
lattice sides. In the following descriptiodt=1 is implied,
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restrict ourselves to the set of particlescatc,, m=my,
&= &y, and{= ¢, wherem;,, &, and{j, are mass, mo-
mentum, and energy carried by a particle with a velocijty
and, as is shown later in this section, can be determined by
the macroscopic variablgs v, andE.

The equilibrium distribution is defined as follows:

fea(x,c, n,t)
[ djkd(m=my) 6(&= &) 8({— i) for c=c
- . . . _ B 0 for other c,
FIG. 1. Definition of symmetric velocny:j’ for j=1,...,12 with
two velocity levels. The length of the vectors must be a multiple of (14
the grid lengthx is a lattice nodev, is an approximation of and . )
is defined in Fig. 2. where §(¢) is a & function, §(§=0 for &+#0, and

J9(£)8(£dé=9(0), anddjy is defined as the following: We

and velocities are used as distances without further explanddtroduce a density fractiomy=p,/p and supposel;, to

tion. We choose the number of vectars 12, with two ve- have a factorized form related to the density fractignas

Iocn,y_lev,els and six dlrect|c,>ns for each level. The mo?ulus dy=ady, j=1..6 anddy=ad,, |=7...12.

of ¢j iscy for j=1,...,6 ancc; for j=7,...,12(see Fig. 1 c; (15)

andc; must be a multiple of the grid length. The symmetric

particle velocity se{c/} defined here is similar to a particle The quantitypy in the density fraction can be regarded as the

velocity set of the traditional lattice Boltzmann or lattice gasamount of mass carried by the fractional particles that are

methods with multivelocity levelg34]. sent to the eight vertices of a lattice cube and can be deter-
With the above definitions of macroscopic and micro-mined from the following relations:

scopic velocities, analogous to Ed.1), we define a discrete T o,

velocity setSy(cjc) through the following relation: pr=pluzvzwil,  pa=plugugwsl,

Cjk:Vk+Cj, . (13 P3:P|UéUéWé|, p4=p|UéUéWé|,

Here Sy(cj) is a subset of the velocity s&(c) defined in ps=plugvawsl,  pe=pluswawil,
Sec. Il A.

Figures 1 and 2 demonstrate how the discrete particle ve-
locities ¢ ensure the particle to move from one node to
another during one time step. In summary, the inkeary-
ing from 1 to 8 is associated to the discretization of the
macroscopic velocity and the inde) varying from 1 to 12

represents the 12 vectoc§; with six symmetric directions

pr=pluiviwi|,  pg=plusv,ow,|, (16)

whereu,, vy, andw, are the components of in thex, y,

and z directions, respectively. The redistribution of mass

based on Eq(16) ensures the conservation of mass.
Internal energy can be defined as

and two levels. Thus, the quantity, represents an array of e=E—1v2 (17)
96 numbers.
In the following, we will define the equilibrium distribu- The coefficientd; andd, used in Eq(15) are defined as

tion f¢9. Our goal here is to design a model that is as simplgunction of densityp and internal energg:
as possible under the condition that the correct macroscopic

. . . 2 2
equations(Navier-Stokes equationsan be recovered. We _ c;"—D(y-1)e _ D= le—c;
TP e e TP b )
X '
v Vi — Vs (18)
] -
, i\ L wherec; andc; are the modulus of the particle velocities,
y Vs TS 257 | V2 b= 6 is the number of velocity directions for each level, and
NN v is the specific heat ratio. In order to ensure the positivity of
Ve A7 N Tl d, andd,, ¢, andc), must satisfyc;?<D(y—1)e<c)?.
. ,/,,v’,- ------ 28 -\-------“ v's However,c; andc, are not completely determined. In prac-
Vs . . .
P A tice, ¢} is set to be the integer part ofd(y—1)e andc,
‘ : , =c;+1. Therefore,c; and ¢, are adaptive to the interna
v v 1+ 1. Theref 1 andc, daptive to the int I
4
energye.

FIG. 2. Definition ofv, andvy , for k=1,...,8.v is an approxi- ~ The particle mass, momentum, and energy( &y, and
mation ofv and connects the lattice nosteto another node on the ;) in Eq. (14) are defined as
cubic of 1 grid in size. Only, is drawn in the figurey, is the
difference between, andv. Mj=1- Xk, (19

016303-4



THREE-DIMENSIONAL LATTICE BOLTZMANN MODEL . .. PHYSICAL REVIEW E 68, 016303 (2003

E=V+ CJ-' - XKV, (20) Sappears during the simulations. This construction of the set
S ensures the recovery of the Navier-Stokes equations from
4“,—k=%(V2+ZC-'~V+?2)+<D—Xjk[%(vz+?2)+cl>], the lattice Boltzmann equation with any relaxation time
j

21) >1/2. ButSis not practical to handle in simulations. In Sec.
11l A we discuss the technique to implement this scheme in a
where simple and efficient way in a special case witk1, in
which case the size of the velocity set, at any given time step
D and given node, is restricted to 96.
Xjk:ﬁ(cjl'vli): (22 (4) One will see in the following that withs defined
) above, the Navier-Stokes equations can be recovered even
1 with such a simple equilibrium distribution as given in Eg.
T'2="h(d,c;?+dych?), (23)  (14) because the effect of the fluid velocityis taken into
P account in the particle velocity,, . Due to the simple form
of the equilibrium distribution, the fourth-order velocity ten-
®=[1-(y—1)D/2]e. (24 sors do not appear in the formulation. Unlike the standard
) ) ) ) ) lattice Boltzmann model on cubic lattices that usually re-
@ is a potential energy introduced to help obtain an arbitraryires 18 particle velocities to obtain the homogeneity of
specific heat raticc’?, the mean value of'?, is used in EQ.  fourth-order velocity tensors, six directions of particle veloc-
(21) in order .to recover the correct conduction term in theity C,-’ with two levels(see Fig. 1, are symmetric enough to
energy equation. The terms gf in Egs.(19), (20), and(Zl). _recover the Navier-Stokes equations. In fact, to recover the
are introduced to compensate the second-order discretizatiqf,yier-Stokes equations in the present LB model, we only
errorsvyvy in the final macroscopic conservation equations.,ave to enforce the following relations fof
At this point, the equilibrium distributiorf®9 is com-

pletely defined by Eq14) and we have following remarks to 6 12
make. > ¢ =2 ¢=0,
(1) The equilibrium distribution defined by E¢l4) is a =1 =t
function of macroscopic C\£ariabﬂleys pv, andpE only. It is 6 b 12 b
similar to the beam methd®6,37] and is much simpler than P22 P22
that of traditional LB models, which is generally a second- ,21 66 =pcrle 127 66 =p e @9

order polynomial in fluid velocity. It can be shown that Eq.

(14) is equivalent to the equilibrium distribution of tradi- 6 12
tional LB models wherv is null. Z cj’cj’cj’='7 ccic =0,
(2) fe9(x,c, y,t) is defined for allc, m, & ¢ in SXDg =1 =7

XD;XDgy. However, f¢9(x,c,¢,t) is nonzero only for
(c;m,&,0) in {c} X {my} X{ &k} X {jk}, which is called the
support set off€9(x,c, n,t). The support set is discrete and
relatively small. The particle velocitg;, is similar to the
adaptive particle velocity in Ref$17,18§.

(3) Now we are in a position to comment on the size of 8
the velocity setS(={c}): By definition ¢, = v+ cj’ , Where 2 Pk=p, E PVK=pV, (26)
vy depends orv and the modulus otﬁj’ depends on internal k=1 k=t

whereD is the space dimensioB,= 3 for the present model.
I4 is a unit tensor of second order.
The equilibrium distribution has the following properties.
Property 1 p, defined by Eq(16) satisfies

8

energye. Thereforec;, varies from node to node and from 8 8

time to time bepause of the variationdnande. We_deflne a > =1, > pV,=0. (27)
nontrivial velocity set §as the set of all the possibég, for k=1 k=1

all nodes and all time steps in consideration. We suppose that L

the setS containsS, at least. The elements Bbut not inS, Proof. The components of the vectay satisfy the follow-

are calledtrivial velocity. The greater the variation mand  ing relations(see Fig. 2
e, the larger the se$,. For exampleS, is large in the case

of strong shock. |uz|=[uz|=[ug|=]ug],
The setS may contain trivial velocities in it, but they do , , , ,
not affect the model because for a trivial veloaitthe equi- |ug|=lug|=|u7|=]ug|,
librium distributionf€9(x,c, n,t) always remains zero, and so , ) , )
doesf(x,c, »,t), according to the lattice Boltzmann equation lvil=lvil=lvg|=|vgl,
(2), if fis initialized by the equilibrium distributiori€® at t ) ) ) )
=0, which is a common practice for initial condition. lval=lvsl=lvel=]v7l,
In general, we do not know the exact size f before ) , ) )
simulation. It is a good idea to make a rough estimatio8of [wi=[ws3| =[ws| =[wj], (28)
and to consider a larger s8that surely contain$,. Other- ) ,
wise, we have to resize the sg@tvhenever a new; outside |wg| = [we| = |w3| =[we],
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luf|+uy =1, where O(e?) is the error term derived from the Chapman-

Enskog expansion and, is defined by Eq(30).

ol +|vil=1 Considering Properties 1-4, we have the following con-
tinuity, momentum, and energy equations after substituting

|W;I|_|+|Wé|:1 ¢jk into EQ(33)
Equation(26) can be obtained by using the relations above &—p+v~(pV)=O(82),
and the definition op, [Eq. (16)]. Equation(27) is a direct at
result of Eq.(26).
Equation (27) is important to eliminate the first-order @+V.( W)+ Vp
terms ofv, in the macroscopic conservation equations. The dt P
reason why we assume a factorized forntgfin Eq. (15) is
to make use of Eq(27) in deriving the macroscopic conser-
vation equations.

=V {u[Vv+ (VW)= (y=1)V-Vig]}+O(e?),

Property 2 The following equations hold foy;, defined @+V-(pv+pEv)
by Eg.(22): at
6 12 8 =V {uv-[Vv+(VV)T=(y—1)V-vi4]}
2 k=0 2 xk=0 2 k=0 (29 +V-{kVe—(y—1)eV«}+0(e?),
where

Proof. The first two equations are true due to the symme-
try of ¢’ , i.e., the first equation of E@25). The last equation 1
holds because of the last relation of Property 1. w=k=eT[7—(1/2)] = b(d;c;?+d,cs?),

Property 3 Equation(4) holds for the equilibrium distri- D
bution €9 defined by Eq(14), i.e.,

(34)

(39

(36)

(37

p andk are the viscosity and heat conductivity, respectively;

T is the time step; an@(&?), the error terms derived in the

C

[see Eq(37)].

> f pteix,c,p)dn=2, ¢ydy=Y, Chapman-Enskog expansion, is of higher order than the vis-
D k] cous term and heat conduction term in E(5) and (36)

where In Eq. (36), the first term and the second term of the
right-hand side corresponds to the dissipation and the heat

bi=LMjic §jie» - B9 conduction, respectively.

The proof can be achieved by substitutiff§, defined by
Eq. (14), into the left-hand side of Ed4), and then consid-
ering the definitions ofgy;, , dj, d;, andd, successively
and using Property 1 and Property 2.

Property 4 The model satisfies the following equation of

state for a perfect gas with specific heat rafio simulate both viscous and inviscid flows.

From the above analysis, one may conclude that a solu-
tion of the Boltzmann equatiof2) is equivalent to a solution
of the Navier-Stokes system, E{84)—(36). Nevertheless, if
the viscous terms are considered as discretization error and a
slip wall condition is used, the solution can be compared
with compressible Euler solutions. Therefore, this model can

=(y—1)pe, 31
p=(y )P ( ) I1l. SIMULATION SCHEME AND BOUNDARY
wherep is the pressure defined by CONDITIONS
L A. The simulation scheme
p= Bb(d1012+ d,ch?). (32 The Boltzmann equatiof?) is defined for all €,m,,¢)

in SXDyX D1 XDy, which is a very large set; therefore, Eq.

The proof is obvious ifd; andd, defined in Eq.18) is
substituted into Eq(32).

(2) is difficult to solve for the general case. Fortunately,
when =1 the Boltzmann equatio(®) is simplified:

Now we are ready to derive the macroscopic conservation f(x+CAt,c, 7t +At) =fe%x,c, 7,t). (38)
equations. After the substitution %% into Eq. (10) and the o T
calculation of the integrals we obtain Sincef®9 depends only on the macroscopic fluid density,

aY
ot

1
27

=-V. kzl [djkcjk(bjk—i_s-r

+E0). i(d. Cxdik)
oY jk¥ ik Pk
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velocity, and internal energy, the particle distribution func-
V. (diCiCrbiy) tion f att+ At is also determined by them. Therefofegt t
Ik + At is independent of the particle distributib@at timet. In
this way, the requirement for computer memory and compu-
2 tation time is considerably reduced. During the numerical
+0(e9), (33 . .
simulations, only mass, momentum, and energy are stored
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FIG. 3. Bounced-back boundary condition on a curved wall. A F|G, 4. Extrapolated boundary condition. A particle moving
particle moving from a nod to a nodeA in the wall is bounced  from a nodex to a nodeA in the wall is disregarded. Its effect is
back precisely from the wall to poi’, whereOA=—OA’. The  taken into account by the auxiliary nodes inside the walarked
particle is then redistributed to the neighbor node$,P2,.... by @) that are involved in the computation in the same way an

ordinary node would. The macroscopic variables on the auxiliary
and transported by the particles, and there is no need to stonedes are extrapolated from the values in the computational
the particle distributiori itself. As soon as we have the mass, domain.
momentum, and energy distributions, we kné@ via the
definition given by Eq(14). Then, we can evaluate the new  Because the particle is bounced back precisely from the
distributionf by Eqg. (38) and, in turn, we know mass, mo- curved wall, the boundary condition is more accurate than
mentum, and energy to be transported by the particles for thihat approximated by stairs. However, simulations demon-
next time step. Due to the fact th&t9=0 for c#cj, the  strate instabilities near the wall, as shown in the following
mass, momentum, and energy transported by the particlesxample.
from a nodex to x+cj At are the components of the vector A flow over a NACAQ012 airfoil was simulated for Mach
number 0.5 and Reynolds number 600 at a zero angle of
attack. The pressures are shown in Fig. 5. In Fig),5ve see
f 79X, Cjx , p 1) d = ¢y di . (39 a significant noise at the wall and an asymmetry distribution.
D Figure 5b) shows the pressure distribution along upper wall
surface.

In fact, in the simulations we only have to calculate This noise is due to the nonuniformity of the lattice at the
¢ dj, for j=1,.,12, andk=1,....8 [see E@s.(30) and  wall. To resolve this problem we propose the following im-
(19—(21) for the definition of¢;], i.e., 96 particle veloci- proved boundary condition for curved wall.
ties are treated for each lattice node. The solution obtained in Extrapolated boundary conditionn order to keep the
this way is the exact solution of the Boltzmann equation, Equniformity of the lattice at the wall, we introduce auxiliary
(2), when7= 1. And the solution of Eq(2) is equivalentto a nodes inside the wall, as shown in Fig. 4. The macroscopic
solution of the Navier-Stokes system, E¢34)—(36). variables on the auxiliary nodes are extrapolated from the

The simulations presented in this paper are all carried owalues in the computational domain. The following condi-
under the conditions=1 andy=1.4. tions have to be satisfied at the solid wall during the extrapo-
lation:

B. Boundary conditions

For no-slip walls, the bounce-back boundary condition is v=0, -5=0, —5=0, (40

second order for walls aligned with the lattice. We success-
fully simulated viscous flows with flat walls, using the wheren is the normal direction of the wall surface. Any
bounce-back boundary conditid21,22,27. In the case of particle moving from a node in the computational domain to
curved walls, an easy way to deal with curved boundaries i node inside the wall is disregarded. Its effect is taken into
to approximate them by a series of stairs and apply a bouncaccount by the nodes inside the watlarked by® in Fig. 4)
back condition. However, this treatment leads to a reducethat are involved in the computation such as ordinary nodes.
computational accuracy. Unlike the standard LB models in which boundary condi-
Bounce-back conditionin the present work, we first tions must be given in terms of particle distribution function
tested the conventional bounce-back condition at an arbitrarf/[30—33, the present scheme deals only with the equilib-
curved solid wall that is not approximated by stairs, asrium distribution {9 that depends only on the macroscopic
shown in Fig. 3. If a particle is moving from a noateto a  fluid density, velocity, and internal energy. The boundary
nodeA through the wall, it is bounced back from the wall to conditions imposed on macroscopic variables, such as those
point A’, where OA=—0OA'. Usually, pointA’ is not a given in Eq. (40), can be directly implemented in the
lattice node. The particle is then redistributed to the neighboscheme.
nodes,P1,P2,..., of pointA’ with portions defined in a simi- The same flow over a NACA0012 airfoil was simulated
lar manner to Eq(16). for Mach number 0.5 and Reynolds number 600 using the

016303-7
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(b) 150 200 250

FIG. 5. (Color online Pressure distribution of a flow over
NACAO0012 using bounced-back wall condition for Mach number
0.5 and Reynolds number 600a) Pressure on a lattice of 400
X 80X 3 nodes. Periodical boundary condition is imposed ifi-
rection. (b) Dimensionless pressure on the wall. The significant
noise at the wall is due to the nonuniformity of the lattice at the
wall.

80

FIG. 7. (Color online Three-dimensional shock wave propaga-
400 tion on a lattice of 108 100X 100 att=20. (a) Density, (b) pres-
sure. At the initial time, the velocity is zero, the pressure and den-
sity inside a 550X 50 box in the center is one-tenth and one-
eighth of that outside the box, respectively. The shocks move
toward the center from four directions and they interact at the cor-
ners.

0.09 new boundary condition. The pressure contours are shown in

Fig. 6. In Fig. 8a), we see that the pressure distribution is
more symmetric and the noise at the wall is much less than
the previous case, and line plots of the pressure distribution
along the wall surface presented in Figgh)5and Gb) fur-
i ther illustrate this point.
s The comparison of these two cases indicates that the ex-
- trapolated boundary condition is more stable. All the simu-
Ly i lations presented in the following section were carried out,
Ly using the auxiliary node boundary condition.
() 150 200 250

X IV. NUMERICAL SIMULATIONS

0.08

FIG. 6. (Color onling Pressure distribution of a flow over ~ Validation cases for the three-dimensional model are pre-
NACA0012 for the same Mach number and Reynolds number as igented in this section. Casés B, andC are inviscid flow

Fig. 5, but using extrapolated wall conditiof@ Pressure(b) di-  simulations. When the viscous terms and the diffusion terms
mensionless pressure on the wall. The distribution is more symmesf the right-hand sides of Eqé35) and(36) are regarded as
ric and the noise at the wall is much less than that in Fig. 5. discretization errors, Eq$34)—(36) become the inviscid Eu-

016303-8
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FIG. 8. Three-dimensional shock wave propagation=a20. (a) Density, (b) pressure(c) internal energy(d) velocity distribution vsx
aty=0.5 andz=0.5. Solid lines are exact solutions. The variables are dimensionless.

ler system, where the artificial viscosity and diffusivity are of the conditionsr=1 and y=1.4. At the initial time, the ve-
order (r— 1/2)1?/At, with | the lattice length andt the time  locity is zero, the pressure and the density inside x 50
step. The slip wall boundary condition is applied at the solidx 50 box in the center of the computational domain is one-
surface for these inviscid flow simulations. tenth and one-eighth of that outside the box, respectively,

CasesD—F deal with viscous flows and the no-slip con- j e (p,p,v)=(0.125,0.02%) for 25<x<75, 25<y<75,
dition proposed in the preceding section is applied at thgyng 25<z<75; (p,p,v)=(1,0.250) for others, wher® rep-
walls. _ , , , , resents a zero vector.

Test casé\ is a genuine three-dimensional flow, while the Figure 7 shows the density and the pressure contours at

other cases are two-dimensional flows solved, using a thre(?-: 20. The shocks move toward the center from four direc-

dimensional flow solver. These two-dimensional flows aré ns and they interact at the corners.

chosen for validation purposes, for lack of better three- ; . _ _
dimensional data for comparison. In the tvvo—dimensionalth Atr:hekcer?tral Im? detﬂ_n?d b):—do.'é_tﬁndz;]o.fh, Wh?rt?
flow cases, periodical boundary conditions were used in € shocks have not yet interacted with each other at ime

direction. =20, the solution similar to shock-tube problef88] can be
All the variables are dimensionless. The lattice length Compared with the exact Riemann solutions. Here, the com-
and the time stepAt are taken as characteristic length andPutational domain 108100x 100 is normalized to X1
time scales, respectively. X 1. Figure 8 compares the density, pressure, internal energy,
and velocity distributions versus at the central line with the
exact Riemann solutions. The points and the solid lines rep-
resent the numerical and the exact solutions, respectively.
As a first test case for the three-dimensional model, flowThe present solution and the exact Riemann solution agree
caused by a cubic-shock box is simulated. The simulationvell. The shocks are captured within only three points in the
was carried out on a lattice of 18Q00X 100 nodes under present solution.

A. Three-dimensional shock-wave propagation

016303-9
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The simulation takes 50 s per iteration on a Pentium Il 300
366 computer for the case of 18A00X 100 nodes, i.e.,
5.0 10" ° seconds per node. The computation time is pro-
portional to the number of nodes.

The CPU time reported here is for the three-dimensional 200
Navier-Stokes solver. For a two-dimensional projec{ian]
of this model, the CPU time required is 1440 ° s per =
node, i.e., 3.47 times faster. Moreover, in the cases where
only an Euler solution is of interest, the correction terms 100

in Egs.(19—(21) may be neglected, ana, , &, and ¢y
become independent of the indkexas a result, the computer
code is at least two times faster than the Navier-Stokes case.
Neglecting termsy;, introduces additional terms in the form o 100 200 300
of vpvy in the macroscopic conservation equations, which X
influence the viscous and thermal conductive terms of

) ) : 300
Navier-Stokes equation and energy equation but do not affect L (b)
the accuracy of an Euler solutiggQ]. :

B. Double Mach reflection (Ma=10) 200

This example is a double Mach reflecti8], i.e., a nor-
mal shock of Mach number 10 passing a 30° wedge. This >
example was also simulated in our previous papét where -
the wall was aligned with the lattice and particles were re- 100 -
flected on the wall in the same way as a beam of light re- |
flected on a mirror. i

In the present case, the wall is inclined and a slip bound- -

ary condition is imposed for macroscopic variables at the 00 — '160’ '260' '3(')0'
wall, i.e., X
dut ap Joe 300
v,=0, -0 5=0 &—n—O, (41

wherev,, andv, are the normal velocity and the tangential 200 |-
velocity of the fluid at the wall, respectively. i

Figure 9 shows the pressure, density, and entropy distri- > |
butions. They agree with the results of other numerical meth- i
ods[15,39 and our previous resul{£6]. 100 |

C. Propagation of a shock wave at a Mach number 1.09

This example is to validate the model for the flow regime g e '1(')0' — '2(')0' — '3(')0‘
with Mach number~1. This is a one-dimensional shock- X
wave case. Periodic boundary conditions are imposey in
and z directions on a lattice of 2003x 3. The following FIG. 9. Double Mach reflection (Ma10) over a 30° wedge on

initial ~ condition is  imposed: t=0: (p2,P2,U2)  a lattice 360<300x 3. (a) Pressure(b) density,(c) entropy.
=(1.152,0.0544,0.03595) for ¥x<<25 and {,,p;1,Uq)

=(1.0,0.0446,0.0) for 25 x=200, corresponding to a shock
wave Mach number 1.09. The shock moves at a speed of
0.2725 grids per iteration. Figure 10 shows the density, pres- A boundary layer flow over a flat plate is simulated using
sure, internal energy, and velocity distributions from0 to  the current scheme. On the wall, the no-slip boundary con-
500 at an interval of 125. The solid lines are exact solutionsdition given by Eq(40) was employed. The plate was placed
The results agree well with the theoretical values. The presat an arbitrary angle with respect to the grid, i.e., the bound-
sure ratio and the density ratio are 1.2194 and 1.152, respeary does not coincide with any grid line, to test the capability
tively. If we look at the simulation in a coordinate moving of the scheme of dealing with complex geometry. The con-
with the shock, the Mach number is 1.09 before the shoclkours of the fluid velocity parallel to the plate are plotted in
and 0.9197 after the shock. Fig. 11. The dimensionless velocity/U versus 7

D. Boundary layer flow

016303-10
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FIG. 10. Propagation of a shock wave at a Mach number 1a)®ensity, (b) pressure(c) internal energy, an¢) velocity distributions

from t=0 to 500 at an interval of 125. Solid lines are exact solutions. The shock moves at speed of 0.2725. The variables are dimensionless.
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FIG. 11. Boundary layer flow. Velocity contours. The plate was

does not coincide with any grid line.
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FIG. 12. Boundary layer flow. Comparison to the Blasius solu-
placed at an arbitrary angle to justify the boundary condition thation. The dimensionless velocity/U vs 5(=y+U/(vx)), the di-
mensionless distance.
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FIG. 13. (Color onling Flow over a cylinder(a) Pressure(b) u,
(©) v.

(=yyU/(vx),v=pulp), the dimensionless distance from the

wall, is shown in Fig. 12, where the square symbols are the

numerical results, and the solid line represents the Blasiu

solution. Good agreement is observed between the present

numerical results and the Blasius solution.

E. Flow over a cylinder

This example is a flow over a cylinder inside a channel
for which benchmark results were reported in Rdf)]. The
simulation was performed on a lattice of 50Q00X 3 nodes
with a cylinder of a diameter 20 located ga&=50 andy

=50. The Reynolds number based on the averaged inlet ve-

locity and the diameter of the cylinder is 100, at which the
flow is periodical in time and there is a vortex street down-

stream of the cylinder. Figure 13 shows an instant distribu-

tion of the pressure and velocity componentandv. The
normalized lift force coefficient versus time is plotted in Fig.

1

0.5

I LY/ .
41000 42000 43000 44000 45000
t

FIG. 14. Flow over a cylinder. Normalized lift coefficient Cl vs
t. The period is 900, Strouhal number=81.314.
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FIG. 15. (Color online Transonic flow with a inflow Mach
number 3.0 over a NACA0012 cascade on a lattice of 480
X 3. (a) Pressure,(b) Mach number,(c) density contours and
streamlines. Detached oblique shocks are formed in front of blades.
Across these shocks, the pressure increases and the Mach number
decreases. The streamlines show the flow deviations crossing the
shocks and formation of a slight boundary-layer separation fol-
lowed by a reattachment at the lower surface of the blade.
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14. The periodicity is 900 Hz, which corresponds to a Strouwaves. Because of the simple form of the equilibrium distri-
hal number of 0.314. The predicted Strouhal number agredsution, the fourth-order velocity tensors are not involved in

well with the values of 0.295-0.310 given in RE40]. the calculations. Unlike the standard lattice Boltzmann
model on square lattices, no special treatment is required for
F. Transonic flow over a NACA0012 cascade the homogeneity of fourth-order velocity tensors. Therefore,

the Navier-Stokes equations and energy equation were recov-
ed with only six symmetric particle velocity directions.
he second-order discretization errors in velocity have been
liminated to improve the accuracy in viscous flow simula-
ions. The model is valid for both viscous and inviscid com-
essible flows with or without shocks.

For the cascade simulation, the blade shape is taken fro
NACAO0012 airfoil. At the upstream, constant boundary con-
ditions are imposed for density, pressure, and velocity;
(p,p,u)=(1.0,0.25/1.4,1.5). The angle of attack is zero, an
inflow Mach number is 3. Periodical boundary conditions are r
!mposed on the upper and lower boundaries. Initial condit_ic_)rP The present scheme requires only the equilibrium distri-
Ilf' set u§)5to r?e thethsalmtei'as tBheItupstream IbctJ_undfary CondltloBution that depends on fluid density, velocity, and internal
I\/:ggrzenur:bgrwsan de s?re;gsnlinoeszr?ha:gzg;? l:h'gncgcg:jessggenergy. We proposed a boundary condition based on an ex-

’ ) . : apolation of the macroscopic variables for curved walls.
blades are plotted. A lattice of 460X 3 is used for each T b P

. ) . his boundary condition treatment is self-consistent, easy to
blade field. Detached oblique shocks are formed in front ofmplement, and suitable for both slip wall and no-slip wall

the blades. Across these shocks pressure, density, and 'ntf)rc')undary conditions. Moreover, it can be easily extended to

nal energy Increase, while the Mach number decreases._Ti&%mplex flows with moving walls, mass injection from the
flow changes direction crossing the shocks and forms a sllg%aIIS and heat exchange with the walls

boundary-layer separation and reattachment at the lower sur- To verify the scheme for inviscid flows, we have success-

facg of the blade due to shock-boundary layer mteractlonfu"y simulated a three-dimensional shock-wave propagation
which can be observed from the streamline plots. in a box, a normal shock of Mach number 10 over a wedge,
and a one-dimensional shock of Mach number 1.09. As an

V. CONCLUSIONS application to viscous flows, we have simulated a flat plate

A three-dimensional compressible LB model on a Squaré)oundary layer flow, flow over a cylinder, and a transonic
lattice is proposed in the present paper. A large particlelloW over @ NACAQ012 cascade.
velocity set is used to enable the simulation of high Mach
number flows. Meanwhile, in order to make the computation
more tractable, a small support set for the equilibrium distri-
bution is employed. This model can handle flows over a wide This work was funded by NASA Glenn Research Center
range of Mach numbers and capture jumps through shocknder Grant No. NAG3-2399.
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