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Statistical crossover characterization of the heterotic localized-extended transition
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We investigated the spectral statistics of a quantum particle in a superlattice consisting of a disordered layer
and a clean layer, possibly accompanied by random magnetic fields. Because a disordered layer has localized
states and a clean layer has extended states, our quantum system shows a heterotic phase of an Anderson
insulator and a normal metal. As the ratio of the volume of these two layers changes, the spectral statistics
change from Poissonian to one of the Gaussian ensembles which characterize quantum chaos. A crossover
distribution specified by two parameters is introduced to distinguish the transition from an integrable system to
a quantum chaotic system during the heterotic phase from an Anderson transition in which the degree of
random potentials is homogenous.
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I. INTRODUCTION Pp(s)=e"5, 3

It has been established that an integrable quantum systeRy(s,0) is the same as predicted by GOE
has energy levels whose nearest-neighbor spacing is well de-
scribed by the Poisson distribution, where the energy-level
sequence is purely randof,2]. On the other hand, a quan-
tum system whose classical counterpart is chaotic is charac-
terized by one of the three Gaussian ensembles, namely, the Berry-Robnik parametes may be interpreted as the
Gaussian orthogonal ensemil@OE), a Gaussian unitary relative phase-space volume of the regular regions in the
ensemble (GUE), and a Gaussian symplectic ensemblesystem’s classical counterpdt2]. The Brody distribution
(GSB, in which the energy-level sequence is affected by g13]
strong repulsion between the energy levEss-5|. These
three ensembles are universal in the sense that information in Pg(s;v)=(v+1)a(v)s’ exd —a(v)s" "] (5)

a Hamiltonian is at a minimum, except that concerning its

global symmetry[6]. The spectral statistics could be speci- is also useful to characterize the observed spectrum using a
fied more precisely if one introduces more constraints on théingle parametew, wherea(v) is a constant. The Brody
Hamiltonian, e.g., a Hamiltonian being the sum of the deterparameterv appears in the exponent of the factd; so it
ministic and random partg7] or a Hamiltonian having a measures the strength of repulsion in the energy levels, i.e.,
particle-hole symmetry8]. v=0 for Poissonian and=1 for GOE.

During the transition from integrable to quantum chaotic, Let us consider a quantum system which depends on two
there is a crossover region where the observed spectra can parameters, i.eyY; andV,. We assume that our system is
attributed to neither Poissonian nor one of the universaintegrable wherv,=V,=0 and shows quantum chaos when
Gaussian ensembld9,10]. The Berry-Robnik distribution V;=V,=1. We calculate the nearest-neighbor spacing distri-
[11] bution of our quantum system for eabhh andV, to deter-
mine the Brody parameter as a function\of andV,, as in

TS 2
Pcoe(s) = > € s, (4

—3 . .
_ S —, TPTS| _ 22 v="F(V{,V,), wheref(0,0)=0 andf(1,1)=1. It is obvious
— ,2a—PS ps—mp<sila 1,V2)s ) )
Pals.p)=p7e erf( | 2Pt 2 )e that we cannot catalog quantum systems using the inverse

(1)  function of f(V,V5). There might be quantum systems with
. o the same value of the Brody parameter, but their spectral
is one of the crossover distributions that have been used tatistics would be different. Note that the nearest-neighbor
characterize the nearest-neighbor spacing distribution of ingpacing distributiorP(s) is a probability distribution and is
termediate statistics between Poissonian and GOE, wWhere restricted only byfP(s)ds=1 and[:sP(s)ds=1. There-
=1l-pand fore, there are possibilities of intermediate distribution func-
tions far beyond a distribution function determined by a
erf(x) = i fdee— a ) single parameter. It would be interesting to know if there are
Jar Ix guantum systems requiring intermediate statistics, where the
nearest-neighbor spacing distribution must be described by
is the error function. WhileéP,(s,1) is identical to the Pois- more than a single parameter.
son distribution This paper considers a quantum particle in a superlattice
structure of am layer and &B layer, the first of which is an
Anderson insulator and the second of which is a normal
*Email address: Ryuichi.Ugajin@jp.sony.com metal. While theA layer is full of impurities which generate
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scattering centers, th& layer is relatively clean. Let us note We have introduced random variabtg , which satisfies
that this system can be thought of as a heterosis of these twg), ;= — 6, , and | 0p,q|<§/2. A random magnetic field can
phases of electrons, i.e., an Anderson insulator and a normbg introduced by¢é>0. On-site random potential, is de-
metal, as in the heterosis of a ferromagnetic phase and parfined as

magnetic phasgl4]. It is expected that as the ratio of the

volume of these two layers changes, the spectral statistics —V2<v,<Vy2 when I=z,<M

will undergo a trgn_snmn from the qugson|an to the Gaussu’:_m Up= —Vi[2<p,<Vy2  when M<z,<L. 9)
ensemble. To distinguish this transition during the heterotic

phase of an Anderson insulator and a normal metal from afpe periodic boundary condition is used for our lattice. Our
Anderson transition when the degree of disorder is homogquantum system is composed of two layers, one of which has
enous, we introduce a crossover characterization dependefficknessM and is disturbed by a random potential with the
on two parameters. degree ofV, and the other of which has thickneks- M
and is disturbed by a random potential with the degre¥, of
Il. MODEL It is useful to investigate the case Wf=V,, which is an
L ) .. Anderson transition problem in which the degree of disorder
Spectral statistics are known to be useful in determiningg spatially homogenous. We now turn our attention to the
the behavior of a quantum particle in a disordered medium.,qq iy whichV.#£V,, in particular, V<V, and V <V,

[15-19. This is because we know that. the spectral statistic hereV, is the critical degree of disorder of the Anderson
of an electron ext'ended over randpm Impurities are those Giansition. It is well known thaV, is about 16.5 in a three-
a quantum chaotic system which is characterized by strong; 1\ ensional cubic latticé18)].

repulsion be_tV\_/een energy levels. On the ot_her hand, the We take L=24, so the total number of sites is®
spectral statistics of localized electrons are Poissonian. In the ~ . . . - .
phase of localized electrons, i.e., an Anderson insulator, if 13824.-H is numerically diagonalized, yielding eigenval-
one assumes a state localized near a point, one should fij#Sep (P=1.2,...,1324). We used 2000 levels froege, s
another state localized near another point. If the localizatiofi® €7e12 in order to determine the spectral statistics. Before

length of the first state is similar to that of the second state!V€ determine the spectral statistics, however, the energy-

the energy difference between these two states is so smafive!l sequences must be modified by “unfolding” them us-
that there is no repulsion between these energy levels. As tH9 the third-order functions of energy, so as to give the
degree of disorder increases, the spectral statistics chan§8€rdy-level sequences a constant density where the average
from those of a quantum chaotic system to a PoissoniarP’ nearest-neighbor spacing is ori@6]. The nearest-
showing an Anderson transitidi20—22. When the Ander- neighbor spacing distribution is evaluated as the probablhty
son transition occurs, the spectral statistics change frorh (8)dSsuch that the energy difference betweeln adjacent lev-
Poissonian to GOE if the electrons are affected by neithef!S Will be betweers ands+ds. We takeds=1;. The A;
spin-orbit interactions nor magnetic fiel@5]. During the ~ Statistics of Dyson and Mehta are helpful in determining
transition from Poissonian to GOE, the spectral statistic¥/hether the off-diagonal elements of a Hamiltonian matrix
may be well characterized by one of the crossover distribuconstructed using the eigenfunctions of integrable systems
tions noted previously. When a magnetic field breaks thétrongly influence the behavior of the system. Thestatis-
time-reversal symmetry of the system, the quantum chaotics of Dyson and Metha are defined by the ensemble average
will be characterized by GUE23]. If spin-orbit interaction of
affects the level fluctuations, the strength of repulsion be- 1 ¢
tween energy levels would be as strong as predicted by GSE A(n):min(—f [A(e)—Ae—B]2de]. (10)
[24,25. ap 20 ) n
Let us introduce a cubic lattice of sitg whose sites are
denoted by Therefore, we take the average &fn) for many segments
of energy levels in order to obtaifa;(n).
Fo=(Xp,Yp:Zp)- (6) When ¢>0 breaks the time-reversal symmetry, the quan-
tum system whose classical counterpart is chaotic has the

Operatorég creates a quantum particle at lattice sife A nearest-neighbor spacing distribution predicted by GUE:

tight-binding Hamiltonian is written as )

32s —4s?/
A PGUE(S):7e ST (11
A== 2 tpqthtq+ X vpit,+H.C., 7
o P which is compared to that of the GOE and the Poissonian

distribution in Fig. 1. The crossover distribution specified by

where(p,q) is a pair of nearest-neighbor sites. Transfgy is two parametergw,s) is given by

taken to be
. — 2w _ 1+7

8

Pa 0 otherwise. The conditions
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1 . T T When 7 is small, large intervals between adjacent levels are
Poisson frequently seen in the energy spectrum. The Brody distribu-

0.8 tion is obtained whem = 7/2. Becaus&)(s;0,0) is Poisso-
nian, i.e.,Pp(s), andQ(s;1,1) is identical toPgg(s), the
06 route from (, %) =(0,0) to(1,1) is accompanied by a tran-
= sition from an integrable system to a quantum chaotic system
* 0.4 characterized by GUE. Note th@X(s; 5,1) is identical to the
nearest-neighbor spacing distribution predicted by GOE and
o2 ki Q(s;2,1) is that predicted by GSE.
0 ! Ill. SPECTRAL STATISTICS
0 1 2 3 4
s A. Homogenous phase
FIG. 1. The nearest-neighbor spacing distributiR(s) of GOE, When VS:V[' denoted by, our system ‘_Ni" show the
GUE, and Poissonian. spectral behavior of a system which exhibits an Anderson

transition. This is because the degree of disorder is homog-
o enous in the system. ¥ is sufficiently small, it shows a
f dsQs;w,)=1 (13 metallic behavior accompanied by quantum chaos. On the
0 other hand, ifV is sufficiently large, it possesses localized
states whose energy levels are uncorrelated as in the Poisson
distribution.
o Figure 2 shows the nearest-neighbor spacing distribution
f dssqs;w,n)=1 (14 P(s) and theAj statistics of Dyson and Mehta whéevy
0 =V,=V is changed from 10 to 40 witl§=0. In Fig. Za),
P(s) of the observed spectra is well approximated by the
broken lines, i.e., the crossover distributi@{s; w, ) with

and

determine the coefficient&(w, ) andB(w, ) as

2424\ ]1F20 appropriate values df, 7). In Fig. 2b) we also show thé 5
g ) statistics of the Poisson distribution,
A(wyﬂ):(1+77) 1+2(1) 2+ 2w (15) n
Tty Ag(n)= ¢, (19
and and those predicted by GOE,
242w\t )
N1 Ay = | In2am+ - == 2| tom Y. 0
B(w,n)= 1520 : (16) ™ 8 4
Sy
1+7 wherey is Euler’s constanf4]. WhenV =40, the electronic

structure is that of an integrable system consisting of local-
ized states, s®(s) is similar to the Poissonian distribution.
o On the other hand, wheX= 10, the electronic structure is
F(z)=f dtt? e (17 that of a quantum chaotic system consisting of extended
0 states, sd”(s) is similar to that predicted by GOE. Figure 3
shows the nearest-neighbor spacing distribuRgs) and the
A5 statistics of Dyson and Mehta whe¥;=V,=V is
changed from 10 to 40 wit§=0.1. In Fig. 3a), the cross-
over distributionQ(s; w, ) with appropriate values div,7)
are also shown. In Fig.(B), we also show the\; statistics
24 predicted by GUE,

e(w,n)=j§1 [Q(s;;0,7)—P®™(s)I2  (18)

where

is the Gamma function. When the histogram Rfs) ob-
tained from the observed spectrum is denotedP(s;),
we can determine the appropriate valuesafy) in order to
minimize the deviation

5
In(2mn)+y——|+0O(n"1Y). (21

Ag(n)= 7

The two parameter§.e., w and %), have different roles in 2m*
the crossover distributiony appears in the exponent of the
factor s> measuring the strength of repulsion between enBecause of the existence of random magnetic fields, the
ergy levels when they are close, i.e., wheis smaller than time-reversal symmetry is broken, so the quantum chaos is
1. » appears in the exponential function, measuring how fastharacterized by GUE when the repulsion between energy
the crossover distribution decays asncreases beyond 1. levels is strong. Because the system is homogenous, this type
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FIG. 2. The spectral statistics of a homogeneous phase without FIG. 3. The spectral statistics of a homogeneous phase with
random magnetic fields=0 whenV is taken to be 10, 16, 22, 28, random magnetic fields=0.1 whenV is taken to be 10, 16, 22, 28,
34, and 40(a) The nearest-neighbor spacing distributl(s). The 34, and 40(a) The nearest-neighbor spacing distribut®(s). The
crossover distributio(s; w, ) with appropriate values dfv,7) is  Crossover distributio®(s; », ) with appropriate values dfv,7) is
shown by broken linegb) A, statistics of Dyson and Mehta. Those Shown by broken linegb) Aj statistics of Dyson and Mehta. Those
of GOE and Poisson are shown by broken lines. of GUE and Poisson are shown by broken lines.

of Anderson transition features a continuous change in th& =10 in Fig. 2. Note thaP(s) of the observed spectra is

ratio of chaotic to integrable sections in a wave-numbeMell approximated by the broken lines, i.e., the crossover

space. distributionQ(s; w, ) with appropriate values div, 7). Fig-

ure 5 shows the nearest-neighbor spacing distribufi(s)

and theA 5 statistics of Dyson and Mehta whéhis changed

from 2 toL =22 with £=0.1. If M =0, the spectral statistics
Let us turn to the case whewi#V,, which will be re-  would be those wheW=40 in Fig. 3. On the other hand, if

ferred to as a heterotic phasé,=10 andV,=40 are used in M =L, the spectral statistics would be those when 10 in

our numerical investigations. Note that whé&h=0, the Fig. 3.

whole system is influenced by the degree of random poten- There is a transition region betwedh=0 and M=L

tials with V,. WhenM =L, the degree of disorder \; over  where our structure has the properties of a superlaificg

the whole structure, so our system is homogenous agairn our structure, a quantum particle may be extended over

BecauseV, is large enough to localize a quantum particlethe region with &z,<M because of the small degree of

and Vg is small enough to let a quantum particle be diffuse,disorder. On the other hand, a quantum particle is apt to be

as M increases there is a transition from localized states tdocalized near a site having low-potential energy in the re-

extended states. gion whereM +1<z,<L because of the large degree of
Figure 4 shows the nearest-neighbor spacing distributiodlisorder. A guantum particle extended over the clean region

P(s) and theAj; statistics of Dyson and Mehta whévi is  is confined by the boundary between the two regions, as in a

changed from 2 td_=22 with £&=0. If M=0, the spectral heterostructure of compound semiconductdrd8—44§.

statistics would be those whé&f=40 in Fig. 2. On the other Therefore, quantum states whose classical counterpart is cha-

hand, ifM=L, the spectral statistics would be those whenotic inside the clean region expand smoothlyMwéncreases

B. Heterotic phase
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FIG. 4. The spectral statistics of a heterotic phase characterized F|G. 5. The spectral statistics of a heterotic phase characterized
by Vs=10 andV,=40 without random magnetic fields=0 when  py v =10 andv,=40 with random magnetic fields=0.1 whenM
M is taken to be 2, 6, 10, 14, 18, and 2a) The nearest-neighbor s taken to be 2, 6, 10, 14, 18, and 22) The nearest-neighbor
spacing distributionP(s). The crossover distributioQ(s;w,7)  spacing distributionP(s). The crossover distributio®(s;w, 7)
with appropriate values dfw,7) is shown by broken linesh) A3 with appropriate values ofw,7) is shown by broken linesb) A,
statistics of Dyson and Mehta. Those of GOE and Poisson argtatistics of Dyson and Mehta. Those of GUE and Poisson are
shown by broken lines. shown by broken lines.

while the region of strong disorder, in which quantum states N & heterotic phase, a finifd creates a region which is
remain almost integrable, is reduced. This type of Andersoffharacterized by quantum chaos. However, there remains a

transition features a continuous change of the ratio of chaotif29ion of integrable systems, where degenerate levels exist,
and integrable regions in real space. SO w is kept at a very low value. The energy levels of states

whose classical counterpart has a chaotic orbit in the region
wherez,<M are sandwiched by adjacent energy levels of
states whose classical counterpart is regular in the region
Figure 6 shows the values @f,7) both for a homog- whereM <z,, so relatively large intervals between adjacent
enous phase and a heterotic phase characteriz&f,;%y0 levels are unlikely to appear in the spectrum of our structure,
and V,=40. Random magnetic fields are introduced &y as suggested by the large valuemfThis is a consequence
=0.1 in Fig. 8b), but £=0 in Fig. 6a). Let us look at the of the coexistence of quantum chaotic and regular regions in
route in the(w,n) plane when the heterotic phase is in areal space.
random magnetic field. WheM = 0, we note that the system Let us turn to the homogenous phase, in which )
is essentially integrable, as indicated bw,{)=(0,0). =(0,0) corresponds t&/=40. The system remains inte-
WhenM increases andw,”) changes fron{0,0), » rapidly  grable whileV is decreased from 40 down to 28. Asis
increases leavingw unchanged. WheiM =4, » reaches 1 reduced below 28(w,7) changes from ¢, 7)=(0,0). As it
with a very small value of»=0.1. AsM increases beyond 6, detaches from0,0), w rapidly increases, leavingy small.
on the other handy begins to increase. Note that the route Therefore, the route of the homogenous phase from Poisso-
of the heterotic phase from Poissonian to GUE goes alongian to GUE goes along the lower side of the figure, as
the upper side in the figure. opposed to that of the heterotic phase. This is a typical

C. Crossover characterization
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ence, although it is useful to consider an analog of phases in
characterizing a finite system, in particular, nanosystems
[47]. As the size of the system is reduced, the tunneling
amplitude between sectors, which would be disjointed in the
thermodynamic limit, rises, resulting in the onset of quantum
coherence between the sectors. Because there is quantum
coherence between a quantum system of finite particles
which have the characteristics of phasef an infinite sys-

tem and a quantum system of finite particles which have the
characteristics of phad® of an infinite system, our compos-
ite quantum system can be thought of as having the heterotic
phase of phasé and phase.

The type of the heterotic phase related to the density-
driven Mott transition can be found in a quantum-dot array
- [48]. Let us consider a chain of quantum dots when the den-
sity of electrons is kept below that of half-filled electrons.
The typical size of quantum dot is 10 nm if a compound
: semiconductor heterostructure is used to confine electrons in
s 5—a—e——a (b); the dot. The field effect can cause a confining potential on
0 02 04 06 08 1 the order of 100 nm, so a chain of quantum dots can be under

o a global confining potential with a parabolic shd@®,50.
) ) As the global confining potential becomes stronger, the den-

FIG. 6. Appropriate values diw,7) to characterize the nearest- gty of electrons around the center of the chain increases.
neighbor spacing distributiofe) with no magnetic fields an)  \yhan the density reaches that of half-filled electrons, these
with random magnetic fields. The route from.(7) =(0,0) to(1,1) e4ectrons in the center become insulating. On the othe,r hand,

along the upper side is attributed to a heterotic phase characterizee ectrons on the peripherv remain metallic because their den-
by V=10 andV,=40, whereM takes 0, 2, 4...,24. The route periphery

along the lower side is attributed to a homogenous phase Wher%Ity IS I.OW' This is the heterotic pha;e of the Mott-lnsula}tlng
V,=V,=V takes 10, 12, 14 . . 40. phase in the center and the metallic phase on the periphery

[51].
Anderson transition due to on-site random potentials in a A second type of heterotic phase, which is related to the
cubic lattice, so a relatively large bandwidth encourage®andwidth-driven Mott transition, is expected in a nerve-
quantum particles to move over the whole structure in thecell-like fractal-based complekl4]. There is a difference
quantum chaotic regime, resulting in a repulsion betweeretween the fractal dimension in the center of a nerve-cell-
energy levels. This is reflected in the remarkable change iHke complex, i.e., the somatic fractal, and that in the periph-
. Routes in théw, ) plane are very different for these two €ral regions, i.e., the dendritic fracte82]. It is possible to
types of structures and this difference is useful in distin-réalize a heterotic phase of an Anderson insulator and a nor-
guishing the transition from Poissonian to quantum chaoghal metal in our superlattice, as in a nerve-cell-like complex
during a heterotic phase from that during a homogenoug53]-
phase. The transition from Poissonian to GOE can be seen in We have noted that the crossover characterization of the
Fig. 6(a), where there are no random magnetic fields, e., SPectral statistics, specified by two parameters)), is use-
=0. The difference of routes in th,) plane can be un- ful in distinguishing the heterotic phase of an Anderson in-

08
06t 9
04 i
02 F

o

08 I

06 |
Homogenous —8—

04 | Heterotic ---&---

e @ mmmmmmmmemmm =)

02 F

derstood in a similar way. sulator and a normal metal in our structure from an interme-
diate phase of a disordered medium in which the degree of
IV. DISCUSSION AND CONCLUSION disorder is homogenous. During transitions from the Poisso-

nian to the Gaussian unitary ensemble, the valueGvoh)
A true phase transition occurs only at the thermodynamidave a route fronf0,0) to (1,1). The route during a heterotic
limit, where a quantum system occasionally decomposes intphase of an Anderson insulator and a normal metal is very
disjointed sectors between which there is no quantum cohedifferent from the route during a homogenous phase.
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