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Multimodal map and complex basin of attraction of a simple hopper
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In this paper, we study the global dynamics of a simple passive mechanical model for hopping. The hopper
is a two-mass, single-spring system constrained to move in the vertical diréetidar gravity above a rigid
ground. The hopper model and its basic dynamics including the existence of incessant hopping motions have
been reported elsewhere. Here, we extend the study to investigate the global dynamics of the hopper. The
global map of the hopper is multimodal. We construct an approximate analytic map near the fixed points of the
map and show that the fixed points exhibit one-way stability. We also show that the map is invariant under the
inversion of the mass ratio of the hopper. Next, we construct the global basin of attraction of these fixed points
and show that their structure is highly complex and retains form at finer scales. This structure of the basin of
attraction contains regions where the fate of an arbitrary initial condition becomes unpredictable.
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[. INTRODUCTION dissipative phase space. These motions exhibit one-way sta-
bility, a fact usually dismissed as a pathological case in
We consider the passive hopper model studied by Chatnathematical theories of dynamical systefé However,

terjeeet al. [1]. The model consists of two masses and  One-way stable limit cycles are known to exist in bilinear
m, connected together with a spring and is allowed to moveénodels of elastoplastic oscillatof0].
only vertically under gravity above a rigid grourisee Fig. If we let our mechanical intuition guide us in imagining
1). The collisions of the lower mass with the ground arethe varied motions that this hopper can have, the plastic col-
assumed to be perfectly plastic. The motivation behind thidision of the lower mass with the ground is likely to mess up
model is to study the energetics of such a locomotion withoufUr intuition for motions beyond the simple on@sich as the
overwhelming it with external controls. Passive systems prolower mass stopping dead with a thud on the ground while
vide much insight into natural dynamics and a better startinghe upper mass oscillatesThe collisions play an equally
point for controls as advocated by the works of McGE&r destructive role mathematically by destroying the otherwise
and subsequent researchiggl]. Chatterjeeet al. have stud- Smooth flow of the underlying dynamical system. The colli-
ied the basic dynamics and associated properties of the pa8ions introduce jumps in the state of the system, providing
sive hopper. The most interesting and relevant result of theiponlinearity that is perhaps best modeled as discrete events.
investigation is the existence of energy conserving periodid his mixing of continuous flow and discrete events makes it
motions of the hopper, termedcessant hoppingn Ref.[1]. @ hybrid dynamical system. Although, the literature on hy-
They also show the existence of a similar motion in a jug_brid dynamical SyStemS is falrly riCh, much of it is motivated
gling model and establish an equivalence between the twBy mixed control strategieee, for example, Ref11] and
models. Schiehlen and Gd6], however, were the first to references therejn Here, we are interested in the discrete
discover lossless motions of this model but their investigavents(iimpacts with the groundmainly as the instants of
tions were cursory. Approximately simultaneously with instantaneous Change in the state of the system. Several Sys-
Chatterjeeet al, and independently, Hagerf§] investigated t€ms with intermittent contactfl2,13 form examples of
the existence of such a motion in the context of a bouncinguch dynamical systems.
eccentric cylinder and reached similar conclusions. Our The simplicity of the model and the nonsmoothness intro-

work here is based on the more-available and directly

applicable[1]. e Emlg B

The mechanical model, shown in Fig. 1, is simple; the k(X,-X,) |:|

motions it exhibits, as we show later, are complex. That, ‘9 k(X,-X;) kx,

simple deterministic dynamical system exhibits complex be-"° kx

havior [7], is not surprising anymore. Yet, the dynamics we 42 gt Lt

investigate here i of its existence L | [i0rme

investigate here is remarkable because of its existence i . |

several simple mechanical systems such as hoppers, juggle > 1p N Iy
Relaxed State Flight FBD Collision FBD Contact FBD

Xy >0 X, =0 kx;<mpg

[1], and galloping modelg5,8]. These models are capable of
persistent energy conserving motions in an overwhelmingly

FIG. 1. The figure shows the passive hopper and the different
*Electronic address: pratap@mecheng.iisc.ernet.in phases during its motiottaken from Ref[1]).
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duced by the collisions makeapsan ideal choice for study- (d). Lift-off transition Lift-off from the ground contact
ing the dynamics of this system. However, we cannot obtairoccurs when the spring tension lifts the lower mass wapd
explicit maps as discussed in REL]. Chatterjeeet al. con-  =1. The lift-off condition can also be met immediately at

structed the map numerically and studied its properties geceontact with no period of sustained contaifty; >1). At
metrically. The map turns out to be multimodal, i.e., it has|ift-off from sustained contact there is no jump in position or
many humps. Here, we construct an approximate analyticalelocity of either mass.

map near the fixed pointghat correspond to the incessant e definea=y, at lift-off after a period of sustained
hopping motionsand show that the fixed points are one-way cqnact.« is the key variable in the following analysis. The

stable as stated in RéffL] based on geometric properties of hqsitions and velocities at the instant of lift off are
the numerical map. In addition, we show that the approxi-

mate map is invariant under the mass reciprocity of the hop-

per which implies that the dynamics near the fixed points is yi=1; y;=a; y»=0; y,=0. 2)
unaffected if the upper and the lower masses are inter-

changed. We then proceed to construct the basin of attraction

of the incessant motions and show that it has a complex These serve as initial conditions for the flight equations.
structure. The complexity of the structure is evident from theNote that all subsequent motions for all time are determined
numerically generated basins of attractions that retain strudy a at one lift-off. Thus, the dynamics can be characterized
ture at finer scales. We also compute numerically the me&by a one-dimensionallD) map, an.1="f(a,) as seen in
sure of this basin for two selected values of the mass rati&ec. lll.

and show that the measure is very sensitive to the mass ratio.

Lossless solutions
ll. EQUATIONS OF MOTION ) ) o
AND LOSSLESS SOLUTIONS An impact with nonzero speed would be dissipative.
Thus, for no dissipationy,=0 aty,=0. For sustained loss-

The equanc_)ns of motion of the system, the cond|t|pns forIess motions, we also need conditions on the acceleration and
lossless solutions, and the general nature of solutions are K L f th d dition >0 tact
described in detail in Ref1]. In this section, we reproduce, 1€'K apart from the zero speed condition.y§>0, contac

in brief, the equations of motion and some of the associatek’i’OUId be immediately lost and Phere would be a subsequent

dynamics from Ref[1] so that the reader can follow the collision with nonzero speed, aryg<<0 would require prior

main discussion of the paper from Sec. Ill with relative easeground penetration which is not possible physically. Thus,
The equations of motion of the system can be written withfor lossless impact ay,=0, not onlyy,=0 but alsoy,

the help of the free body diagrams shown in Fig. 1. The=0. Becausey,=0, the ground clearance condition is de-
system behavior is best represented by separate equations fgfmined byd3y,/d73. If d3y,/d7*>0, grazing would be
in-flight dynamics, collision transition, and dynamics during followed by a dissipative impact and hence there will be no
sustained contact of the lower mass with the ground. We usgubsequent sustained lossless motions. Thus, we must simul-
the following nondimensional variables for the equations oftaneously meet all of these conditions at the end of flight:
motion:
y»=0,y,=0,y,=0, and d3,/d3<0.

= L = L M= @ ( )= d( )

o meon Y2 mpgiky M my T A

All of these conditions can be simultaneously met in this
where 7=t and w=k(1+M)/m, is the angular fre- model, no matter what the values of the model parameters,

quency of vibration in the flight phase. by adjustment of the single dynamic varialie(the lift-off
(a). Flight. The equations of motion for free flight in SPeed ofm,). To find these lossless solutions, we first solve
terms of the new variables atsee Fig. 1 the initial value problem for the flight phag&gs. (1) and
(2)]. Imposing the dissipation-free contact conditions on the
(L+M)Vy=—M(y;—y,) —1 solution at the end of the flight, we can solve for the time of

flight in terms ofa. Then substituting this relationship in the
. zero acceleration condition for sustained contact, we finally
(1+M)y,=(y1—y2) 1. (1) get(see Ref[1] for details

(b). Collision transition When the lower mass lands on
the ground, the collision causes a jump in its velocity but not a=tana. ®)
in its displacement. Using “*-/+"’ to denote before and
after impact, the collision occurs when =0 andy, <0.

The impact transitions areyl=y: yi=y;=0: vi Equation (3) has infinitely many solutions for (and

hence forr;). These solutions forx which give incessant

=y; ; andy; =0. _ _ . hopping are denoted by o* and =4.493409,
(c). Contact During a period of sustained contagt; 7725251, 10.90412. . . Higher values ofa* correspond
=0, y;<1, and (+M)y;=—My;—1. to more oscillations between collisions.
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I1l. ONE-DIMENSIONAL MAP AND THE GENERAL
DYNAMICS OF THE HOPPER

The dynamics of the hopper between two gradual lift-offs

can be studied by constructing a map of the form

Yoi1=F(Y,), (4)

whereY =[y; yl]T is the state vector of the upper mass and

F:R%2->R? mapsY from the n'" gradual lift-off to the @
+1)™" gradual lift-off. F is defined as

FEFCOFfOFfO"'Oan (5)

whereF; is the flight-impact map anB. is the contact map.

Note that there can be more than one flight-impact maps and
these correspond to immediate lift-offs without any period of

steady contact-; andF are defined as
7_2

: f -
Y1+ Y17 — > +M(y; sinTs+y, COSTY)

Fe(Y)= 1+M

y1— 7i+M(y; cosT;—Y; sinT)

1+M
(6)
1
Fo(Y)= \/(1+ M)Y2+M y2+2y;—2-M [, (7)
1+M
where the time of flightr; satisfies
2 |
?erl sints+y; cosr—y 7e—y,;=0. (8)

Since

1

|

Eq. (4) is essentially a one-dimensional map of the form

9

The mapf:R—R cannot be written explicitly since the

Yn

an

ant1=f(ay).
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FIG. 2. The one-dimensional map on the free variadb)ethe
nondimensional velocity of the upper mass, tracked between two
successive gradual hops. Different maps correspond to different val-
ues of the mass ratibl.

fixed pointa*1=4.4934 into four segmentser , ag, ag,

and ag—as shown in Fig. 3 and show a typical motion of
the hopper in each segment. dq , the landing of the lower
mass is followed by an immediate takeoff at the expense of
huge loss of energy in the impact, which makes subsequent
takeoffs to be increasingly difficult. The fixed point exhibits
one-way stabilityWe prove the stability of the fixed point in
Sec. IV) We denote the local interval of attraction ag. In

ag, the dynamics eventually settles down to energy conserv-
ing periodic hops. Since this incessant motion is very special,
we discuss it in the following sections. On the right segment
of the hump, a typical motion of the hopper d@rg involves

one or two gradual hops of the lower mass before it settles
down to the ground, while the upper mass continues to os-
cillate (as a single degree of freedom, undamped oscillator
The open segment of the mag@g, represents motions that
have no hops at all. The motions described above are just
representative motions. It turns out that and ag are not
continuous segments. They have rather complicated structure

solution of the flight equations involves transcendental funcWhich we describe in Sec. VI. It is worth mentioning here
tions. Therefore, we construct the map numerically. A fewthat the nonsmooth transition of the map fram to ag
maps corresponding to some typical values of the mass ratidrom a linear segment to a parabolic segmestreflective

M are shown in Fig. 2 where the multimodality of the map is

of the qualitatively different motions of the hopper in the two

self evident. The fixed points of this map correspond to theseégments. On the right side of the fixed pairit, we have

solutions ofa=tan«. We have plotted the map only up to

y; <1 at impact. This condition implies that for all initial

the first five fixed points but the trend is clear enough not tovelocities of the formx,= a* + da, there is no sudden take-
warrant a longer map for our studies. The map by itself doeoff. Howevgr, on the o'Fher hand,.f_or initial conditions to the
not give enough information about the physical motion of theleft of the fixed point, i. e., conditions of the foras,= *

hopper with different initial conditions. We can, however,

— déa, we havey; >1. This condition assures that the spring

use the map to characterize the physical motion by considaas enough force to pull the lower mass immediately after

ering the set of initial conditions around a single fixed point
and the unimodal map around(& single hump We could,
for example, divide the region around the first nontrivial

impact(sudden takeoff which is then followed by a second
impact and further loss of energy. This motion leads to a
further decrease in the value af,, ;. The one-dimensional
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N N ower Mass 2
€ | £ AT T .
g ] R E— ?+an sint;+costs— ap7i—1=0, (10
2. . Y where a,=a* + da with Sa<1. Equation (10) is rear-
: s ) . ranged as
i \ / T Time 2
. —tcosr—1
/. 2 = 11
5 a | o > = Tf_Sian _¢(Tf)' ( )
tsE‘* A Taylor series expansion around (time of flight corre-
sponding toa*) yields
2
, ) 1% 148
/ 1 = —_— +—— 2+—_ 3+"'.
0 5 &n " \ Sa ot OT; 5 (97'? (67%) 6 (97? (67%)
€ 1 Lower Mass ‘qc-;: '.'_UpperMass
gl /\. £ ' The fixed pointa* satisfies
{Q 4 ‘,.Upper Masg--,‘ < . \Lower Mass
Q ’ @ -
o | ol .
g a1 a*sin(2a*)+cog2a*) =1,
D 1 of
3 - 2 + + — * *\ _ i *\— _ %
= L a*coq2a*)—sin(2a™*) a*. (13
FIG. 3. Typical dynamics of the hopper on various segments of Using Egs.(10) and(13), it can be shown that
the map. The region around a fixed point is divided into four seg-
ments:a, represents the left leg of the mag; represents the local d¢ o 82¢ L &qu s a*
basin of attraction of the fixed poingg represents the right leg of (9_7}(7' )= 972 (r)=0; 973 ()= 2a* —sin(2a*) )
the map, andxg represents the gap between two map segments. f f
Typlcal motions of the hopper in each segment are shown in the Neglecting the higher-order terms @, we have
adjacent plots.
67=p(sa)'?, (14)

map, therefore, curves downwards on the left side of the

fixed point. The general nature of the motions of the hoppewhere

described above is repeated in similar segments of the other

humps of the map, with one basic but inconsequential differ-

ence that the mid-air oscillations increase in all segments as B=
we consider humps associated with higher fixed points.

B[2a* —sin(2a*)]

a*

1/3

In Sec. lll, we noted that for initial conditions of the form
IV. STABILITY OF THE LOSSLESS MOTIONS an= a* + Sa, we have a periOd of sustained contact at land-
ing. Equation(4), thus, is
The fixed points of the 1D map correspond to energy
conserving motions of the hopper. We carry out a higher- Yni1=F(Y,)=FcoF:(Yy).
order perturbation of the map around any fixed paifitin
order to determine the stability of the fixed point and esti-Equations(6) and(7) give
mate the interval of attraction, if stable. An interval of attrac-
tion on the left, close to the fixed point, would require the \/(1+M)(y1)2+M(y1)2+ 2y,—2—M
Ant+1=

one-dimensional map to lie above the line of unit slope, 1+ M . (19
which is not admissible from energy considerations. In what
follows, we show that the fixed point has a nonzero intervalyhere
of attraction on the right side. Consider the initial conditions
at then'" gradual hop, M (ap Sin 7+ cosry) + apri+1— (72/2)
Yi= 1+M ’
e
Yn: . . an+M(C¥nCOS’Tf_Sian)_Tf
o =

n Y1 1+ M . (16)

The time of flight then satisfies Note that wherx,= a*,
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A variation daq in a1 can be written as
4.49%

Mo Mz sy :
o §y1+2a*(l+M)(5yl)+2a*(byl)+ , £

17
where 8y, and 8y, are the variations ity; andy;, respec-

tively. Using Egs.(14) and (16) in (17), and neglecting the
higher-order terms, we get

5&1:

4.449

M 2a* — sin(2a*) 449 4.:195 4'.5 4.505 4.'51 4515
a 2 ] (sa)*™3. (18 On
(1+M)
FIG. 4. Comparison between the exact numerical rtegid
Thus, the one-dimensional map close to the fixed pefnis  line) and the approximate mapotted ling.
given as

Sa1~da—

Using Eq.(10), Eq. (16) is written as
an+1=an_)\(an_a*)4/31 (19 .
V1= a,SIN T4+ COST
where\ = BM[2a* —sin(22*))/(1+M)2. It is clear thata*
is a fixed point and that the linearized map has a multiplier
equal to 1. This condition would not guarantee stability for a

=a (say,

ap— 71+ M(a,cosTi—sinTy)

general 1D map. However, in our physical system, energy ylz
dissipation prevents the map from lying above the line of 1+M
unit slope. This clearly proves that the fixed point exhibits
one-way stability. _atMb, 21
' - 1+M @Y
A. Estimate of the local basin of attraction Equation(15), thus, becomes
The sizeA of the interval of attraction can be estimated
by settingda;=0 and Sa=A in Eq. (18). The interval of (1+M?)a? M[a2+2(a—1)+2a;b;—1]
ion i i i api1= + ,
attraction is approximately given as n+1 (1+M)? (1+M)?
1 (22)
A=—. 20 . .
A3 20 which can be written as

Now, A has a maximum value &l =1. Therefore, we ex- an1= f(ay,M).

pect the size of the interval of attraction to be minimum at_ ) ) )

M =1. In the following section, we show that this is also the SNC€a, a;, b, are not functions oM, if we replaceM with
case for the exact map. Specifically, we show that the map i&/M in Eq. (22), we get back the same equation. This shows
invariant whenM is replaced by M. Equation(19) clearly that
shows the invariance for the approximate map. Figure 4
compares the approximate map and the exact (hameri-
cal) for M=1.

f(a,,M)=F(a,,1M). (23

It should be noted that the map is invariant only when there
are no sudden lift-offs between two iterates of the map. This
B. Invariance of the one-dimensional map is true for an interval close to the fixed point on the right.
The mass ratid/ is the only system parameter in the map. However, the entire map between two adjacent fixed points
A study of the map variation witM is important for under- S not invariant undeM — 1/M. _
standing the underlying dynamics. We prove the following ©OPservationThe minimum value of the interval of attrac-

results for the 1D map. tion for each fixed point occurs & =1.

Result The one-dimensional mag,, 1= f(a,,M) is in- Although it is difficult to prove analytically that the mini-
variant underM —1/M when there is no sudden jump be- Mum occurs aM =1 for the exact map, all numerical results
tween two successive iterates of the map. suggest exactly that. From the approximate map, (&),

Mathematically, the above result is expressed as and the subsequent estimate of the basin of attraction,

=\"3, itis easy to prove that the minimum size of the basin
apni1=f(ap,M)=1f(a,,1IM). of attraction occurs aM=1. The invariance of the map
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(b basin of attraction, i.e.,S={a|f"(a)—a*!asn—o}.

+ n= Naturally, ACS. Now, we consider the preimage of A. From
: A, A, the geometric construction shown in Figah we see that
g e —— =2 two distinct intervalsA; and A, from the next hump map

Ay Ap Ay Axm into A. That is,

sl mE oma 0=3

f 1A =A,UA,=(A,UA,)CS.
mmEm smamn=4
| We can iterate backwards again and find the preimages of
A; andAy:
FIG. 5. (a) A schematic map showing the local basin of attrac-
tion A of the first fixed point, its preimage&, andA,, and their f A=A UA = (A;UA;,)CS.
preimagesA,; andA,,, etc.(b) Construction of the basin of attrac-
tion of «** leads to a Cantor set. The basin of attraction contains all Continuing, thus, with the preimages, we get
segments including the Cantor set.

UAijk| CS
under the inversion oM makesM =1 to be an extremum
point. We claim that this point corresponds to the minimum Thus, the global basin of attractiddis made up of all
size of the basin of attraction on the basis of numericathese segments that, in the limit, form a Cantor set. The

results. formation of the Cantor set is rather obvious from Fih)5
However, we must point out that althou§tontains a Can-

V. GLOBAL MAP AND THE EEEECT tor set, its topology is not equivalent to that of a Cantor set

OF SYSTEM PARAMETERS since it contains all the previous pieces of the Cantor set

construction which have finite measure. Since the topologi-
The mass ratiV is the only nondimensional parameter cal character of the map is the same for all fixed points, the
apart froma which affects the dynamics. Figure 2 shows structure ofS remains the same for all fixed points.
how the map varies wittM between two successive fixed
points. For low values o, the entire map is above the line
ans1=a*'. Hence, the entire interval becomes an interval

of attraction. AsM is increased, increasingly larger portions Ve have infinite number of fixed points and every fixed
of the map drop below the line,, ;= **. Consequently, Point has its own basin of attraction, entirely disconnected

the interval of attraction shrinks tiM =1 where it is mini-  from the basins of attraction of other fixed points. Each basin
mum. AsM is increased further, the interval of attraction also©f attraction has a complex topology since it contains sets of

increases. This feature leads to a complex basin of attractidilite as well as zero measufeith infinite number of ele-
as we show in Sec. VI. mentg. The global basin of attraction of lossless motions

consists of the global basin of attraction of each fixed point.
Thus, we get an intricately woven, or rather nested, basin of
attraction. This intricate nesting becomes more and more
The local basin of attraction of a fixed point of the map ispronounced as we explore higher valuesxof

discussed in Sec. IV A. We now try to answer the following  The numerically generated basin of attraction is shown in
question. Are there other initial conditions apart from theFigs. 6-9. We follow a color schemghown as shades of
ones in the local interval of attraction around a fixed pointgray in the printed figurgsWe plot all points which lead to
that lead to incessant hopping? That is, we seek other initidhe first fixed pointa**=4.493 with green, the points which
conditions, sayw, such thati"(a)— a* asn—. For any lead to the second fixed p.oint*2=. 7.7252 with red, the
given M, this basin of attraction is naturally limited to 1D Points leading to the third fixed point with blue, and so on

[14]. We, however, consider the variation in the mass ratio adFig. 6. i
well and construct the global basin of attraction in ¥Mea The figure shows that at lower values if, the global
plane. basin of attraction is fairly large. In fact, favi=0.1, the

entire range ofa shown in Fig. 6 looks green, i.e., most
points seem to belong to the basin of attractiorndf. To
validate this, we tookr* '<a<a*8, subdivided the range
For a constant M, it turns out that there are infinite num-into five intervals(going from a*' to «*' 1), took 10000
ber of intervals of initial conditions that are in tlhelimit set  equally spaced points in each interval and tracked the fate of
of a given fixed point. To illustrate this, we use a schematicheir orbits. We calculated the fraction of the number of ini-
drawing of the multimodal map and construct the global batial conditions from each interval that eventually ended up in
sin of attraction of the first fixed point. The schematic mapthe basin of attraction of one or the other fixed point. We
shown in Fig. %a) captures the essential geometric featureshen added up the fractions from each interval to estimate the
of the original map. measure of the basin of attraction of each fixed point as well
Let us consider the first fixed point*®. Let us denote the as all of them together within, of course, the finite range of
local basin of attraction of** by A and letSbe its global «. ForM=0.1, we found the measure of the “global” basin

B. Nested basins of attraction

VI. GLOBAL BASIN OF ATTRACTION

A. Construction of the basin of attraction
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Nondimensional Velocity o

Nondimensional Velocity o

L L 1 L L 1
04 05 06 0.7 08 09 1

M

FIG. 8. The inset of Fig. 6 is shown in greater detail here re-

FIG. 6. The basin of attraction for the hopping model for small . i . .
M. The initial conditions whose iterates converge to a particularvea"ng the structure of the basin. The structure at finer scales is
evident in the figure.

fixed point are shown by a particular shade of gray or color. The

inset is shown in detail in Fig. 8. . . . .
9 belong to the basin of attraction of other fixed points and

. . . hence seemsddled[15], it remains to be proved if these are
* 6
(up to a™) of attraction of incessant motions to be 1 Thus, ;o0 riqdled basinkL6]. Although it is difficult to predict

all initial conditions within the selected range ended up in : - s :
: . , . the fate of an arbitrary initial condition, especially for ver
the basin of attraction of one or the other fixed point. A{ y P Y Y

majority of these points, however, get attracted to the firs argea, because in the neighborhood of every initial condi-

) . . . ._~tion which would settle down to a particular fixed point,
fixed point whose basin of attraction measures 0.953. This i ere exists another initial condition which would settle

}NhyMrTlogtzp?;]nts in Fig. 6 look gre”ep Md=0..1.t I—{owi\;]er, down to some other fixed point or may not settle down to
or M=0.2, the same measufier all fixed points together any fixed point at all, the degree of unpredictability in the

. 0 o L
;curr:jstmlJt tolbe 0'03;.7’ |.e.,AonFIy Sgﬁr’]Of thetr:mtlal condltlofnts ualitative dynamics of the systems is not as pronounced as
ead {0 J0SsIess motons. AS Fg. 6 Shows, thiS measure o the system described by Sommerer and [Q8]. It is

initial conditions that belong to the global basin of attraction yopatable whether two extremely close initial conditions

of the incessant motions decreases rapidiyVaincreases leading to two different fixed points in this case qualify to be

and then starts increasing againNMdecomes very large. o : :
. ; . . N called seeds of qualitatively different dynamics. From a prac-
It is evident from the basins of attraction that this simple d y y P

‘ hibit lex d ics. Althouah the basi ftical point of view, both such motions are lossless incessant
system exnibits compiex: dynamics. /Athough the basin Oly, iqns of the hopper. However, they have considerably dif-
attraction of any one fixed point is filled with holes that

ferent energies and their mid-air dynamics are certainly quite

" different. Apart from such motions, any initial conditigfor

17.8

IS

n
T
bl
N
N
T
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17’06.17 0.1.71 0.1‘72 0.1.73 0.174 0.;75 70.176 0.177 0.178 0.1.79 0.18
M
FIG. 7. The basin of attraction for the hopping model fdr
=1-10. The structure in the basin for larlye (close toM =10) FIG. 9. The inset of Fig. 8 is shown here revealing the structure
contains similar structure as that for smislll(see Fig. 6. of the basin at a further finer scale.
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large @) contains points in its neighborhood which lead to nocal map. We use the approximate map to estimate the size of

hops at all or a few initial hops and then no hops. the local basin of attraction. We also show that the size of the
local basin depends upon the system paramdteWWe then
VIl. CONCLUSIONS AND REMARKS construct the global basin of attraction, the set of all initial

i ) ] conditions, for different values of the mass ratib that
We have studied the global dynamics of a passive hoppegettie down to a fixed point. This basin of attraction is com-
modeled by two masses connected with a single spring. Thgiex and shows structure at finer scales. The complex struc-
basic dynamics of the model, including the existence of inyyre of the basin contains regions with interwoven Cantor-
cessant motions, has been reported previollslyHere, we  |ike sets that render predicting the final state of an initial
have studied the multimodal map associated with the dynamsongition difficult. We have also estimated the measure of

ics of the hopper in greater detail. The map variablethe  the pasin of attraction over a finite rangewfor a givenM.
nondimensional velocity of the upper mass, completely char-

acterizes the energy of the system at gradual takeoffs. There
is only one system parameter—the mass ritioVe use the
one-dimensional map to first describe the dynamics of the This work was supported by the Department of Science
hopper in different regions of the map for a given valud/of and Technology under the Robotics and Manufacturing PAC
and then show how the dynamics changes when we Mary and by NSG funding. The authors wish to thank Professor
In particular, we show that the map close to the fixed pointsAnindya Chatterjee for his suggestion on computing the
is invariant under the inversion &, i.e., M—1/M. measure of the basins, and Professor Andy Ruina for his

Next, we show that the fixed points exhibit one-way sta-critical comments on the paper and for bringing Hagerty's
bility by constructing and analyzing an approximate analyti-work to our attention.
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