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Stability of knots in excitable media
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Through extensive numerical simulations we investigate the evolution of knotted and linked vortices in the
FitzHugh-Nagumo model. On medium time scales, of the order of a hundred times the vortex rotation period,
knots simultaneously translate and precess with very little change of shape. However, on long time scales, we
find that knots evolve in a more complicated manner, with particular arcs expanding and contracting, producing
substantial variations in the total length. The topology of a knot is preserved during the evolution, and after
several thousand vortex rotation periods the knot appears to approach an asymptotic state. Furthermore, this
asymptotic state is dependent upon the initial conditions and suggests that, even within a given topology, a host
of metastable configurations exists, rather than a unique stable solution. We discuss a possible mechanism for
the observed evolution, associated with the impact of higher-frequency wavefronts emanating from parts of the
knot which are more twisted than the expanding arcs.
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There are a wide variety of naturally occurring excitableever, due to computational constraints, such simulations were
media which possess spiral wave vortices. Examples includémited to time scales which never exceeded about one hun-
chemical concentrations in the Belousov-Zhabotinsky reacdred vortex rotation period¢often substantially legsand
tion [1] and electrical depolarization waves in cardiac tissueused very symmetric initial conditions.

[2]. The vortices in this last example are of particular signifi- In this paper, we present the results of extensive numeri-
cance, since they are believed to play a vital role in ventricucal simulations of a duration well beyond a thousand times
lar fibrillation and hence sudden cardiac de§®). Both  the vortex period, and using perturbed asymmetric initial
these systems, and many others, have a common mathemaifnditions. We investigate several knots and links, and con-
cal description in terms of nonlinear partial differential equa-clude that all appear to be metastable in the sense that small
tions of reaction-diffusion type. In the case of cardiac tissuePerturbations produce dramatic changes in the evolution over
the simplest continuous mathematical model is the FitzHughtime scales of the order of thousands of vortex rotation peri-
Nagumo equation, and it is the investigation of dynamicalods. The evolution is quite exotic, and very far from the
three-dimensional solutions of this equation, which is theSimple curvature and tension-induced collapse suggested
topic of this paper. previously. In gll cases, the .topology of the krot link) is

More than 20 years ago, it was conjectured that stable, dereserved during the evolution, as we observe no reconnec-
at least persistent, three-dimensional solutitesmed “ or-  tion events. Rather than a simple uniform contraction of the
ganizing centresf might exist in excitable media in which knot, which might be expected as a result of tension, we find
two-dimensional vortices are embedded into three_that a particular arc of the knot both expands and contracts.
dimensional space in such a way that they form knotted After substantial variations in its total length, the knot even-
linked) vortex strings. The anatomy of these objects wagually approaches a steady state. However, this state does not
clarified in terms of the topology of isoconcentration sur-appear to be unique and suggests that, even within a given
faces bordered by vortex strinfd]. The hope was that the topology, a host of metastable configurations exists. We dis-
nontrivial topology of a configuration, perhaps aided by acuss a possible mechanism for the observed evolution, asso-
short-range repulsive force between vortex cores, or by afiated with the impact of higher-frequency wavefronts ema-
effect of phase twist along the vortex string, might provide anating from parts of the knot which are more twisted than the
barrier to its decay5]. However, other§6] argued against €xpanding arcs. . _
this optimism with the view that curvature, tension, and re- The FitzHugh-Nagumo equations are given by
connection processes would ultimately lead to the collapse

and extinction of all knots. A framework was propog&dB] 07_U: (u-u’3-v) +V2y ‘9_”: (u+B—), (1)
for thinking about vortex string dynamics in the limiting case ot € o € B=),

of slight curvature and twist, but attempts to verify it were

successful only in the strict limit of no twig9,10]. Ulti- whereu(t,x) anduv(t,x) are both real fields witlu the elec-

mately, to address the fundamental issue of the existence ¢fic potential andv the recovery variable associated with
stable knots, one must turn to numerical methods. About énembrane channel conductivity. We take the constants ap-
decade ago, a number of preliminary numerical investigapearing in Eq(1) to have the values=0.3,3=0.7, andy
tions were performed9,10], which suggested that certain =0.5. This choice of constants is nongeneric and is moti-
knotted (and linked configurations were stable, having a vated by our aim of trying to find stable knots. This set of
soliton-like behavior in which the knot moved through the values has a number of special properties which might be
medium as a rotating rigid body with a constant shape. Howeonducive to knot stability, such as the lack of meander of a
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FIG. 1. The core of the trefoil knot at times
t=500, 5000, 10 000, and 40 000.

two-dimensional vortex and the stability of an untwisted vor-because we shall orient our knots so that they initially trans-

tex ring in three dimensions. See REI1] for a description late as rigid bodies moving in the direction, and we do not

of the properties of a two-dimensional vortex as a function ofwish to impede their motion.

the parameters, 3, 7y. We create initial conditions which form knotted vortex
In two-space dimensions, the FitzHugh-Nagumo equastrings by making use of complex curves as described in Ref.

tions with these parameter values have plane wave solutiorjd 3] and is similar to the approach used in Rdf4] for the

which travel at a speed=1.9 and rotating vortex solutions study of knotted topological solitons. Recall that a knot may

(often called spiral waveswith a periodT,=11.2. The vor-  be written as the intersection of a complex cuéeith the

tex solution hasi andv wavefronts in the form of an invo- unit 3-sphereS®. Here, S® should be thought of as a com-

lute spiral with a wavelengthy=cT,=21.3. Geometrically, pactified three-dimensional Euclidean space, with the ex-

this means that all lines which are perpendicular to the leveplicit coordinates given by stereographic projection,

curves of the fields, are tangent to a small circle of diameter

N\o/ . This circle represents the vortex core and is the region 2(X1+iX5) r2—1+42ix,
in space in which the gradients of theandv fields differ Zo=—1er2 ; 1:—1+r2 ()
substantially from being parallel. For later use, it is conve-

nient to define the quantity wherer is the Euclidean distance from the origin, afgland

d=|VuxVu|, (2)  Zi are two complex coordinates satisfyifig|*+|Z,|*=1
and hence parametriZ&®. With this identification, the knot
which is highly localized at the vortex core. is the one-dimensional locus in space of the complex cdrve

We solve Eqs(1) in three-space dimensions using an ex-with coordinatesZ, andZ,. As an example, to represent the
plicit finite difference scheme, which is accurate to secondm:n) torus knot, we tak&€=Z]'—Zg, where for later con-
order in the spatial derivatives and to first order in the timevenience we have identified with its zero set. IfC hasp
derivative. Although this scheme appears very simplistic, iffactors, then it describes an object withcomponents and
appears that the nature of these equations is such that maience this formalism can also be used to describe discon-
sophisticated or higher-order algorithms do not lead to subpected knots as well as links.
stantial gains in efficiency or accuracy, although this can be For a given knofor link), we create initial conditions for
achieved if one is willing to modify the FitzHugh-Nagumo the fieldsu andv from the associated curv@ through the
equations to a form designed specifically for the applicabilityprescription
of a more efficient numerical approaft?]. For our simula-
tions, we use a grid containing 2bpoints and a lattice u=AReC)+u,, v=AIm(C)+uv, . 4
spacingsx=0.5, so that our spatial coordinates are confined
to the range—50<x;<50. The time step used i&=0.02. Here, A; and A, are two real constant@aken to beA;

In the x; and x, directions, we apply Neumann boundary =2,A,=1) which are used to scale the initial conditions so
conditions and in the; direction, the boundary conditions that they cover the range of the excitation-recovery loop in
are periodic. The selection of thg direction as periodic is (u,v) space associated with the ordinary differential equa-
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260 . : - Figure Xb) reveals that the knot has drifted slightly away
250 | from thex; axis and one of the three lobes has expanded in
240 | comparison to the other two. Although the initial configura-

tion has a cyclicC; symmetry, the cubic grid, and more
230 | . X .

importantly its boundary, breaks this symmetry and allows
220 ¢ an asymmetric instability to develop. The larger lobe contin-
210 ¢ ues to expand, Fig.(&), and now the knot no longer simply
200 t translates in the&s direction, but rotates and follows a com-
190 | plicated path in space. Though still preserving the topology
180

length

. . . of a trefoil, the knot is now better viewed as a large expand-
0 10000 20000 30000 40000 ing ring with a small knot tied in it. Eventually, the expan-
sion of the arc stops and a contraction begins. By Fid) 1
the knot has regained its more symmetric form and has a
FIG. 2. The length of the trefoil knot as a function of time. similar length as before the expansion, but now it appears to
be an asymptotic state. This can be seen by computing the
tion part of Eq.(1). The constantsl, =v, =—0.4 are the length as a function of time, which is displayed in Fig. 2.
values which can be roughly attributed to the vortex core.  To understand a possible mechanism responsible for the
The simplest nontrivial knot is the trefoil knot, given by expansion of one arc of the knot and the subsequent contrac-
the curveC=2Z3—Z3. We use this in the above prescription tion to a steady state, we need to recall two facts. First,
to obtain our initial conditions. In Fig. 1, we plot the isosur- analytical and numerical work shows that a straight and uni-
face®=0.01, which indicates the core of the vortex string, formly twisted vortex line has a period which is slightly less
at the timest=500, 5000, 10 000, and 40000. Note that atthan that of the two-dimensional vortex, or equivalently the
timet=0 this isosurface vanishes, since the initial conditionsuntwisted vortex ling¢15,16. Here, twist refers to the varia-
do not produce the vortex string itself but only seed the fieldtion of the phase in the complexiv) plane as one moves
configuration which will form into a vortex string after a along the vortex string. Second, it is known that for a system
time scale of the order of ten vortex periods. In Figg)lthe  Of two vortices in which the vortices have different periods
symmetric trefoil knot has clearly formed. In fact, the knot (for example, as arises in a model with spatially varying
forms at a much earlier time, but it is slightly larger and parameters the collision interface, which is the point at
quickly shrinks to this size. The knot moves in thedirec- ~ Which the spiral wavefronts from the two vortices meet and
tion (towards the back left-hand side of the box in the fig-annihilate, gradually moves towards the vortex with the
ure), with little change of shape, and at a speed of approxilarger period. In the absence of dispersion, the collision in-
mately ¢/80, wherec denotes the wavefront speed given terface moves at a speed=c|T,;—T,|/(T;+T,) whereT,
earlier. The knot also rotates around #ieaxis with a period and T, are the periods of the two vortices. Eventually, the
of around 160 ,, whereTj is the vortex period given above. collision interface reaches the core of the larger period vor-

time

FIG. 3. The core of the perturbed linked rings
at timest=200, 6200, 10 200, and 15 200.
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120 - . : : breaking theC, symmetry. The results of a numerical evo-
110 | e S lution with = 0.5 are displayed in Fig. 3, where we plot the
\ vortex cores ¢ =0.01 isosurfaceat timest=200, 6200,
100 Y ] 10200, and 15 200. The larger of the two rings initially con-
g o | \ / ] tracts, but this is followed by an expansion which yields an
8 Y / asymptotic state in which the larger ring has a length similar
go| ] to that in the perturbed initial condition. In Fig. 4, we plot the
lengths of the small ringbottom curve and the large ring
70 ¢ 1 (top curve as a function of time. From this figure, it can be
60 , , , , seen that the length of the small ring remains almost constant
0 5000 10000 15000 20000 and an asymptotic state has been reached which is certainly
time very different from the unperturbed solutionu€0) in

which both rings have an equal length. By examination of
~ FIG. 4. The length of the small ringpottom curvg and the large  the collision interface, we again verify that the wavefronts
ring (top curve as a function of time for the perturbed linked rings. from the small ring impact on the vortex core of the large

ring. Moreover, an examination of the twist along each of the
tex and it gets slapped away by the higher-frequency waverings reveals that the small ring has a roughly constant posi-
fronts emanating from the shorter period vorted7,18.  tive twist along its length, but the large ring has a substantial
Combining these two facts, we see that a reasonable explgariation in its twist rate, containing regions mégativetwist
nation for the expanding arc is that the more knotted part hagyen though the total twist along its length sums to one full
a greater local twist rate than at least some part of the larggim in the positive direction. The fact that such a highly
expanding ring, so its period is slightly less and this resultsontrivial distribution of twist occurs in an apparently
in its higher-frequency wavefronts slapping away the ringasymptotic state is further evidence that a variety of meta-
and producing its expansion. This slapping mechanism istable configurations exist in which the relative spatial dis-
discussed in Ref[19] in the context of stabilizing a knot tripution of the strings is in equilibrium under the action of
against contraction. To check this hypothesis, we have exangeveral complicated forces in which the rate of twisting plays
ined the collision interface by taking a slice through the con-a vital role. To summarize, we have found a novel dynamical
figuration in which the expanding arc and most parts of thesehavior of knotted vortex strings in the FitzHugh-Nagumo
knot pass almost perpendicularly through the selected plangaodel with parameter values chosen to minimize any knot
This reveals that the wavefront produced by the tightly knotinstabilities. It would be interesting to determine if our re-
ted cores impacts almost on top of the core of the expandingyits are generic for the FitzHugh-Nagumo model with other
arc, in agreement with our hypothesis for slapping inducegharameter values and also for other excitable media. In fact,
expansion. The details will be presented elsewli263 there is already some evidence for this in the initial expan-

The simplest example, in which the above issues regartsjon of a trefoil knot in a medium with equal diffusion of

ing stability can be investigated, is to study two rings linkedpoth reactant§21], but this example was regarded as an
once. Consider the complex cur@e-Z5—Z§— uZ,, where  unexplained peculiarity at the time and simulations could not
w is a real parameter. =0, then this curve is associated be performed for the length of time required to observe the
with two identical rings in which each contain one full twist full expansion and approach to an asymptotic state that we
and are linked once. This configuration ha€asymmetry  have described in this paper. It would certainly be worth-
corresponding to a rotation by 180° around #eaxis. The  while performing extensive numerical investigations, over
link formed from this initial condition moves along the  very long time scales, on a variety of equations modeling
axis as a rotating rigid structure and shows no sign of instadifferent excitable media.
bility even up tot=20000. The reason this example differs  The construction of knotted vortex strings in laboratory
from the trefoil knot in this respect is that@ symmetry is  experiments on excitable media would be of significant in-
clearly more compatible with the cubic latti¢end bound- terest, though it is unlikely that the full evolution described
ary) of the numerical grid than th€; symmetry of the tre- in this paper could be studied in this setting since the typical
foil knot. For this example, we therefore require an explicitlifetime of vortices in current experiments is limited to less
perturbation to test the stability of this link. This is achievedthan a hundred vortex periods.
by settingu to be nonzero in the above curve, which distorts  Finally, the interaction and scattering of two initially well-
one of the rings, making it larger than the other and henceeparated knots are also worthy of investigation.
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