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Slow relaxation in weakly open rational polygons
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The interplay between the regulgriecewise-linegrand irregular(vertex-angle boundary effects in non-
integrable rational polygonal billiard®f m equal sidepis discussed. Decay dynamics in polygdoperim-
eter P,,, and small opening\) is analyzed through the late-time survival probabigy~t~?. Two distinct
slow relaxation channels are established. The primary universal channel exhibits relaxation of regular sliding
orbits, with §=1. The secondary channel is given 8% 1 and becomes open whem>P,/A. It originates
from vertex order-disorder dual effects and is due to relaxation of chaoticlike excitations.
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I. INTRODUCTION collision statistics[15,16] applied tom-gons[17] revealed

the late-time memory effects driven by long-livestiding

Classical polygonal billiards is an active subject of re-orbits. These orderlike orbits show reguldmean and
search in mathematics and physisse Ref[1] for review). ~ anomalous (root-mean-squaje wall-collision —behavior,
In view of their null Lyapunov exponent and null Kolmog- Which is responsible for superdiffusivetrinsic dynamics
orov metric entropy, rational polygons, formed by the[17] in rational polygons with large numbers of sidesThe

piecewise-linear billiard boundary with the vertex angles thafg'd'mgtﬁébgzl;g tgge dmrfg]r!r:ieg %?I?{gocnofj?]-tge(rm;rrt]asivne% %nat-he
are rational multiplies ofr, are known to benonchaotic g y part g Y

systems[1—6]. They are therefore quite distinct from the CB, where _the orbit classification is well establisr[a@].
Sinai billiard (SB) [7] and the Bunimovich billiardBB) [8] < dynamic correspondenciound [6] between a given

. . ; . ; _ m-gon and the CB is therefore violated by sliding orligee
in which classicathaoticmotion regimes are due to, respec- Fig. 1 in Ref.[17]) despite the existence gometric corre-

tively, dispersiveeffects caused by the disk and the squaregygndencewhich can be controlled via the concept of aver-
boundary, and thenterplay between boundary segments gged characteristigsuch as mean collision tinfd7] or av-
formed 'by the circle and th_e square. Rational polygonsiof eraged coding lengtpe]) with arbitrary precision whem
equal sides anth equal verticeghereafterm-gons[1]) have . (see Fig. 4 in Ref[6]). This finding is in line with a
been showi9] however to possess positive Lyapunov expo-conclusion on inapplicability in polygons of the quantum-to-
nents with increasing. Furthermore, polygonal billiards ex- classical correspondence elaboraft&d] within the scope of
hibit chaoticlike changes in the associated quantum-levethe conventional Wentzell-Kramer-Brillouin picture, which
spectrd 10], the fluctuations of which are fourid1,12to be  fails to establish a one-to-one correspondence between clas-
very close to the standard Gaussian statistics. These chaosical orbits and their quantum counterparts.

clike features are due to theplitting effects caused by the The objective of the present paper is a further investiga-
angle vertices. Vertex-splitting effects, even being related téion of memory effects induced by sides and vertices in ra-
zero-measure singularities in phase space, violate the integréional finiteim weakly open polygons, in which the bound-
bility of polygons,[2,13] as well as the classical-to-quantum aries permit orbits to escape through a small opening. We
correspondence principlé] for chaotic billiards geometri- Wil show that the sliding orbits, responsible for the en-
cally approximatedquantized by polygons. The latter was hanced diffusive regime in the intrinsic dynamics7] of
recently reported by Manticks], who found a logarithmi-  closed mrgons, give rise to qualitatively new vertex-
cally divergent contribution by vertices to the algorithmic Correlation effects in late-time decay dynamics. For certain
complexity of symbolic trajectories. As to nonchaotic SyS_geo.me.tncaI co_nd|t|ons,_the shdmg orbits g(_anerate vortexiike
tems, exemplified by circle billiardCB) and analyzed exmtaﬂons, which remain stable in Iargergtlonal polygons
through the average coding length, it was argil&dhat the a’?d p_ro_wde a specific ch_annel Of. relaxation common to cha-
correspondence principle between the classical integrab@lic Pilliards. The paper is organized as follows. Decay dy-

CB and its nonintegrablen-gonal quantum counterpart is namics in chaotic and nonchaotic billiards is reviewed in
valid whenm-—o. Sec. Il, within the context of distinct channels of relaxation.

The delicate interplay between the regulmiecewise- Weakl_y open rational polygons are analyzed numerically and
linean and the irregulatvertex-anglé boundary segments in analytically in Sec. Il for the cases of Sma” a_nd large num-
polygons provides interesting features that cannot be undePersm- Summary and conclusions are given in Sec. IV.
stood solely in terms of the averaged temporal and spatial
polygonal characteristics. Besides the chaoticlike effects,
there were attempts to find long-range correlations in the
orbit-length[14] and quantum-level1l] spectral character- The intrinsic dynamics of closed classical billiards is
istics of rational and irrational polygons. The orbit-wall- commonly discussed in terms of a temporal decay of corre-

II. DECAY DYNAMICS OF CHAOTIC AND
NONCHAOTIC BILLIARDS
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lation functions for certain dynamical variablésee, e.g., tail is caused by the “arbitrary long segments,” observed in
Ref.[19]). A pure exponential loss of an amount of memory the evolution of stochastic orbif&5], or by the regular-orbit

of the initial state is not a unique channel of relaxation evermotion due to “sticking particles{30,35. This implies that

in chaotic systemssee, e.g., Ref20]). By studying chaotic relaxation given in Eq(2) is due to free motion of the cor-
billiards, such as the SR0-23, that is dynamically equiva- responding trajectories in the infinite distincorridors

lent to the Lorentz gad.G) with a corresponding geometry which are accessible in the relevant phase spade-33.

[19] and the BB[8,24,25, it has been recognized that a The algebraic-relaxation channel with=1(hereafter, a-
crossover from the short-time exponential to the late-timeelaxation channgkestablished in chaotid5,20,24,31,3Pas
algebraic decay is due to long-term memory on a regularwell as in nonchaoti¢16,28 billiards appears to be generic
orbit motion. The algebraic tail of the correlation functions for all incompletely hyperbolic systems with smooth convex
seems to vanish only in the case of completely hyperbolidoundaries. The independence with respect to the billiard
systems which correspond to geometries such as the finitspatial dimension[32], its insensitivity to details of the
horizon SB[19,22 (equivalent to the high-density DGor  boundary shapEL6], including a location of a small opening
the diamond billiard 19]. Qualitatively, the same can be as- [24], and to the initial conditionf16] suggests that late-time
serted for the decay dynamics in weakly open billiards whicha relaxation arises in classical systems agniversal pri-
describes a crossover from a bounded to an unbounded freeary relaxation

motion of orbits. Such a decay dynamics is initially estab- In chaotic[15] and nonchaoti¢16] weakly open classical
lished byN(0) uniformly distributed point particlef unit  systems, slowr relaxation is a part of the universal two-step
mass and unit velocitymoving inside the closed planar bil- relaxation scenario consisting of the short-time pure expo-
liard table, which are allowed to escape through a smalhential decayS(t)=e~ /7", with y=1, and the late-time
opening of widthA. A temporal behavior of the dynamic gjgebraic decay, witd=1. This scenario follows from the
observables can be scaled to the characteristic billiard timesjliard survival probability found/15,16 in explicit form,
These aremean collision timg19,26,27 7. and themean  pamely,
escape tim¢16,19,24,28 ., namely,

t Te1l t Te1l
TA P erff —+ —|—erfl —— —
TC:? and Te:Kch (1) S(t) = Te2 Te2 Te2 Te2
el
given through the accessible ardaand the perimeteP 2erf<7_—e2)
(>A) for a billiard table. The late-time evolution &(t)
nonescaped orbitgarticleg provides an asymptotic behav- xex;{L(L—ZE) ©)]
ior of the billiard survival probability %t), which is defi- Te2\ Te2  Te2) |
nitely characterized by the algebraic-deadynamic expo- ) . o
nents: where erf§) is the standard error function. The characteristic
NONEAG times 7, Ter (~ 7o), Which depend crucially on specific bil-
S(t)= —— _e) for t> 7. (2) liard geometry, establish temporal observation conditions
N(O) |t (hereafter, observation windows 0<t<min(ry,7y) and

. . . <t<
For the nonchaotic square billiard, the algebraic deca);; iﬁ(ﬁg)égeé)n eLti;Tz(ﬁw:rels-%?gcg\l;‘rez!\)i/(’: crfgimetlgeof rlélr;g{;ari.
with exponentss <1 was reported in Ref28]. In a careful  The upper limit of thex-relaxation observation windoty,,
study of the decay dynamics in the integrable CB, the almostvas defined analytically15,16 and numerically{16], but
integrableg[ 1] 4-gon establishefl6] two distinct channels of there are certain geometrical situations when this window
algebraic slow relaxation given in ER). The first is due to  disappear$31,36. Keeping in mind that the explicit form of
the regular-orbit motion with the decay exponeit1 and  S(t) is deduced from the fundamental decay-kinetics equa-
the second channel originates from irregular orbits, whichion under general Gaussian-escape-mechanism assumptions
give rise to a subdiffusive regime indicat¢d6] for the [15,16], it seems plausible that the universal decay of two-
square billiard bys<1. The irregular-orbit motion is known dimensional2D) classical systems can be given by a generic
in both cases. For the CB and the 4-gon, this is due to théorm of Eq. (3) with specific parameters,; and 7,, which
short-lived whispering-gallery and long-lived bouncing-ball can be established, similar to chaofit5] and nonchaotic
orbits, respectively. Nevertheless, the short-lived orbits d§16] cases. It is noteworthy that in the context of exactly
not contribute to the second channel of late-time relaxationsolvable 1D random walks, a slow universal relaxation with
and therefore only a unique decay expongntl is observed S(t)«t~! emerged37,3§ as history-dependent steps with
[16] in the integrable case. an absorbing origin in the presence of an ideal reflector,
In chaotic closed and weakly open classical systéms  which play the role of billiard opening and regular boundary,
cluding Hamiltonian systems exemplified by the BB respectively.
[24,25,29,30 the infinite-horizon SB[15,20,21,23,31,32 A survival probability for the intermediateyonuniversal
and the corresponding low-density @2,33,34, the over- transient regime also follows from E¢3), which was ap-
all algebraic decay was found numerically with the proximated by a stretched-exponential fofrh5] with y
geometry-dependent exponedts 1. Similar to the noncha- <1, studied earlier analytically89] and numericallyf19] in
otic case, it has been repeatedly recognized that the algebraibaotic billiards. Other nonuniversal algebraic decays with
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6#1 were explored in Ref$20,24,31,32,37,38Unlike the  The regular orbits with a givep are thereby distinguished
case of primary relaxation, treecondary relaxatioin cha-  through thep-orbit characteristic collision times, namely,

otic billiards with (8=) 6>1 (hereafter,8 relaxation is 7R sin( ¢,y cog mr/m)

shown to be very sensitive to the billiard geomdtt], the tem(@) = > oS o= (5)
dimension32] d of a billiard table, and the initial conditions $mCOS ¢~ ¥

[16]. This can be exemplified by the dynamic-exponent con- \yiih

straint 1< 8<d proposed in Ref[32] and observed in the

chaotic BB[24] and SB[20,31,32. Ford=1, this regime " :[0 forodd m and m/2 (6)
corresponds to an unbiased random walk in a “hostile envi- ™ | #/m for even m/2,

ronment” [38].

One can see that incomplete hyperbolic billiards, on ondsee the Appendix for deta)lsThe ¢-orbit collision time is
hand, are indiscernible from their decay dynamics, observetelated to the billiard mean collision time., through the
solely through the primary universal-relaxation channel. mean-collision-time equation, namely,

On the other hand, chaotic and nonchaotic weakly open bil- ®m
liards are well distinguished with respect to nonuniversal re- (tem(@))e= jo tem(@) fom(@)de = 7cm, (7
laxations through the continuously variap8s] dynamic ex-

ponentsp>1 and 6<1, respectively. In what follows, we \which is equivalent to the mean-free-path equatjas.
give theoretical and numerical analyses of the stability congquation (7) was considered16,19,26 in the uniformly
ditions of both the primary and secondary relaxation chanpopulatedwall-collision spaceQ.,,, which is 2D subspace

nels in rational polygons. of the 3D phase spad®,,. The ¢-orbit distribution function,
namely,
IIl. ORBIT DECAY IN POLYGONS cos ¢~ ¢m) for space Q.
Si )
We deal with rational polygons ah equal sides, denomi- fom(@)= "(#m
nated asm-gons, circumscribed below a circle of radiRs tem(¢) COL @~ Yim) _ 1 for space ),
The mean collision time.,,= (7R/2) cos@/m) and the mean Tem sin( @) Pm
escape timerg = (R?>m/2A)sin(2x/m) can be found on the (8)

basis of Eg. (1) with the help of area A,
=(mR?/2)sin(27/m) and perimeterP,=2mRsin(z/m). In
the limit m—o one naturally arrives at the circle geometry Let us discuss the late-timesé 7,.) survival dynamics in

. i i = CB)—
of the »-gon with the mean times.. = 7cg "= 7R/2 and a given mgon through(i) the ¢-orbit decay spectra pre-

_ (CB_, 22 et ;
Tex=Ter = R7/A, both charactgnshc of th'e .CB' This sented by the partial-orbit numbe¥g,(t, ¢) and(ii) the cor-
demonstrates how average dynamic characteristics can be Rssponding total-orbit numbets, (t) of survived initial par-
troduced through the aforementioned geometrical correspon: m

cles N(0). The universal relaxation channel, associated
dence that takes place between thegyon and the CB. In m(0)

) fth ; Hoct hich forbid interch with regular orbits, is described by the late-time evolution of
View o the vertex-memory efiects, which forbid interc angenonescaped orbits, predicted by the leading asymptotic terms
between of the temporat{- ) and spatial fn— ) limits,

f Eq. f haoti illi
the dynamical correspondence does not €Xigf. ?eprgse(giéo? %Z?;egmzoggnﬁaﬁgli open billiargis6] and

ML, t T, N, (t T,
—N““((O")’) —Cul) L ) M ang ’“((0)) D™
Similar to the closedn-gons[17], let us consider the case " e " (9)
of a small numbers of verticem< 10, in the context of the
deterministic approach to the regular-orbit descripfi®6].  The partial-orbit and overall-orbémplitudesof « relaxation
This is straightforwardly given by the fact that the wall- denoted, respectively, b@.(¢) andD,, in Eq. (9) can be
collision anglesp (defined with respect to the normal to the measured directly and found analytically in an explicit form
piecewise-linear boundary and preserved by elastic refeswithin a certain coarse-grained schefig,16. On the other
tions) are integrals of motion, as is true for complete inte-hand, the main regular-orbit dynamic characteristics, such as
grable billiards. Such a description of regular-orbit motion inaforegivent.(¢), fom(®), and ., are common to both
rational polygons is introduced accounting for the observathe decay and intrinsic dynamics. By employing a condition
tion [40] thatm (or m/2) sides of a givem-gon, with odd(or ~ of self-consistency(9,(t,¢))c= Np(t), which follows
even number of vertices, are dynamically equivalent. Thefrom Egs.(9) with the help of Eq.(7), one therefore intro-
wall-collision statistics for regular orbits with a fixed duces the constraint imposed on the primary-relaxation,
collision-anglee can therefore be reduced to the intergal regular-orbit amplitudes through the-amplitude equation

is defined in Eq.(7) and found here via generalization of
Egs.(6) and(7) in Ref.[16].

A. Small numbers of vertices

=[0,0,,], Where (Cin(¢))c=C¢m=D¢m. For the integrable CB of radiug,
this equation was experimentally justifi¢de], i.e., C{ZP
o m/2m  foroddm 7 =D&P=0.210+0.004 was established with an accuracy
m

| #/m  for evenm. limited by a typical statistical error of 2% (see Table 2 in
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Ref.[16] for the CB data In view of vertex-splitting effects, 03
which violate the property of integrabilitj4], one should

expect the violation of thex-amplitude equation in poly- 024 |
gons, i.e..C&P=DEP) ohserved within experimental accu-
racy.

We have performed numerical experimet4] on decay
dynamics inmgons with small numbers of verticesn
=3,4,...,8.Initially, the particles N,(0)=10°] were dis-
tributed randomly within the two distinct phase spafks,
and ), described in Eq(8), and then allowed to escape
through a small opening (<R). The conditionr,,,= 300
was used for alm with the help of Eq.(1). For m=8, the
late-time algebraic decay with,,=a=1 is observed42]
within typical temporal windows given by, approximately,
107, <t<10%r.,,. The observed decay spectra are exempli-
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the overall-orbit late-time decay im-gons with small num- 04 | iifiﬁ Q

bers of vertices shows no noticeable deviation from the pri- ——t=40 A

mary relaxatior[43] (see the left inset in Fig.)1Thus, the 03 | j:;ogg

@-orbit amplitudesC(&*P)(¢) are derived from the observed ' :

numbersN{&*®t,¢) through Eq.(9), accounting for the es-

timated ¢-orbit distribution functionfg,(¢) and collision

timest (@) given in, respectively, Eq$4) and(5). Further- 7\ j % i

more,t.(¢) was tested experimentall0] for differentm A"

(see, e.g., the right inset in Fig).1 y!{ gf W W %fﬂ
The observed partial amplitudéseighty C{&"(¢) of 0 ‘ ‘ :

the slow primary relaxation are analyzed in Fig. 1. As seen, 0 0.027 0.047 0.067 0.087

they exhibit regularsmall (an(? irr?ggllar(large deviations

from the mean magnitude{$P=C{'% indicated by a solid .

horizontal line. The latter and the regular-orbit amplitudes WALL-COLLISON ANGLES

C{9 [evaluated as averag€@f®(¢) without regard to the FIG. 1. Analysis of the late-time algebraic decay simulated in

large isolated peaksare accumulated in Table I. From an the collisionQ.,, space of the pentagom=5) and the heptagon

analysis of the deviations for the overaD, (:Dgt;t) (m=7). Symbols represent numerical data on theelaxation

—D0 with DP=Cl*9) and average partial amplitudes #-0rbit amplitudedweights C{™() andCi™*(¢) deduced from

AC., (:Cgt%t)_cérr%g , obtained with the help of Table I, the (gxt‘)))served spe((étxrpf)i of_ the surviveg-orbits N_15 Po)

one can see that the vertex-splitting effects in the even-gorls- 25 (L¢)] andNg () with the help of Eq(9) and simulated

are more pronounced than those in the odd gons, similar o) O.“S.tht tlmest:2_0,30r%$b)W|th AZO.‘O:R.' Line: the overall-

the case of intrinsic dynamidd7]. The a-amplitude devia- collision-angle gmplltudé:cm_ . Inset Ief_t. Points represent da_ta on

. . . N5 for the survived total orbits at late times and their analysis with

tIOI”I.S ACcy and ADcy exceed CanIderably the typlca[ &X the help of Eq.(9). Inset right: Points represent data grorbit

perlmen_tal error £2%) and _ac_hlev_e amaximum magnltude_ collision time t.5(¢) simulated within the basic domain<Op

of 30% in the heptagon. This implies that the irregular-orbit< /19 Line represents the same predicted in &j.

motion is substantially involved in the observed late-time

primary relaxation that, similar to the integrability, violates vertices. For largen=2" with n=3,4, . ..,6, acrossover

the a-amplitude equatiof43]. On the other hand, the posi- from the universal exponential decay to universai=(1)

tive Sign of all thea-amplitude deviations Signals on effec- and nonuni\/ersa|&m> 1) a|gebraic decay regimes are ex-

tive enhancement of the primary relaxation related solely tamplified in Figs. 2 and 3 for the relatively small and large

regular orbits. The observed effect in vertex-splittmgons  gpening widthsA, respectively. Decay dynamics was simu-

with 3=m=38 is similar to the enhanced diffusion estab- |ated [41] for two initial statesQ,, and Q.,, given by the

lished [17] through the diffusion exponent<lz,,<3/2,  corresponding phase spaces in E). No secondary relax-

which also achieves a maximum at=7. We associate, ation is found[42] in the wall-collision space case, resem-

therefore, the enhanced decay and diffusion with stabilizapling nonchaotic systemgl6], when particles are injected

tion of nonballistic regime, which is due to some unspecified41] from a polygonal wall. This may be attributed to some

orbits whose collision angles are given by large peaks innspecified vertex-splitting effects in ti,, space, which

Fig. 1. produce orderlike motion for ath and just enhance primary

relaxation. As seen from Figs. 2 and Q,,, spaces withm

>8 exhibit secondary relaxation manifested by the algebraic-
The universal two-step relaxation scenario that followsdecay exponenig8,,>1, which are characteristic for the cha-

from Eq. (3) is shared bym-gons with arbitrary numbers of otic BB [24] and SB[20,31,33. (), decay dynamics, unlike

02 |

WEIGHT OF

01 |

B. Large numbers of vertices
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TABLE I. Fitting parameters for the algebraic-decay amplitudes
of primary relaxation of the collision spade.,, simulated in the
weakly openm-gons with A=0.05R. Notations:C{'% and C{"®9
correspond to the average data on ¢heorbit amplitude£§?§p)(<p)
observed in the decay speciigee Fig. 1 and averaged over, re-
spectively, all the collision angleg and those with excluding
singular-orbit angles manifested by the high pedk§%= D (&)
the overall-orbit amplitudes of the algebraic decay given in(Ej.
and derived within the primary-relaxation observation windsee
the left inset in Fig. L

m i i o
3 0.140 0.116 0.135
4 0.220 0.219 0.210
5 0.094 0.086 0.090
6 0.149 0.139 0.150
7 0.092 0.069 0.090
8 0.099 0.096 0.100

its intrinsic dynamics treated in terms of the diffusion expo-
nentz, [17], moves away from that exhibited by the geo-
metrically corresponding CB, with increasing number of ver-
ticesm. In the particular case & =0.09R , shown in Fig. 2,
the universal relaxation remains stable unti=64, but
when m=m(®P=128 the primary-relaxation observation
window becomes closed. The regular-orbit relaxation af
fected by vertices is assumably transformed in&rgular-
orbit chaoticlike relaxation indicated by the dynamic decay
exponentB,~1.2. Qualitatively, the same follows from Fig.

6
== 10
2]
g . A=0.05
E): 10 E
© i
< .
S 104 Cer|e 4
IJDZ 3
wn ]
& 10° m=8]
S 10° 327
L 64 |
S 107 ¢ 128—:
zZ 3 Lol el N , ]
0.1 1 10 100

REDUCED TIMES, t/t_

FIG. 2. Temporal evolution of the survived orbits in rational
polygons with a small opening width=0.0R in log-log coordi-
nates. Reduced times are given through the escape characteri
time 7,=300, chosen common for all cases with the help of &j.
Points: numerical data for the decay of tig, space phase simu-
lated byN,,(0)=1C particles inm-gons (squares and the corre-
spondent CHcircles.
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' 32;
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e
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0.1

FIG. 3. Temporal evolution of the survived orbits in rational
polygons with a large opening width=0.2(R in log-log coordi-
nates. Notations are the same as in Fig. 2.

3, but the upper limit for thex-channel-observation window
shows sensitivity taA, becausem(®”=32 for A=0.2(R.
We deduce that primary relaxation dominates in thg
space with 3m<m(®®  when regular-orbit decay motion
is established with the universal decay exponépt a
=1.

It is worth noting that the universal decay relaxation in
m-gons withm<m{®®) can be related to theniversal intrin-
sic relaxationin the closed infinite-horizon SBf sideL and
scatterer disk radiuR). This superdiffusive relaxation was
established by theR -independent diffusion exponerzy
=3/2 observed foR<R, [33], whereR,= \2L/4 (see Fig.

2 in Ref.[17]). In the Qg space of the corresponding LG,
this universal relaxation is due to free evolution of un-
bounded trajectories along all possible basic corrid8a,
which remain open untii R<R,. Recently, this
D-independent intrinsic dynamics was discoveféd] in the

3D Hamiltonian models, lattice Coulomb gas, ak¥. As
shown in Ref.[44], the case of the critical superdiffusive
dynamics withz(®"=3/2 is due to a divergent behavior of
spatial correlations generated by topological defects, which
have the form ofvortex loops In closed rational polygons,
the vortexlike-orbit relaxation seems to be attributed to the
heptagon, but the vortexlike excitations do not sunivé]

Jyith the increasing of numbers of sides This is not the

case of weakly opemr-gons withm>m{®®  whose decay
dynamics may be related to nonuniversal intrinsic diffusive
relaxation, also observdd7] in the infinite-horizon SB with
R>R,, when most Bleher’s basic corridors are closed.

1-5
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Similar to the universal-nonuniversal-relaxation crossoveP,,=27R, one arrives at the desirable criterion fefto-g
in the chaotic SB witlR~R_,, the a-to-B-relaxation cross- crossover, namely,
over inm-gons withm~m{®® is due to a transformation of
the motion induced by regular segments of boundary into m :qu_R. (10)
that by singular. In general, the effect of closing of the © A
-relaxation channel can be described through the closing
some principal corridors in th@ ,, space. This can be quali-
tatively understood in terms of the increasing difficultynas
grows, in realizing long segments of free motion, which in-
tersect polygonal sides in the corresponding LG lattice bu

avoid the vertex anglesee the Appendix In contrast,s >m,) of chaoticlike excitations disappears in the lint

relaxation is associated with a stabilization @, phase —.0. This follows from Eq.(10) and was experimentally
space of singular-orbit trajectories, which are effectively,,caned in Ref[17].

modified by vertices in rational polygons. These two com-
plete regimes, revealed in the late-time relaxation, are asso-
ciated with long-lived orbits ensured by the integrals of mo-
tion of the 2D classical mgons, which possesses  The mild discontinuities caused by vertex angles and rela-
translational45] and m-fold rotational symmetries. tive lengths of edges is the central problem of the intrinsic
Exploration of translational periodicity im-gons with  dynamics of the almost integrable polygonal billiards com-
largem provides characteristic time(¢) ~ 7...cos (¢) for ~ monly discussed1] in terms of orbital ergodicity, mixing,
any regular orbit with initial collision angle, wherer,,,  entropy, coding, complexity{6], pseudointegrability[3],
= 7R/2. This estimate follows from Eq5) and shows that Orbit-length[14] and quantum-leve[10,11] statistics, and
the idealsliding orbits defined[17] by ¢~ /2 (as circles  Orbit-collision statjstiqs[l?]. The problem is now related to
circumscribed below a givem-gon), leave the piecewise- the decay dynamics im-gons, studied by the orbit survival

linear part of boundary. Real sliding orbits, with finite colli- Probability Sy (t) =Nm(t)/Nn(0), given through the total
(slide) numbers of the surviving orbits,(t). The regular-orbit de-

sion timesrg,, ~, can therefore be introduced as marginal ; - L
reqular orbits aiven by maximum collision an Iqéﬁ”de) cay spectra, which avoid vertex-splitting events and there-
9 9 y 9 fore preserve a collision anglg, are also analyzed in terms

(slide)_ . .
of the partial-orbit numberst, (t,¢).

Qf‘he criterion provides the estimates,=126 and 31 for
experimental datam{®®=128 and 32, respectively. This
finding collaborates the idea that the observed long-lived
%/ortexlike excitations ing relaxation are due to modified
sliding orbits. Furthermore, their observation window (

IV. SUMMARY AND CONCLUSIONS

=@n, i.e., with7 - '=tcm(em). Conversely, thédeal vor-

tex orbitsare those wh!ch slide aIOIjg the piecewise—l_inear A general approach to the decay problem based on a fun-
part of the boundary without reflection. They can be intro-qamental decay kinetic equati¢h5,16) naturally arrives at
duced formally by collision angle® /2, where®, are ra-  the primary slow relaxation of regular orbits with asymptotic
tional vertex angles. In view ai-fold rotational symmetry, behaviorSSﬁ)octﬂ [follows from Eq.(9)]. We have demon-
the existence of the real singular-orbitrtexlike excitations  strated that thex channel of relaxation, attributed to both
might be justified by the local preservation of angular mo-chaotic and nonchaotic billiards, is also characteristic of non-
mentum for a certain set of vertex-correlated sliding orbitsintegrable rational polygons. The universal primary relax-
We therefore assume that the real long-lived slidiegyulay  ation, experimentally justified by the algebraic decay expo-
orbits are precursors of the vortexliksingulay orbits, and  nents,,= a=1, is associated with regular orbits originating
the a-to-B-relaxation crossover can be treated in terms of then the piecewise-linear segments of the polygonal boundary.
regular-to-singular orbit transformation that occurs at largdn the corresponding phase space, under conditistim,, ,
numbersm(®®) these orbits are unbounded trajectories along which particles
Let us consider thargon of side lengtt.,=P,,/m, with ~ move without splitting at vertices. This relaxation reflects on
a small opening of a widthh (<P,,) that can be located at another universahtrinsic relaxation discoverefl7] in the
any point of the boundary24,47. The observation condi- chaotic SB with a small diskR<R,) and ensured33] by
tions for two distinctideal regimesdriven by the ideal slid- superdiffusive motion along Bleher’s basic corridors, with
ing and vortex orbits can be introduced as follows. The fathe critical[44] diffusion exponentg=2z{*"=3/2.
vorable survival conditions for ther-relaxation regime, Following the simplified polygonal orbit classification by
induced by regular part of boundary, should exclude vertexGutkin [1], the regular orbits are presented by the “infinite-
angle effects under the constraim<m,. A geometrical past-to-infinite-future” trajectories, which exhibit a regular
condition, at which the ideal vortices effectively escape frombehavior in the observea-gon orbit-decay spectra given by
the billiard table, corresponds to the location of the opening)iﬁfx")(tmp). Conversely, the singular orbits caused by the
with the widthA<L, at one of the vertices. Conversely, in “infinite-past-to-vertex,” the “vertex-to-infinite-future,” and
the late-timeg-relaxation regime regular orbits do not sur- the “vertex-to-vertex” trajectories expose pronounagar-
vive when any side is included into the opening, i.e., whertial) amplitudes in the primary relaxation im-gons with a
A>L,,, with m>m,. Hence, thea-to-8 crossover relax- small number of vertices m=8). As shown through the
ation is ensured by the conditiah=L,, atm=m,. Taking statistical analysis of the partial and overall amplitudes ob-
into account that the perimeteP,,=2mRsin(=/m) in  served in the spectrd®*?(t,¢) and N{&Pt), the singular
m-gons with a large number of sides is well approximated byorbits violate thea-relaxation amplitude equation, expected

016221-6
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from the absent or weak vertex-splitting effects. Unlike the =3
asymptotic behavior of the orbit-length spectriiit], the

universal primary relaxation therefore exhibits distinctive A
features in completely integrable and almost-integrable bil- /
liards. In the latter case of rational polygons, a nonballistic
motion induced by vertices gives rise to enhanced decay any
diffusion [17], respectively, in open and closedgons with

a small number of verticesn. For a large number of sides
(8<m<m,), the primary slow relaxation is due to the or-
derlike motion of the long-lived sliding orbits, which possess
the largest collision angles.

The sliding orbits are marginal regular orbits and are
therefore precursors of the singular, vortexlike-orbit chaotic =1
excitations, which become stable at a very large number of
vertices, m>m,. The vortex excitations are established 1
through the slow nonuniversal secondary relaxation with the |/ °\ = X
survival probability S{¥)ct=#m, They are due to late-time 0,,=0 "o, ,=. I
vertex-angle-correlation effects ensured by théold rota- o3
tional symmetry of a rational polygon. The domain for the kG, 4. Estimation of thep-orbit collision timete(¢) on the
decay exponent, i.e.,<13,<2, corresponds to that known pases of Eq(A3) for the case ofm=3. The regular piecewise-
for the chaotic SH20,31,33 and BB[24], and the survival jinear orbita,b,c, ... is represented by the infinite straight-line
probability functionS!?) can therefore be relatdd6] to the trajectory in the triangle LG lattice with the intersection-point se-
corresponding waiting-time probability function discussedquences 1,2 .. ,n (t,¢xy). The equivalent wallk, the unreduced
[47] in the theory of open classical chaotic systems. Furthereollision anglespy,, and the axillar angle®,,, are shown.
more, by accounting for the findings of the SB decay dynam-
ics by Fendrik and co-workef81,32, one can infer that the m  forodd m
secondary relaxation is due to tlséngular trappedorbits Clm:[
that move freely along Bleher’s reduced basic corridors.
Si'milar to chaotic pilliards, 'a.nd unlike the case o/)fre'lax— The current collision angle ¢, with a wall k
ation, the observation conditions fﬁ’r relaxgtl_qn in rational =1,2...q,) of a g-orbit with e=[0,/2q,,] is reduced
polygons are shown to be sensitive to initial phase-spac%hrough the relationgy = ¢— 0, with the help of @,

conditions and to geometrical constrains. Indeed, the:[_qT/2 712], defined as the smallest angle between the
p-relaxation channel turns out to be closed if the particle,_ 4 an’dx a;<is namely,

initial distribution is simulated42] in the collision space

Qcm- In the case of thé€),, space, the secondary relaxation 7 (qn—2k+1 foroddq,,
appears to be stable under the geometrical constraint ®km=2—[

>m,, where m,=2mRsin(m/m)/A is established by the Am

a-to-B crossover-relaxation criterion. This criterion joins As exemplified in Fig. 4 form=3, the estimates for the

survival conditions for the ideal regular-orbit motion with \ o cqyjision timest.(¢) are found through summation of
those for the ideal singular-orbit motion generated, respeGia numbers of intersections(t, ¢,,) for a trajectory in-

tively, by p|§ceW|se-I|near and the vertex-angle boundgryduced by a giverp-set orbit in the corresponding infinite LG
segments. Finally, we have demonstrated through nonunivefs . <o namely

sal slow relaxation that the vertex-splitting effects in rational

m/2 for even m. (A)

Om— 2k for evenqy,. (A2)

polygons are dual with respect to vertex-ordering and vertex- Am
disordering effects. Nem(t, @)= = n(t, @um). (A3)
tcm(‘P) k=1
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Ecosw—@km)} : (A4)

k=1

tem(®)=amdm

APPENDIX: REGULAR-ORBIT COLLISION TIME . .
whereq,, and®,,, are given in Eqs(Al) and(A2), respec-

In a givenm-gon the number of geometrically equivalent tively. A straightforward estimatiof45] of Eq. (A4) results
walls k is bounded above by in the collision timet.(¢) given in Eq.(5).
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