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Multimodal map and complex basin of attraction of a simple hopper
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In this paper, we study the global dynamics of a simple passive mechanical model for hopping. The hopper
is a two-mass, single-spring system constrained to move in the vertical direction~under gravity! above a rigid
ground. The hopper model and its basic dynamics including the existence of incessant hopping motions have
been reported elsewhere. Here, we extend the study to investigate the global dynamics of the hopper. The
global map of the hopper is multimodal. We construct an approximate analytic map near the fixed points of the
map and show that the fixed points exhibit one-way stability. We also show that the map is invariant under the
inversion of the mass ratio of the hopper. Next, we construct the global basin of attraction of these fixed points
and show that their structure is highly complex and retains form at finer scales. This structure of the basin of
attraction contains regions where the fate of an arbitrary initial condition becomes unpredictable.
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I. INTRODUCTION

We consider the passive hopper model studied by C
terjeeet al. @1#. The model consists of two massesm1 and
m2 connected together with a spring and is allowed to mo
only vertically under gravity above a rigid ground~see Fig.
1!. The collisions of the lower mass with the ground a
assumed to be perfectly plastic. The motivation behind
model is to study the energetics of such a locomotion with
overwhelming it with external controls. Passive systems p
vide much insight into natural dynamics and a better star
point for controls as advocated by the works of McGeer@2#
and subsequent researchers@3,4#. Chatterjeeet al. have stud-
ied the basic dynamics and associated properties of the
sive hopper. The most interesting and relevant result of t
investigation is the existence of energy conserving perio
motions of the hopper, termedincessant hoppingin Ref. @1#.
They also show the existence of a similar motion in a ju
gling model and establish an equivalence between the
models. Schiehlen and Gao@5#, however, were the first to
discover lossless motions of this model but their investi
tions were cursory. Approximately simultaneously wi
Chatterjeeet al., and independently, Hagerty@6# investigated
the existence of such a motion in the context of a bounc
eccentric cylinder and reached similar conclusions. O
work here is based on the more-available and dire
applicable@1#.

The mechanical model, shown in Fig. 1, is simple; t
motions it exhibits, as we show later, are complex. Tha
simple deterministic dynamical system exhibits complex
havior @7#, is not surprising anymore. Yet, the dynamics w
investigate here is remarkable because of its existenc
several simple mechanical systems such as hoppers, jug
@1#, and galloping models@6,8#. These models are capable
persistent energy conserving motions in an overwhelmin
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dissipative phase space. These motions exhibit one-way
bility, a fact usually dismissed as a pathological case
mathematical theories of dynamical systems@9#. However,
one-way stable limit cycles are known to exist in biline
models of elastoplastic oscillators@10#.

If we let our mechanical intuition guide us in imaginin
the varied motions that this hopper can have, the plastic
lision of the lower mass with the ground is likely to mess
our intuition for motions beyond the simple ones~such as the
lower mass stopping dead with a thud on the ground wh
the upper mass oscillates!. The collisions play an equally
destructive role mathematically by destroying the otherw
smooth flow of the underlying dynamical system. The co
sions introduce jumps in the state of the system, provid
nonlinearity that is perhaps best modeled as discrete eve
This mixing of continuous flow and discrete events make
a hybrid dynamical system. Although, the literature on h
brid dynamical systems is fairly rich, much of it is motivate
by mixed control strategies~see, for example, Ref.@11# and
references therein!. Here, we are interested in the discre
events~impacts with the ground! mainly as the instants o
instantaneous change in the state of the system. Severa
tems with intermittent contacts@12,13# form examples of
such dynamical systems.

The simplicity of the model and the nonsmoothness int

FIG. 1. The figure shows the passive hopper and the diffe
phases during its motion~taken from Ref.@1#!.
©2003 The American Physical Society20-1
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duced by the collisions makemapsan ideal choice for study
ing the dynamics of this system. However, we cannot ob
explicit maps as discussed in Ref.@1#. Chatterjeeet al. con-
structed the map numerically and studied its properties g
metrically. The map turns out to be multimodal, i.e., it h
many humps. Here, we construct an approximate analy
map near the fixed points~that correspond to the incessa
hopping motions! and show that the fixed points are one-w
stable as stated in Ref.@1# based on geometric properties
the numerical map. In addition, we show that the appro
mate map is invariant under the mass reciprocity of the h
per which implies that the dynamics near the fixed points
unaffected if the upper and the lower masses are in
changed. We then proceed to construct the basin of attrac
of the incessant motions and show that it has a comp
structure. The complexity of the structure is evident from
numerically generated basins of attractions that retain st
ture at finer scales. We also compute numerically the m
sure of this basin for two selected values of the mass r
and show that the measure is very sensitive to the mass r

II. EQUATIONS OF MOTION
AND LOSSLESS SOLUTIONS

The equations of motion of the system, the conditions
lossless solutions, and the general nature of solutions
described in detail in Ref.@1#. In this section, we reproduce
in brief, the equations of motion and some of the associa
dynamics from Ref.@1# so that the reader can follow th
main discussion of the paper from Sec. III with relative ea

The equations of motion of the system can be written w
the help of the free body diagrams shown in Fig. 1. T
system behavior is best represented by separate equation
in-flight dynamics, collision transition, and dynamics duri
sustained contact of the lower mass with the ground. We
the following nondimensional variables for the equations
motion:

y1[
x1

~m2 g/k!
, y2[

x2

~m2 g/k!
, M[

m2

m1
, ~˙ ![

d~ !

dt
,

where t5vt and v5Ak(11M )/m2 is the angular fre-
quency of vibration in the flight phase.

~a!. Flight. The equations of motion for free flight in
terms of the new variables are~see Fig. 1!

~11M !ÿ152M ~y12y2!21,

~11M !ÿ25~y12y2!21. ~1!

~b!. Collision transition. When the lower mass lands o
the ground, the collision causes a jump in its velocity but
in its displacement. Using ‘‘2/1 ’ ’ to denote before and
after impact, the collision occurs wheny2

250 and ẏ2
2<0.

The impact transitions arey1
15y1

2 ; y2
15y2

250; ẏ1
1

5 ẏ1
2 ; and ẏ2

150.
~c!. Contact. During a period of sustained contact,y2

[0, y1,1, and (11M ) ÿ152My121.
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~d!. Lift-off transition. Lift-off from the ground contact
occurs when the spring tension lifts the lower mass andy1
51. The lift-off condition can also be met immediately
contact with no period of sustained contact~if y1

2.1). At
lift-off from sustained contact there is no jump in position
velocity of either mass.

We definea[ ẏ1 at lift-off after a period of sustained
contact.a is the key variable in the following analysis. Th
positions and velocities at the instant of lift off are

y151; ẏ15a; y250; ẏ250. ~2!

These serve as initial conditions for the flight equatio
Note that all subsequent motions for all time are determin
by a at one lift-off. Thus, the dynamics can be characteriz
by a one-dimensional~1D! map, an115 f (an) as seen in
Sec. III.

Lossless solutions

An impact with nonzero speed would be dissipativ
Thus, for no dissipation,ẏ250 aty250. For sustained loss
less motions, we also need conditions on the acceleration
jerk apart from the zero speed condition. Ifÿ2.0, contact
would be immediately lost and there would be a subsequ
collision with nonzero speed, andÿ2,0 would require prior
ground penetration which is not possible physically. Th
for lossless impact aty250, not only ẏ250 but also ÿ2

50. Becauseÿ250, the ground clearance condition is d
termined byd3y2 /dt3. If d3y2 /dt3.0, grazing would be
followed by a dissipative impact and hence there will be
subsequent sustained lossless motions. Thus, we must s
taneously meet all of these conditions at the end of fligh

y250, ẏ250, ÿ250, and d3y2 /dt3,0.

All of these conditions can be simultaneously met in th
model, no matter what the values of the model paramet
by adjustment of the single dynamic variablea ~the lift-off
speed ofm1). To find these lossless solutions, we first sol
the initial value problem for the flight phase@Eqs. ~1! and
~2!#. Imposing the dissipation-free contact conditions on
solution at the end of the flight, we can solve for the time
flight in terms ofa. Then substituting this relationship in th
zero acceleration condition for sustained contact, we fina
get ~see Ref.@1# for details!

a5tana. ~3!

Equation ~3! has infinitely many solutions fora ~and
hence fort f). These solutions fora which give incessant
hopping are denoted by a* and 54.493 409,
7.725 251, 10.904 12, . . . . Higher values ofa* correspond
to more oscillations between collisions.
0-2
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III. ONE-DIMENSIONAL MAP AND THE GENERAL
DYNAMICS OF THE HOPPER

The dynamics of the hopper between two gradual lift-o
can be studied by constructing a map of the form

Yn115F~Yn!, ~4!

whereY5@y1 ẏ1#T is the state vector of the upper mass a
F:R2°R2 mapsY from the nth gradual lift-off to the (n
11)th gradual lift-off. F is defined as

F[Fc +F f +F f +••• +F f , ~5!

whereF f is the flight-impact map andFc is the contact map
Note that there can be more than one flight-impact maps
these correspond to immediate lift-offs without any period
steady contact.F f andFc are defined as

F f~Y!55
y11 ẏ1t f2

t f
2

2
1M ~ ẏ1 sint f1y1 cost f !

11M

ẏ12t f1M ~ ẏ1 cost f2y1 sint f !

11M
6 ,

~6!

Fc~Y!5H 1

A~11M !ẏ1
21M y1

212y1222M

11M
J , ~7!

where the time of flightt f satisfies

t f
2

2
1 ẏ1 sint f1y1 cost f2 ẏ1t f2y150. ~8!

Since

Yn5H 1

an
J ,

Eq. ~4! is essentially a one-dimensional map of the form

an115 f ~an!. ~9!

The map f :R°R cannot be written explicitly since th
solution of the flight equations involves transcendental fu
tions. Therefore, we construct the map numerically. A f
maps corresponding to some typical values of the mass
M are shown in Fig. 2 where the multimodality of the map
self evident. The fixed points of this map correspond to
solutions ofa5tana. We have plotted the map only up t
the first five fixed points but the trend is clear enough no
warrant a longer map for our studies. The map by itself d
not give enough information about the physical motion of
hopper with different initial conditions. We can, howeve
use the map to characterize the physical motion by con
ering the set of initial conditions around a single fixed po
and the unimodal map around it~a single hump!. We could,
for example, divide the region around the first nontriv
01622
nd
f

-

tio

e

o
s

e

d-
t

l

fixed pointa* 154.4934 into four segments—aL , aB , aR ,
and aG—as shown in Fig. 3 and show a typical motion
the hopper in each segment. InaL , the landing of the lower
mass is followed by an immediate takeoff at the expense
huge loss of energy in the impact, which makes subsequ
takeoffs to be increasingly difficult. The fixed point exhibi
one-way stability~We prove the stability of the fixed point in
Sec. IV.! We denote the local interval of attraction asaB . In
aB , the dynamics eventually settles down to energy conse
ing periodic hops. Since this incessant motion is very spec
we discuss it in the following sections. On the right segm
of the hump, a typical motion of the hopper inaR involves
one or two gradual hops of the lower mass before it set
down to the ground, while the upper mass continues to
cillate ~as a single degree of freedom, undamped oscillat!.
The open segment of the map,aG , represents motions tha
have no hops at all. The motions described above are
representative motions. It turns out thataL and aR are not
continuous segments. They have rather complicated struc
which we describe in Sec. VI. It is worth mentioning he
that the nonsmooth transition of the map fromaL to aB
~from a linear segment to a parabolic segment! is reflective
of the qualitatively different motions of the hopper in the tw
segments. On the right side of the fixed pointa* , we have
y1

2,1 at impact. This condition implies that for all initia
velocities of the forman5a* 1da, there is no sudden take
off. However, on the other hand, for initial conditions to th
left of the fixed point, i. e., conditions of the forman5a*
2da, we havey1

2.1. This condition assures that the sprin
has enough force to pull the lower mass immediately a
impact~sudden takeoff!, which is then followed by a secon
impact and further loss of energy. This motion leads to
further decrease in the value ofan11. The one-dimensiona

FIG. 2. The one-dimensional map on the free variablea, the
nondimensional velocity of the upper mass, tracked between
successive gradual hops. Different maps correspond to different
ues of the mass ratioM.
0-3
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map, therefore, curves downwards on the left side of
fixed point. The general nature of the motions of the hop
described above is repeated in similar segments of the o
humps of the map, with one basic but inconsequential dif
ence that the mid-air oscillations increase in all segment
we consider humps associated with higher fixed points.

IV. STABILITY OF THE LOSSLESS MOTIONS

The fixed points of the 1D map correspond to ene
conserving motions of the hopper. We carry out a high
order perturbation of the map around any fixed pointa* in
order to determine the stability of the fixed point and es
mate the interval of attraction, if stable. An interval of attra
tion on the left, close to the fixed point, would require t
one-dimensional map to lie above the line of unit slop
which is not admissible from energy considerations. In w
follows, we show that the fixed point has a nonzero inter
of attraction on the right side. Consider the initial conditio
at thenth gradual hop,

Yn5H 1

an
J .

The time of flight then satisfies

FIG. 3. Typical dynamics of the hopper on various segments
the map. The region around a fixed point is divided into four s
ments:aL represents the left leg of the map,aB represents the loca
basin of attraction of the fixed point,aR represents the right leg o
the map, andaG represents the gap between two map segme
Typical motions of the hopper in each segment are shown in
adjacent plots.
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t f
2

2
1an sint f1cost f2ant f2150, ~10!

where an5a* 1da with da!1. Equation ~10! is rear-
ranged as

an5

t f
2

2
1cost f21

t f2sint f
5f~t f !. ~11!

A Taylor series expansion aroundt* ~time of flight corre-
sponding toa* ) yields

da5
]f

]t f
dt f1

1

2

]2f

]t f
2 ~dt f !

21
1

6

]3f

]t f
3 ~dt f !

31•••.

~12!

The fixed pointa* satisfies

a* sin~2a* !1cos~2a* !51,

a* cos~2a* !2sin~2a* !52a* . ~13!

Using Eqs.~10! and ~13!, it can be shown that

]f

]t f
~t* !5

]2f

]t f
2 ~t* !50;

]3f

]t f
3 ~t* !5

a*

2a* 2sin~2a* !
.

Neglecting the higher-order terms indt, we have

dt5b~da!1/3, ~14!

where

b5F6@2a* 2sin~2a* !#

a*
G 1/3

.

In Sec. III, we noted that for initial conditions of the form
an5a* 1da, we have a period of sustained contact at lan
ing. Equation~4!, thus, is

Yn115F~Yn!5Fc +F f~Yn!.

Equations~6! and ~7! give

an115A~11M !~ ẏ1!21M ~y1!212y1222M

11M
, ~15!

where

y15
M ~an sint f1cost f !1ant f112 ~t f

2/2!

11M
,

ẏ15
an1M ~an cost f2sint f !2t f

11M
. ~16!

Note that whenan5a* ,

f
-

s.
e
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F f~Yn!5H 1

2a* J .

A variation da1 in an11 can be written as

da15
dy1

a*
2d ẏ11

M

2a* ~11M !
~dy1!21

1

2a*
~d ẏ1!21•••,

~17!

wheredy1 andd ẏ1 are the variations iny1 and ẏ1, respec-
tively. Using Eqs.~14! and ~16! in ~17!, and neglecting the
higher-order terms, we get

da1'da2
bM @2a* 2sin~2a* !#

~11M !2
~da!4/3. ~18!

Thus, the one-dimensional map close to the fixed pointa* is
given as

an115an2l~an2a* !4/3, ~19!

wherel5bM @2a* 2sin(2a* )#/(11M)2. It is clear thata*
is a fixed point and that the linearized map has a multip
equal to 1. This condition would not guarantee stability fo
general 1D map. However, in our physical system, ene
dissipation prevents the map from lying above the line
unit slope. This clearly proves that the fixed point exhib
one-way stability.

A. Estimate of the local basin of attraction

The sizeD of the interval of attraction can be estimate
by settingda150 andda5D in Eq. ~18!. The interval of
attraction is approximately given as

D5
1

l3
. ~20!

Now, l has a maximum value atM51. Therefore, we ex-
pect the size of the interval of attraction to be minimum
M51. In the following section, we show that this is also t
case for the exact map. Specifically, we show that the ma
invariant whenM is replaced by 1/M . Equation~19! clearly
shows the invariance for the approximate map. Figure
compares the approximate map and the exact map~numeri-
cal! for M51.

B. Invariance of the one-dimensional map

The mass ratioM is the only system parameter in the ma
A study of the map variation withM is important for under-
standing the underlying dynamics. We prove the followi
results for the 1D map.

Result. The one-dimensional mapan115 f (an ,M ) is in-
variant underM→1/M when there is no sudden jump b
tween two successive iterates of the map.

Mathematically, the above result is expressed as

an115 f ~an ,M !5 f ~an,1/M !.
01622
r

y
f

t

is

4

.

Using Eq.~10!, Eq. ~16! is written as

y15ansint f1cost f

5a ~say!,

ẏ15
an2t f1M ~an cost f2sint f !

11M

5
a11M b1

11M
. ~21!

Equation~15!, thus, becomes

an115A~11M2!an
2

~11M !2
1

M @a212~a21!12a1b121#

~11M !2
,

~22!

which can be written as

an115 f ~an ,M !.

Sincea, a1 , b1 are not functions ofM, if we replaceM with
1/M in Eq. ~22!, we get back the same equation. This sho
that

f ~an ,M !5 f ~an,1/M !. ~23!

It should be noted that the map is invariant only when th
are no sudden lift-offs between two iterates of the map. T
is true for an interval close to the fixed point on the righ
However, the entire map between two adjacent fixed po
is not invariant underM→1/M .

Observation. The minimum value of the interval of attrac
tion for each fixed point occurs atM51.

Although it is difficult to prove analytically that the mini
mum occurs atM51 for the exact map, all numerical resul
suggest exactly that. From the approximate map, Eq.~19!,
and the subsequent estimate of the basin of attractionD
5l23, it is easy to prove that the minimum size of the bas
of attraction occurs atM51. The invariance of the map

FIG. 4. Comparison between the exact numerical map~solid
line! and the approximate map~dotted line!.
0-5



m
ca

er
s

d
e
va
s

so
ti

is
ng
he
in
iti

a

m

ti
ba
ap
re

s of

he

set
set
gi-
the

ed
ted
sin
of

ns
int.

of
ore

in
f

h

on

t

e of
i-
in
e
the
ell
of

in

c

-
a

C. K. REDDY AND R. PRATAP PHYSICAL REVIEW E68, 016220 ~2003!
under the inversion ofM makesM51 to be an extremum
point. We claim that this point corresponds to the minimu
size of the basin of attraction on the basis of numeri
results.

V. GLOBAL MAP AND THE EFFECT
OF SYSTEM PARAMETERS

The mass ratioM is the only nondimensional paramet
apart froma which affects the dynamics. Figure 2 show
how the map varies withM between two successive fixe
points. For low values ofM, the entire map is above the lin
an115a* 1. Hence, the entire interval becomes an inter
of attraction. AsM is increased, increasingly larger portion
of the map drop below the linean115a* 1. Consequently,
the interval of attraction shrinks tillM51 where it is mini-
mum. AsM is increased further, the interval of attraction al
increases. This feature leads to a complex basin of attrac
as we show in Sec. VI.

VI. GLOBAL BASIN OF ATTRACTION

The local basin of attraction of a fixed point of the map
discussed in Sec. IV A. We now try to answer the followi
question. Are there other initial conditions apart from t
ones in the local interval of attraction around a fixed po
that lead to incessant hopping? That is, we seek other in
conditions, sayâ, such thatf n(â)→a* as n→`. For any
given M, this basin of attraction is naturally limited to 1D
@14#. We, however, consider the variation in the mass ratio
well and construct the global basin of attraction in theM -a
plane.

A. Construction of the basin of attraction

For a constant M, it turns out that there are infinite nu
ber of intervals of initial conditions that are in thea-limit set
of a given fixed point. To illustrate this, we use a schema
drawing of the multimodal map and construct the global
sin of attraction of the first fixed point. The schematic m
shown in Fig. 5~a! captures the essential geometric featu
of the original map.

Let us consider the first fixed pointa* 1. Let us denote the
local basin of attraction ofa* 1 by A and letS be its global

FIG. 5. ~a! A schematic map showing the local basin of attra
tion A of the first fixed point, its preimagesA1 and A2, and their
preimagesA21 andA22, etc.~b! Construction of the basin of attrac
tion of a* 1 leads to a Cantor set. The basin of attraction contains
segments including the Cantor set.
01622
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basin of attraction, i.e.,S5$au f n(a)→a* 1 asn→`%.
Naturally,A,S. Now, we consider the preimage of A. From
the geometric construction shown in Fig. 5~a!, we see that
two distinct intervalsA1 and A2 from the next hump map
into A. That is,

f 21~A!5A1øA2⇒~A1øA2!,S.

We can iterate backwards again and find the preimage
A1 andA2:

f 21~A1!5A11øA12⇒~A11øA12!,S.

Continuing, thus, with the preimages, we get

øAi jkl . . . ,S.

Thus, the global basin of attractionS is made up of all
these segments that, in the limit, form a Cantor set. T
formation of the Cantor set is rather obvious from Fig. 5~b!.
However, we must point out that althoughScontains a Can-
tor set, its topology is not equivalent to that of a Cantor
since it contains all the previous pieces of the Cantor
construction which have finite measure. Since the topolo
cal character of the map is the same for all fixed points,
structure ofS remains the same for all fixed points.

B. Nested basins of attraction

We have infinite number of fixed points and every fix
point has its own basin of attraction, entirely disconnec
from the basins of attraction of other fixed points. Each ba
of attraction has a complex topology since it contains sets
finite as well as zero measure~with infinite number of ele-
ments!. The global basin of attraction of lossless motio
consists of the global basin of attraction of each fixed po
Thus, we get an intricately woven, or rather nested, basin
attraction. This intricate nesting becomes more and m
pronounced as we explore higher values ofa.

The numerically generated basin of attraction is shown
Figs. 6–9. We follow a color scheme~shown as shades o
gray in the printed figures!. We plot all points which lead to
the first fixed pointa* 154.493 with green, the points whic
lead to the second fixed pointa* 257.7252 with red, the
points leading to the third fixed point with blue, and so
~Fig. 6!.

The figure shows that at lower values ofM, the global
basin of attraction is fairly large. In fact, forM50.1, the
entire range ofa shown in Fig. 6 looks green, i.e., mos
points seem to belong to the basin of attraction ofa* 1. To
validate this, we tooka* 1<a<a* 6, subdivided the range
into five intervals~going from a* i to a* i 11), took 10 000
equally spaced points in each interval and tracked the fat
their orbits. We calculated the fraction of the number of in
tial conditions from each interval that eventually ended up
the basin of attraction of one or the other fixed point. W
then added up the fractions from each interval to estimate
measure of the basin of attraction of each fixed point as w
as all of them together within, of course, the finite range
a. For M50.1, we found the measure of the ‘‘global’’ bas
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~up to a* 6) of attraction of incessant motions to be 1 Thu
all initial conditions within the selected range ended up
the basin of attraction of one or the other fixed point.
majority of these points, however, get attracted to the fi
fixed point whose basin of attraction measures 0.953. Th
why most points in Fig. 6 look green atM50.1. However,
for M50.2, the same measure~for all fixed points together!
turns out to be 0.037, i.e., only 3.7% of the initial conditio
lead to lossless motions. As Fig. 6 shows, this measure o
initial conditions that belong to the global basin of attracti
of the incessant motions decreases rapidly asM increases
and then starts increasing again asM becomes very large.

It is evident from the basins of attraction that this simp
system exhibits complex dynamics. Although the basin
attraction of any one fixed point is filled with holes th

FIG. 6. The basin of attraction for the hopping model for sm
M. The initial conditions whose iterates converge to a particu
fixed point are shown by a particular shade of gray or color. T
inset is shown in detail in Fig. 8.

FIG. 7. The basin of attraction for the hopping model forM
51 –10. The structure in the basin for largeM ~close toM510!
contains similar structure as that for smallM ~see Fig. 6!.
01622
,

t
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he

f

belong to the basin of attraction of other fixed points a
hence seemsriddled @15#, it remains to be proved if these ar
indeed riddled basins@16#. Although it is difficult to predict
the fate of an arbitrary initial condition, especially for ve
largea, because in the neighborhood of every initial con
tion which would settle down to a particular fixed poin
there exists another initial condition which would set
down to some other fixed point or may not settle down
any fixed point at all, the degree of unpredictability in th
qualitativedynamics of the systems is not as pronounced
in the system described by Sommerer and Ott@15#. It is
debatable whether two extremely close initial conditio
leading to two different fixed points in this case qualify to
called seeds of qualitatively different dynamics. From a pr
tical point of view, both such motions are lossless incess
motions of the hopper. However, they have considerably
ferent energies and their mid-air dynamics are certainly q
different. Apart from such motions, any initial condition~for

l
r
e

FIG. 8. The inset of Fig. 6 is shown in greater detail here
vealing the structure of the basin. The structure at finer scale
evident in the figure.

FIG. 9. The inset of Fig. 8 is shown here revealing the struct
of the basin at a further finer scale.
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largea) contains points in its neighborhood which lead to
hops at all or a few initial hops and then no hops.

VII. CONCLUSIONS AND REMARKS

We have studied the global dynamics of a passive hop
modeled by two masses connected with a single spring.
basic dynamics of the model, including the existence of
cessant motions, has been reported previously@1#. Here, we
have studied the multimodal map associated with the dyn
ics of the hopper in greater detail. The map variablea, the
nondimensional velocity of the upper mass, completely ch
acterizes the energy of the system at gradual takeoffs. T
is only one system parameter—the mass ratioM. We use the
one-dimensional map to first describe the dynamics of
hopper in different regions of the map for a given value ofM
and then show how the dynamics changes when we varyM.
In particular, we show that the map close to the fixed poi
is invariant under the inversion ofM, i.e., M→1/M .

Next, we show that the fixed points exhibit one-way s
bility by constructing and analyzing an approximate analy
J

h

s
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cal map. We use the approximate map to estimate the siz
the local basin of attraction. We also show that the size of
local basin depends upon the system parameterM. We then
construct the global basin of attraction, the set of all init
conditions, for different values of the mass ratioM, that
settle down to a fixed point. This basin of attraction is co
plex and shows structure at finer scales. The complex st
ture of the basin contains regions with interwoven Cant
like sets that render predicting the final state of an init
condition difficult. We have also estimated the measure
the basin of attraction over a finite range ofa for a givenM.

ACKNOWLEDGMENTS

This work was supported by the Department of Scien
and Technology under the Robotics and Manufacturing P
and by NSG funding. The authors wish to thank Profes
Anindya Chatterjee for his suggestion on computing
measure of the basins, and Professor Andy Ruina for
critical comments on the paper and for bringing Hagert
work to our attention.
,

i-
@1# A. Chatterjee, R. Pratap, C.K. Reddy, and A. Ruina, Int.
Robot. Res.21, 621 ~2002!.

@2# T. McGeer, Int. J. Robot. Res.9, 62 ~1990!.
@3# M. Garcia, A. Chatterjee, and A. Ruina, Dyn. Stab. Syst.15, 75

~2000!.
@4# M. Garcia, A. Chatterjee, and A. Ruina, ASME J. Biomec

Eng.120, 281 ~1998!.
@5# W. Schiehlen and J. Gao, Z. Angew. Math. Mech.69, 302

~1989!.
@6# P. J. Hagerty Ph.D. thesis, University of Michigan, 2001.
@7# R.M. May, Nature~London! 261, 459 ~1976!.
@8# A. Ruina and J. Bertram~unpublished!.
@9# R. Devaney,An Introduction to Chaotic Dynamical System
.

.

~Addison-Wesley, New York, 1987!.
@10# R. Pratap, S. Mukherjee, and F.C. Moon, Phys. Lett. A170,

384 ~1992!.
@11# A.S. Matveev, and A. SavkinQualitative Theory of Hybrid

Dynamical Systems~Birkhauser Boston, Cambridge, MA
1999!.

@12# B.F. Feeny and F.C. Moon, Nonlinear Dyn.4, 25 ~1993!.
@13# S.W. Shaw and P.J. Holmes, J. Sound Vib.90, 129 ~1983!.
@14# C.K. Reddy, and R. Pratap Current Science79, 639 ~2000!.
@15# J.C. Sommerer and E. Ott, Nature~London! 365, 138 ~1993!.
@16# J.A. Alexander, J.A. Yorke, Z.-P. You, and I. Kan, Int. J. B

furcation Chaos Appl. Sci. Eng.2, 795 ~1992!
0-8


