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Statistical crossover characterization of the heterotic localized-extended transition

Ryuichi Ugajin*
Fusion Domain Laboratory, Sony Corporation, 5-21-15 Higashikojiya, Ota-ku, Tokyo 144-0033, Japan

~Received 24 March 2003; published 23 July 2003!

We investigated the spectral statistics of a quantum particle in a superlattice consisting of a disordered layer
and a clean layer, possibly accompanied by random magnetic fields. Because a disordered layer has localized
states and a clean layer has extended states, our quantum system shows a heterotic phase of an Anderson
insulator and a normal metal. As the ratio of the volume of these two layers changes, the spectral statistics
change from Poissonian to one of the Gaussian ensembles which characterize quantum chaos. A crossover
distribution specified by two parameters is introduced to distinguish the transition from an integrable system to
a quantum chaotic system during the heterotic phase from an Anderson transition in which the degree of
random potentials is homogenous.
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I. INTRODUCTION

It has been established that an integrable quantum sy
has energy levels whose nearest-neighbor spacing is wel
scribed by the Poisson distribution, where the energy-le
sequence is purely random@1,2#. On the other hand, a quan
tum system whose classical counterpart is chaotic is cha
terized by one of the three Gaussian ensembles, name
Gaussian orthogonal ensemble~GOE!, a Gaussian unitary
ensemble ~GUE!, and a Gaussian symplectic ensemb
~GSE!, in which the energy-level sequence is affected b
strong repulsion between the energy levels@3–5#. These
three ensembles are universal in the sense that informatio
a Hamiltonian is at a minimum, except that concerning
global symmetry@6#. The spectral statistics could be spe
fied more precisely if one introduces more constraints on
Hamiltonian, e.g., a Hamiltonian being the sum of the de
ministic and random parts@7# or a Hamiltonian having a
particle-hole symmetry@8#.

During the transition from integrable to quantum chaot
there is a crossover region where the observed spectra ca
attributed to neither Poissonian nor one of the univer
Gaussian ensembles@9,10#. The Berry-Robnik distribution
@11#

P2~s,r!5r2e2rs erfSApr̄s

2 D 1S 2rr̄1
pr̄3s

2 De2rs2pr̄2s2/4

~1!

is one of the crossover distributions that have been use
characterize the nearest-neighbor spacing distribution of
termediate statistics between Poissonian and GOE, wher̄
512r and

erf~x!5
2

Ap
E

x

`

dte2t2
~2!

is the error function. WhileP2(s,1) is identical to the Pois-
son distribution
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PP~s!5e2s, ~3!

P2(s,0) is the same as predicted by GOE

PGOE~s!5
ps

2
e2ps2/4. ~4!

The Berry-Robnik parameterr may be interpreted as th
relative phase-space volume of the regular regions in
system’s classical counterpart@12#. The Brody distribution
@13#

PB~s;n!5~n11!a~n!sn exp@2a~n!sn11# ~5!

is also useful to characterize the observed spectrum usi
single parametern, where a(n) is a constant. The Brody
parametern appears in the exponent of the factorsn, so it
measures the strength of repulsion in the energy levels,
n50 for Poissonian andn51 for GOE.

Let us consider a quantum system which depends on
parameters, i.e.,V1 and V2 . We assume that our system
integrable whenV15V250 and shows quantum chaos whe
V15V251. We calculate the nearest-neighbor spacing dis
bution of our quantum system for eachV1 andV2 to deter-
mine the Brody parameter as a function ofV1 andV2 , as in
n5 f (V1 ,V2), wheref (0,0)50 and f (1,1)51. It is obvious
that we cannot catalog quantum systems using the inv
function of f (V1 ,V2). There might be quantum systems wi
the same value of the Brody parameter, but their spec
statistics would be different. Note that the nearest-neigh
spacing distributionP(s) is a probability distribution and is
restricted only by*0

`P(s)ds51 and*0
`sP(s)ds51. There-

fore, there are possibilities of intermediate distribution fun
tions far beyond a distribution function determined by
single parameter. It would be interesting to know if there a
quantum systems requiring intermediate statistics, where
nearest-neighbor spacing distribution must be described
more than a single parameter.

This paper considers a quantum particle in a superlat
structure of anA layer and aB layer, the first of which is an
Anderson insulator and the second of which is a norm
metal. While theA layer is full of impurities which generate
©2003 The American Physical Society19-1
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scattering centers, theB layer is relatively clean. Let us not
that this system can be thought of as a heterosis of these
phases of electrons, i.e., an Anderson insulator and a no
metal, as in the heterosis of a ferromagnetic phase and p
magnetic phase@14#. It is expected that as the ratio of th
volume of these two layers changes, the spectral statis
will undergo a transition from the Poissonian to the Gauss
ensemble. To distinguish this transition during the hetero
phase of an Anderson insulator and a normal metal from
Anderson transition when the degree of disorder is hom
enous, we introduce a crossover characterization depen
on two parameters.

II. MODEL

Spectral statistics are known to be useful in determin
the behavior of a quantum particle in a disordered med
@15–19#. This is because we know that the spectral statis
of an electron extended over random impurities are thos
a quantum chaotic system which is characterized by str
repulsion between energy levels. On the other hand,
spectral statistics of localized electrons are Poissonian. In
phase of localized electrons, i.e., an Anderson insulato
one assumes a state localized near a point, one should
another state localized near another point. If the localiza
length of the first state is similar to that of the second sta
the energy difference between these two states is so s
that there is no repulsion between these energy levels. As
degree of disorder increases, the spectral statistics ch
from those of a quantum chaotic system to a Poisson
showing an Anderson transition@20–22#. When the Ander-
son transition occurs, the spectral statistics change f
Poissonian to GOE if the electrons are affected by neit
spin-orbit interactions nor magnetic fields@15#. During the
transition from Poissonian to GOE, the spectral statis
may be well characterized by one of the crossover distri
tions noted previously. When a magnetic field breaks
time-reversal symmetry of the system, the quantum ch
will be characterized by GUE@23#. If spin-orbit interaction
affects the level fluctuations, the strength of repulsion
tween energy levels would be as strong as predicted by G
@24,25#.

Let us introduce a cubic lattice of sizeL, whose sites are
denoted by

r p5~xp ,yp ,zp!. ~6!

Operatorĉp
† creates a quantum particle at lattice siter p . A

tight-binding Hamiltonian is written as

Ĥ52 (
^p,q&

tp,qĉp
†ĉq1(

p
vpĉp

†ĉp1H.c., ~7!

where^p,q& is a pair of nearest-neighbor sites. Transfertp,q is
taken to be

tp,q5H exp~2p iup,q! when ur p2rqu51

0 otherwise.
~8!
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We have introduced random variableup,q which satisfies
up,q52uq,p and uup,qu,j/2. A random magnetic field can
be introduced byj.0. On-site random potentialvp is de-
fined as

vp5H 2Vs/2,vp,Vs/2 when 1<zp<M

2Vl /2,vp,Vl /2 when M,zp<L.
~9!

The periodic boundary condition is used for our lattice. O
quantum system is composed of two layers, one of which
thicknessM and is disturbed by a random potential with th
degree ofVs , and the other of which has thicknessL2M
and is disturbed by a random potential with the degree ofVl .
It is useful to investigate the case ofVs5Vl , which is an
Anderson transition problem in which the degree of disor
is spatially homogenous. We now turn our attention to
case in whichVsÞVl , in particular,Vs,Vc and Vc,Vl ,
whereVc is the critical degree of disorder of the Anderso
transition. It is well known thatVc is about 16.5 in a three
dimensional cubic lattice@18#.

We take L524, so the total number of sites isL3

513 824.Ĥ is numerically diagonalized, yielding eigenva
uesep (p51,2, . . . ,13824). We used 2000 levels frome5913
to e7912 in order to determine the spectral statistics. Befo
we determine the spectral statistics, however, the ene
level sequences must be modified by ‘‘unfolding’’ them u
ing the third-order functions of energy, so as to give t
energy-level sequences a constant density where the ave
of nearest-neighbor spacing is one@26#. The nearest-
neighbor spacing distribution is evaluated as the probab
P(s)ds such that the energy difference between adjacent
els will be betweens and s1ds. We takeds5 1

10 . The D3
statistics of Dyson and Mehta are helpful in determini
whether the off-diagonal elements of a Hamiltonian mat
constructed using the eigenfunctions of integrable syste
strongly influence the behavior of the system. TheD3 statis-
tics of Dyson and Metha are defined by the ensemble ave
of

D~n!5min
A,B

S 1

2n E2n

n

@l~e!2Ae2B#2de D . ~10!

Therefore, we take the average ofD(n) for many segments
of energy levels in order to obtainD3(n).

Whenj.0 breaks the time-reversal symmetry, the qua
tum system whose classical counterpart is chaotic has
nearest-neighbor spacing distribution predicted by GUE:

PGUE~s!5
32s2

p2 e24s2/p, ~11!

which is compared to that of the GOE and the Poisson
distribution in Fig. 1. The crossover distribution specified
two parameters~v,h! is given by

Q~s;v,h!5A~v,h!s2v exp@2B~v,h!s11h#. ~12!

The conditions
9-2



e
en

fa
.

are
bu-

-
tem

and

on
og-

the
d

isson

tion

the

al-
.

s
ded
3

the
s is
rgy
type

STATISTICAL CROSSOVER CHARACTERIZATION OF . . . PHYSICAL REVIEW E 68, 016219 ~2003!
E
0

`

dsQ~s;v,h!51 ~13!

and

E
0

`

dssQ~s;v,h!51 ~14!

determine the coefficientsA(v,h) andB(v,h) as

A~v,h!5~11h!

FGS 212v

11h D G112v

FGS 112v

11h D G212v ~15!

and

B~v,h!5F GS 212v

11h D
GS 112v

11h D G
11h

, ~16!

where

G~z!5E
0

`

dttz21e2t ~17!

is the Gamma function. When the histogram ofP(s) ob-
tained from the observed spectrum is denoted byP(ex)(sj ),
we can determine the appropriate values of~v,h! in order to
minimize the deviation

U~v,h!5(
j 51

24

@Q~sj ;v,h!2P~ex!~sj !#
2. ~18!

The two parameters~i.e., v andh!, have different roles in
the crossover distribution.v appears in the exponent of th
factor s2v measuring the strength of repulsion between
ergy levels when they are close, i.e., whens is smaller than
1. h appears in the exponential function, measuring how
the crossover distribution decays ass increases beyond 1

FIG. 1. The nearest-neighbor spacing distributionP(s) of GOE,
GUE, and Poissonian.
01621
-
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Whenh is small, large intervals between adjacent levels
frequently seen in the energy spectrum. The Brody distri
tion is obtained whenv5h/2. BecauseQ(s;0,0) is Poisso-
nian, i.e.,PP(s), andQ(s;1,1) is identical toPGUE(s), the
route from (v,h)5(0,0) to ~1,1! is accompanied by a tran
sition from an integrable system to a quantum chaotic sys

characterized by GUE. Note thatQ(s; 1
2 ,1) is identical to the

nearest-neighbor spacing distribution predicted by GOE
Q(s;2,1) is that predicted by GSE.

III. SPECTRAL STATISTICS

A. Homogenous phase

When Vs5Vl , denoted byV, our system will show the
spectral behavior of a system which exhibits an Anders
transition. This is because the degree of disorder is hom
enous in the system. IfV is sufficiently small, it shows a
metallic behavior accompanied by quantum chaos. On
other hand, ifV is sufficiently large, it possesses localize
states whose energy levels are uncorrelated as in the Po
distribution.

Figure 2 shows the nearest-neighbor spacing distribu
P(s) and theD3 statistics of Dyson and Mehta whenVs
5Vl5V is changed from 10 to 40 withj50. In Fig. 2~a!,
P(s) of the observed spectra is well approximated by
broken lines, i.e., the crossover distributionQ(s;v,h) with
appropriate values of~v,h!. In Fig. 2~b! we also show theD3
statistics of the Poisson distribution,

D3~n!5
n

15
, ~19!

and those predicted by GOE,

D3~n!5
1

p2 F ln~2pn!1g2
p2

8
2

5

4G1O~n21!, ~20!

whereg is Euler’s constant@4#. WhenV540, the electronic
structure is that of an integrable system consisting of loc
ized states, soP(s) is similar to the Poissonian distribution
On the other hand, whenV510, the electronic structure i
that of a quantum chaotic system consisting of exten
states, soP(s) is similar to that predicted by GOE. Figure
shows the nearest-neighbor spacing distributionP(s) and the
D3 statistics of Dyson and Mehta whenVs5Vl5V is
changed from 10 to 40 withj50.1. In Fig. 3~a!, the cross-
over distributionQ(s;v,h) with appropriate values of~v,h!
are also shown. In Fig. 3~b!, we also show theD3 statistics
predicted by GUE,

D3~n!5
1

2p2 F ln~2pn!1g2
5

4G1O~n21!. ~21!

Because of the existence of random magnetic fields,
time-reversal symmetry is broken, so the quantum chao
characterized by GUE when the repulsion between ene
levels is strong. Because the system is homogenous, this
9-3
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of Anderson transition features a continuous change in
ratio of chaotic to integrable sections in a wave-num
space.

B. Heterotic phase

Let us turn to the case whenVsÞVl , which will be re-
ferred to as a heterotic phase.Vs510 andVl540 are used in
our numerical investigations. Note that whenM50, the
whole system is influenced by the degree of random po
tials with Vl . WhenM5L, the degree of disorder isVs over
the whole structure, so our system is homogenous ag
BecauseVl is large enough to localize a quantum partic
andVs is small enough to let a quantum particle be diffus
as M increases there is a transition from localized states
extended states.

Figure 4 shows the nearest-neighbor spacing distribu
P(s) and theD3 statistics of Dyson and Mehta whenM is
changed from 2 toL522 with j50. If M50, the spectral
statistics would be those whenV540 in Fig. 2. On the other
hand, if M5L, the spectral statistics would be those wh

FIG. 2. The spectral statistics of a homogeneous phase wit
random magnetic fieldsj50 whenV is taken to be 10, 16, 22, 28
34, and 40.~a! The nearest-neighbor spacing distributionP(s). The
crossover distributionQ(s;v,h) with appropriate values of~v,h! is
shown by broken lines.~b! D3 statistics of Dyson and Mehta. Thos
of GOE and Poisson are shown by broken lines.
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V510 in Fig. 2. Note thatP(s) of the observed spectra i
well approximated by the broken lines, i.e., the crosso
distributionQ(s;v,h) with appropriate values of~v,h!. Fig-
ure 5 shows the nearest-neighbor spacing distributionP(s)
and theD3 statistics of Dyson and Mehta whenM is changed
from 2 toL522 with j50.1. If M50, the spectral statistics
would be those whenV540 in Fig. 3. On the other hand, i
M5L, the spectral statistics would be those whenV510 in
Fig. 3.

There is a transition region betweenM50 and M5L
where our structure has the properties of a superlattice@27#.
In our structure, a quantum particle may be extended o
the region with 1<zp<M because of the small degree
disorder. On the other hand, a quantum particle is apt to
localized near a site having low-potential energy in the
gion whereM11<zp<L because of the large degree
disorder. A quantum particle extended over the clean reg
is confined by the boundary between the two regions, as
heterostructure of compound semiconductors@28–46#.
Therefore, quantum states whose classical counterpart is
otic inside the clean region expand smoothly asM increases

ut FIG. 3. The spectral statistics of a homogeneous phase
random magnetic fieldsj50.1 whenV is taken to be 10, 16, 22, 28
34, and 40.~a! The nearest-neighbor spacing distributionP(s). The
crossover distributionQ(s;v,h) with appropriate values of~v,h! is
shown by broken lines.~b! D3 statistics of Dyson and Mehta. Thos
of GUE and Poisson are shown by broken lines.
9-4
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while the region of strong disorder, in which quantum sta
remain almost integrable, is reduced. This type of Ander
transition features a continuous change of the ratio of cha
and integrable regions in real space.

C. Crossover characterization

Figure 6 shows the values of~v,h! both for a homog-
enous phase and a heterotic phase characterized byVs510
and Vl540. Random magnetic fields are introduced byj
50.1 in Fig. 6~b!, but j50 in Fig. 6~a!. Let us look at the
route in the~v,h! plane when the heterotic phase is in
random magnetic field. WhenM50, we note that the system
is essentially integrable, as indicated by (v,h)5(0,0).
When M increases and~v,h! changes from~0,0!, h rapidly
increases leavingv unchanged. WhenM54, h reaches 1
with a very small value ofv50.1. AsM increases beyond 6
on the other hand,v begins to increase. Note that the rou
of the heterotic phase from Poissonian to GUE goes al
the upper side in the figure.

FIG. 4. The spectral statistics of a heterotic phase character
by Vs510 andVl540 without random magnetic fieldsj50 when
M is taken to be 2, 6, 10, 14, 18, and 22.~a! The nearest-neighbo
spacing distributionP(s). The crossover distributionQ(s;v,h)
with appropriate values of~v,h! is shown by broken lines.~b! D3

statistics of Dyson and Mehta. Those of GOE and Poisson
shown by broken lines.
01621
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In a heterotic phase, a finiteM creates a region which is
characterized by quantum chaos. However, there remai
region of integrable systems, where degenerate levels e
so v is kept at a very low value. The energy levels of sta
whose classical counterpart has a chaotic orbit in the reg
wherezp<M are sandwiched by adjacent energy levels
states whose classical counterpart is regular in the reg
whereM,zp , so relatively large intervals between adjace
levels are unlikely to appear in the spectrum of our structu
as suggested by the large value ofh. This is a consequenc
of the coexistence of quantum chaotic and regular region
real space.

Let us turn to the homogenous phase, in which (v,h)
5(0,0) corresponds toV540. The system remains inte
grable whileV is decreased from 40 down to 28. AsV is
reduced below 28,~v,h! changes from (v,h)5(0,0). As it
detaches from~0,0!, v rapidly increases, leavingh small.
Therefore, the route of the homogenous phase from Poi
nian to GUE goes along the lower side of the figure,
opposed to that of the heterotic phase. This is a typ

ed

re

FIG. 5. The spectral statistics of a heterotic phase character
by Vs510 andVl540 with random magnetic fieldsj50.1 whenM
is taken to be 2, 6, 10, 14, 18, and 22.~a! The nearest-neighbo
spacing distributionP(s). The crossover distributionQ(s;v,h)
with appropriate values of~v,h! is shown by broken lines.~b! D3

statistics of Dyson and Mehta. Those of GUE and Poisson
shown by broken lines.
9-5
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Anderson transition due to on-site random potentials in
cubic lattice, so a relatively large bandwidth encourag
quantum particles to move over the whole structure in
quantum chaotic regime, resulting in a repulsion betwe
energy levels. This is reflected in the remarkable chang
v. Routes in the~v,h! plane are very different for these tw
types of structures and this difference is useful in dist
guishing the transition from Poissonian to quantum ch
during a heterotic phase from that during a homogen
phase. The transition from Poissonian to GOE can be see
Fig. 6~a!, where there are no random magnetic fields, i.ej
50. The difference of routes in the~v,h! plane can be un-
derstood in a similar way.

IV. DISCUSSION AND CONCLUSION

A true phase transition occurs only at the thermodyna
limit, where a quantum system occasionally decomposes
disjointed sectors between which there is no quantum co

FIG. 6. Appropriate values of~v,h! to characterize the neares
neighbor spacing distribution~a! with no magnetic fields and~b!
with random magnetic fields. The route from (v,h)5(0,0) to~1,1!
along the upper side is attributed to a heterotic phase characte
by Vs510 andVl540, whereM takes 0, 2, 4, . . . ,24. The route
along the lower side is attributed to a homogenous phase w
Vs5Vl5V takes 10, 12, 14, . . . ,40.
er

et

01621
a
s
e
n
in

-
s
s
in

ic
to
r-

ence, although it is useful to consider an analog of phase
characterizing a finite system, in particular, nanosyste
@47#. As the size of the system is reduced, the tunnel
amplitude between sectors, which would be disjointed in
thermodynamic limit, rises, resulting in the onset of quant
coherence between the sectors. Because there is qua
coherence between a quantum system of finite parti
which have the characteristics of phaseA of an infinite sys-
tem and a quantum system of finite particles which have
characteristics of phaseB of an infinite system, our compos
ite quantum system can be thought of as having the hete
phase of phaseA and phaseB.

The type of the heterotic phase related to the dens
driven Mott transition can be found in a quantum-dot arr
@48#. Let us consider a chain of quantum dots when the d
sity of electrons is kept below that of half-filled electron
The typical size of quantum dot is 10 nm if a compou
semiconductor heterostructure is used to confine electron
the dot. The field effect can cause a confining potential
the order of 100 nm, so a chain of quantum dots can be un
a global confining potential with a parabolic shape@49,50#.
As the global confining potential becomes stronger, the d
sity of electrons around the center of the chain increas
When the density reaches that of half-filled electrons, th
electrons in the center become insulating. On the other h
electrons on the periphery remain metallic because their d
sity is low. This is the heterotic phase of the Mott-insulati
phase in the center and the metallic phase on the perip
@51#.

A second type of heterotic phase, which is related to
bandwidth-driven Mott transition, is expected in a nerv
cell-like fractal-based complex@14#. There is a difference
between the fractal dimension in the center of a nerve-c
like complex, i.e., the somatic fractal, and that in the perip
eral regions, i.e., the dendritic fractal@52#. It is possible to
realize a heterotic phase of an Anderson insulator and a
mal metal in our superlattice, as in a nerve-cell-like comp
@53#.

We have noted that the crossover characterization of
spectral statistics, specified by two parameters~v,h!, is use-
ful in distinguishing the heterotic phase of an Anderson
sulator and a normal metal in our structure from an interm
diate phase of a disordered medium in which the degree
disorder is homogenous. During transitions from the Pois
nian to the Gaussian unitary ensemble, the values of~v,h!
have a route from~0,0! to ~1,1!. The route during a heterotic
phase of an Anderson insulator and a normal metal is v
different from the route during a homogenous phase.
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