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Effective Hamiltonian and unitarity of the S matrix
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The properties of open quantum systems are described well by an effective Hamiltpiiien consists of
two parts: the Hamiltoniakl of the closed system with discrete eigenstates and the coupling natretween
discrete states and continuum. The eigenvalugg determine the poles of tHe@matrix. The coupling matrix
elements\7\/§°’ between the eigenstat&sof H and the continuum may be very different from the coupling
matrix elementsV;®" between the eigenstatestdfand the continuum. Due to the unitarity of tBenatrix, the
\7Vﬁ°’ depend on energy in a nontrivial manner. This conflicts with the assumptions of some approaches to
reactions in the overlapping regime. Explicit expressions for the wave functions of the resonance states and for
their phases in the neighborhood of, respectively, avoided level crossings in the complex plane and double
poles of theS matrix are given.
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[. INTRODUCTION long-time scale. Due to the high excitation energy and high
level density in compound nuclei, he introduced statistical
Quantum systems are characterized by a number of dispproximations in order to describe the discrete states of the
crete states the structure of which is more or less compliQ subspace. A unified description of nuclear structure and
cated. These quantum systems do, however, not exist isolatediclear reaction aspects is much more complicated and be-
from other systems. Most of them are embedded in an envieame possible only at the end of the last centsee Ref[2]
ronment, e.g., in the continuum of decay channels. Systerfor a recent review In this formulation, the states of both
and environment interact with one another, and it is this insubspaces are described with the same accuracy. All the cou-
teraction that allows us to study the properties of the systenpling matrix elements between different discrete states, dif-
The feedback of the interaction with the environment ontoferent scattering states as well as between discrete and scat-
the properties of the system itself is an old problem raised ittering states have to be calculated in order to get results that
the very beginning of the quantum mechanics. It becomesan be compared with the experimental data. This method
the more important the smaller the system is. has been applied to the description of light nuclei by using
As an example, most states of a nucleus are embedded the shell model approach for the discrete many-particle states
the continuum of decay channels due to which they get &f the Q subspacg2].
finite lifetime. In other words, the discrete states of a nucleus In the unified description of structure and reaction as-
shade off into resonance states with complex energjies Pects, the system is described by an effective Hamiltohian
—E,—(i/2)T'. The valuesE, give the positions in energy that consists of two terms: the Hamiltonian matixof the
of the resonance states, while the widthsare characteristic ¢/0S€d system with discrete eigenstates, and the coupling ma-
of their lifetimes. The value&, may be different from the X between system and environment. The last term is re-
energies of the discrete states, and the widthsmay be spon3|ble for the finite lifetime of the_ resonance states. The
large corresponding to a short lifetime. Nevertheless, there i§/9envalues ofi{ are complex and give the poles of te
a well-defined relation between the discrete states charactdR@trix. The motion of these eigenvalues as a function of a

izing the closed system and the resonance states appearingifit&in parameter is discussed in many pajees for the
the open system. The main difference in the theoretical de-€CeNt review Ref.2]). The statistics of complex eigenvalues

scription of quantum systems without and with coupling to@d the corresponding nonorthogonal eigenvectors for non-
an environment is that the function space of the system i§l€fmitian random matrices are recently considered in
supposed to be complete in the first case, while this is not skef. [3]. ~
in the second case. Accordingly, the Hamilton operator is The coupling matrix element8V;*" between the reso-
Hermitian in the first case, and the eigenvalues are discret@ance states and the continuum are seldom studied. Their
The resonance states, however, characterize a subsystem delation to the coupling matrix elemen®;®’ between the
scribed by a non-Hermitian Hamilton operator with complexcorresponding discrete states and the continuum can be ex-
eigenvalues. The function space containing everything conpressed by the mixing coefficients that appear in the repre-
sists, in the second case, of system plus environment. sentation of the wave functions of the resonance states in the
The mathematical formulation of this problem goes backset of wave functions of the discrete states. Generically, the
to Feshbachl1] who introduced the two subspac®sandP, relation between the wave functions of the resonance states
with Q+ P =1, containing the discrete and scattering statesand those of the discrete states is complicated since the num-
respectively. Feshbach was able to formulate a unified deber of discrete states of a realistic system is large. Many of
scription of nuclear reactions with direct processes in théhem can contribute to the wave function of a certain reso-
short-time scale and compound nucleus processes in thence state, almost independently of their energetical dis-
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tance, see, e.g., Rd#]. The numerical results for the cou- the complex plane and in its neighborhood are derived in
pling matrix elements\7vﬁ°’ of nuclear states show a S€c- IV. They are energy dependent and their phases change

nontrivial energy dependence, especially at high level deni—n a c.ertain range around the critic;al valug of the parameter
sity [2]. In the statistical approach to nuclear reactions anc?t.Wh'Ch the resonance states avoid crossing. Section V con-
ins concluding remarks on the energy dependence of the

the application of this approach to some other reactions, theE;l

are, however, assumed to be simple, energy-independent pgRuUPling coefficientdV*’ appearing in a model with a uni-
rameters such as th&°® , e.g., Refs[5-9]. fied description of structure and reaction aspects at high level

The aim of the present paper (B to study the energy density.

dependence of the coupling matrix elemeﬁlﬁc’ between
resonance states and continuum that follows immediately
from the unitarity of theS matrix, and(ii) to study the be-
havior of the wave functions of the resonance states in the
overlapping regime since these determine the energy depen- In the unified description of structure and reaction aspects

dence of theéWe® in numerical calculations performed for Of quantum systems, the Schiinger equation

special systems. Most interesting is the behavior of the wave (H" — E)¥(E)=0 1)
functions near avoided level crossings in the complex plane.

As the results show, the coupling coeﬁicievﬁ@c’ are, is solved in a function space containing everything, i.e., dis-
generically, energy dependent. The energy dependence i&ete as well as continuous states. The Hamilton operator
however, not important as long as the distance in energyl™ is Hermitian, the wave functiond depend on energy
between the resonance states is larger than the sum of thé&$ well as on the decay channels and all the resonance states
widths. This result is in full agreement with the statement ofof the system. Knowing the wave functiofis(E), an ex-
the authors of the reviey] who restricted the application of Pression for theS matrix can be derived which holds true
their approach to the nonoverlapping regime. In the overlapalso in the overlapping regime, see the recent re\igwit
ping regime, however, the energy dependence of the codueads

pling coefficients\7\/§°’ cannot be neglected. It follows from
the unitarity of theSmatrix and causes nonlinear terms in the

Smatrix at high level density. Nevertheless, the line shape of . i 1)
the resonances can equivalently be described by the ener%y‘ere dc is the phase shift in channe] S.;; is the smooth
|

independentVS®’ in many cases. Th&VS®' lose, however rect reaction part related to the short-time scale, and
their physical meaning in the overlapping regifi€]. As to N o
the wave functions of two resonance stakeand! in the 5@ _j D YkYk
neighborhood of an avoided level crossing in the complex )

cc’/

plane, these are mixe,®,*iB,P,. The corresponding
phase changes in approaching the critical value of the param-
eter at which the levels avoid crossifghere8,= + 8;) are is the resonance reaction part related to the long-time scale.
caused by nonlinear terms in the Saﬂlr[ger equation. Here, the?kzﬁk_(i/Z)T‘k are the Comp|ex energy depen-
These terms are, finally, responsible for the energy deperjent eigenvalues of the non-Hermitian Hamilton operator
dence of the coupling coefficien®;®" between system and
continuum in numerical calculations. This result following H=Hoo=Hqot+HorG5 Hpo (4)
from the behavior of the wave functions of the resonance
states at high level density coincides with that following appearing effectively in the systen@(subspaceafter em-
from the unitarity of theS matrix. bedding it into the continuum R subspace It is H™Y

The paper is organized in the following manner. In Sec. II,=Hqo+HgptHpg+ Hpp Where Hgq is the Hamiltonian
the main ingredients of the unified description of structureof the closed system anpp is that for the environment
and reaction aspects of a quantum system embedded in(&cattering statgsThe two termdHpq andHqp characterize
continuum are given. These are the effective Hamiltortian the coupling between the two subspaces. These two terms
of the system and th8 matrix. Both are derived by solving appear in the source terms of the equations in either subspace
the Schrdinger equation in the full function space with dis- whenQ+P=1 as well as in the effective Hamiltonians of
crete and continuous states. Further, some properties of tliee subspaces. The effective Hamiltonian in @subspace
spectroscopic values that characterize the system aie given in Eq.(4), and an analogous expression for the ef-
sketched with special emphasis of their behavior in the overfective Hamiltonian in thé® subspace can be written down,

lapping regime. In Sec. Ill, the coupling coefficiemsbe- €€ Ref.[2]. Usually, ReHqpGh ' Hpg)#0 and Rets)
tween system and continuum are directly obtained in the=Hoo+ ReMHgpGE Hpo)#Hoq, see Ref[2] for a de-
one-channel case by starting from a unit8ynatrix. The tailed discussion. Th&5" in Eq. (4) are the Green func-
nonlinear effects appearing in the overlapping regime ardions in the P subspace, and Ir1=r(QpG(p+)HpQ) is deter-
discussed. The wave functions at avoided level crossings imined by the coupling matrix elements

Il. EFFECTIVE HAMILTONIAN AND S MATRIX
FOR A QUANTUM SYSTEM EMBEDDED
IN A CONTINUUM
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= o £IV|D 5 tion of the polles of thes matrix as a function of a certain
Yk &V ©) parameterwhich may be also the enerdy of the system

between the resonance states and the scattering statég: There the following generic results obtained for very different

are complex and also energy-dependent functions. | . Systems in the qverlapp@ng regime: the trajectqries ofShe
P gy-dep 54 matrix poles avoid crossing with the only exception of exact

the &¢ are the scattering wave functions and theare the  ¢rossing when th& matrix has a doubléor multiple) pole.
eigenfunctions of+{, Eq. (4). The wave function$), of the At the avoided crossing, either level repulsion or level attrac-
resonance states are related to the eigenfuncignsf 7 by ~ tion occurs. The first case is caused by a predominantly real
a Lippmann-Schwinger-like relatiof2], interaction between the crossing states and is accompanied
by the tendency to form a uniform time scale of the system.
Level attraction occurs, however, when the interaction is

Q= (1+ G5 Hp) ®y. (6)  dominated by its imaginary part arising from the coupling
_ . _ via the continuum. It is accompanied by the formation of
The eigenfunctions of{ are biorthogonal, different time scales in the system: while some of the states

decouple more or less completely from the continuum and
become long-lived(trapped, a few of the states become

* —
(BT [P0 =i ™ short-lived and wrap the long-lived ones in the cross section.
so that The dynamics of quantum systems at high level density is
determined by the interplay of these two opposite tendencies.
o o o For a more detailed discussion, see R&f.
(P D) =Re({Dy|P)); A=(Dy|P)=1 (8) One of these tendencies, the phenomenon of resonance
trapping
and
N K N
(P D) =IMU DY Py 21)) = = (P24 Pi); gl Fk~K21 i k:;H I'~0, (1)
Bllka|<a)k|(‘il¢k>|>0- ©) appears only in the overlapping regime. It is caused by

Im(H) and means almost complete decoupling Nf K

. .__.. resonance states from the continuum, widleof them be-
It~ sEouId bg notlc.:ed that the standard normahzatlonCome short-lived[2]. Usually, K<N—K. The long-lived
(@] ®y)= 3y is equivalent to Eqs(7)—(9) for all k,I but  resonance states in the overlapping regime appear often to be
those with&=¢& (double pole of theS matrix) where A, well isolated from one anothdrl0]. The few short-lived
—o0 and BL—m. As a consequence of E) holds[2] resonance states determine the evolution of the system. This
means, quick direct reaction processes may appear, at large
overall coupling strength, from slow resonance processes by

2 75| means of the resonance trapping phenomenon. Meanwhile,
lzk: $2 592, (10) the_phenomenon of_resonance trapping has b_een proven ex-
Ay ~ 17k perimentally on a microwave cavity as a function of the de-

gree of opening of the cavity to an attached I1g&2]. In this

The main difference to the standard theory is that theexperiment, the varied parameter is the overall coupling

N fﬁ, andE, are not numbers but energy-dependent funcStrength between discrete and scattering states. Resonance
trapping may appear, however, as a function of any param-

tions[2]. The energy dependence of{ifa} = — 1T is large eter[2].
near to the threshold for opening the first decay channel. This |n any case, the energies and widths of the resonance

causes not only deviations from the Breit Wigner line shapestates follow from the solutions of the fixed-point equations:
of isolated resonances lying near to the threshold but also an

interference with the above-threshold “tail” of bound states _ -
[2]. Also, an inelastic threshold may have an influence on the E,=EW(E=E,) and I':'=T(E=E)), (12
line shape of a resonance when the resonance lies near to the
threshold and is coupled strongly to the channel which opengn condition that the two subspaces are defined adequately
[11]. Also, in this casefk depends strongly on energy. In the [2]. Thg valuesE, andI’y correspond to the standard spec-
Cross section, a cusp may appear in the cross section inste§gscopic observables. The wave functions of the resonance
of a resonance of Breit Wigner shape. Both types of threshstates are defined by the functioflg, Eq.(6), at the energy
old effects in the line shape of resonances can explain exe=Ey. The partial widths are related to the coupling matrix
perimental data known in nuclear physi@. They cannot elements )2 that are calculated independently by means
be simulated by a parameter in tBematrix. of the eigenfunctions, of H. For isolated resonances

The energy dependence Bf, andI', may be important =1 according to Eq.(8), and the standard relatiof,
also far from decay thresholdi]. Characteristic of the mo- =3 | yg|? follows from Eq.(10). In the overlapping regime,
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the partial widths lose their physical meaning, sidce 1.  approximately biorthogonal. The deviations from the bior-
Both functions 6@2 andf“k may even show a different en- thogonality relation(7) are, however, small as a rule. This
ergy dependenck?] drawback of the spectroscopic studies of resonance states has
It follows immediately from Eq(4) that the coupling of to be contrasted with the a_dvantage it has for the study of
the resonance states via the continuum induces additiongPServable values: thématrix and therefore the cross sec-
correlations between the states. These correlations are de2n @€ g:alculated with the resonance wave functions heing
scribed by the temHQpG(p”HpQ of the effective Hamil- strictly biorthogonal at every enerdy of the system. Fur-

tonian H. The real part RQ'GQPGED+)HPQ) causes level re- thermore, the fl_JII energy dependecnc_;eE’;J,Fk _and, above
pulsion in energy and is accompanied by the tendency t@ll, of the coupling matrix elementg is taken into account
form a uniform time scale in the system. In contrast to thisin the S matrix and therefore in all calculations for observ-
behavior, the imaginary part IrhI(QPGg)HPQ) causes dif- able values.

ferent time scales in the system and is accompanied by level

attraction in energy. Thus, an essential part of the energy Il UNITARITY OF THE  SMATRIX

dependence of the eigenvalues7efis caused by the addi-  The Breit Wigner one-level formula for nuclear reactions
tional correlations of the states via the continuum. These argescribes the reaction cross section with isolated resonances.
important, above all, at high level density. The S matrix elements for this case read

For isolated resonance states, the additional shift in en-

ergy is usually taken into account by simulating Rg( Jeer

=Hgo+ReHqpG Hpo) by Ho+V', whereV' is as- Sp=1-i1> —*x (14)
sumed to be describable by two-body effective residual K E_E +'_1:
forces. It should be mentioned, however, that ki kK

Re(HopGh 'Hpg) cannot be completely simulated by an ad- B ~
ditional contribution to the residual two-body interaction whereE, andI'y are the energies and widths of the reso-
even in the case of well-isolated resonances, since it containfance stateg, respectively, andﬁ/ﬁc’z"ﬁ;ﬁ’_ The 3§ are

many-body effects, as follows from the analytical structurethe partial widths of the statésrelative to the channel The

of HQPG(F’+)HPQ' Re(HQPG(PJr)HPQ) is an integral over en- valuesE, T, and?yy are numbers characterizing the prop-

ergy and depends explici_tly on the energigsat which the erties of the resonance statk&s Since they are energy-

channelsc open. For d_etal_ls, see Ré]. . . independent values, the decay follows an exponential law.
Spectroscopic studies in the Sverlappmg régIme are More . an isolated resonance stite 1 coupled to one chan-

complicated. The wave functiorB, may be represented in ng,

the set of eigenfunctioné®,} of the Hermitian Hamilton

operatorH=Hqq, o

S=1-i——— (15

<T>k=2| b P; - (13

in the energy rang&,— T, <E<E,+ 1T, andW,=T,

The ®, are real, while theTDk are complex and energy de- QUe to _the unitarity of th& matrix_. The last relation follows
immediately from Eq.(15) that, in the one-resonance-one-

pendent in the overlapping regime. The coefficidntsand .
the 3, are complex and energy dependent, too. In this rephannel case, can be written as
gime, the differences betweén andH therefore cannot be
simulated in a simple manner. Even the positions of the E-E,—
peaks in the cross section do, generally, not appear at the S (16)
energie€, when the resonance states oveflap This is the ~ 0~
result of interferences between the resonance states. E-E;+ 2 Iy

It should be underlined here that expressi@h for the
resonance reaction part of tiematrix is derived from the \whenW,=T',. The S matrix (16) is unitary.
Schralinger equatiorfl) by rewriting it ig a consistent man- Let us now consider the unitary representation of e
ner. Here, the eigenvalugg=E,— (i/2)[' of the effective  matrix in the one-channel case with two resonance states,
Hamiltonian, Eg. (4), as well as the coupling matrix ele-
mentsy,, are energy-dependent functions, and the unitarity
of the S matrix is guaranteed.

Furthermore, the differend, (E=E,) are neither strictly S= e 0~ e 0~
orthogonal nor biorthogonal since the biorthogonality rela- (E—E1+ > Fl) (E—E2+ > Fz)
tion (7) holds only when the energies of both stakeand|
are equal. The spectroscopic studies on resonance states &em this expression, a possible form of the pole represen-
performed, therefore, with the wave functions being onlytation of theS matrix can be derived,

~ i~ ~ i~
(E_El_zrl (E_Ez_zrz)

(17
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ir ir r,r
S=1— 1 . 2i . 1+ 2
E-Ei+5I E-Et5 I (E—E1+ —Fl)(E E,+ rz)
1 - [
=1- i+ r2
E-E,+-T, 2E—(E1+Ep)+ o(T1+T)
1 ~ r.r
S ir,+ ! 2i . (18
E-E,+=1T, 2E— (B +Ey)+ = (I'1+1y)
|
It follows The second term corresponds to the usual linear term, while
\7Vk the third term is quadraticsee Ref[13]). The interference
S=1-i _ (19)  between these two parts has been illustrated in Ref],
k=12 E-E + '_fk where the cross section is shown for the case of two reso-

nance states coupled to one channel. The energies and widths
of the two resonance states are the same, creating a double

in complete analogy to Ed14), with pole of theSmatrix. The asymmetry of the line shape of both

o fl peaks in the cross section agrees with Efl). A similar
W =T, 1—i - (20 picture has been obtained in, e.g., laser induced continuum
2E—(Ek+~E|)+l—(3’k+f|) structures in atoms with a double pole of t&ematrix
2

[15,16, in atom-surface collisiong17], transmission in

andk,|=1,2, | #k. These equations show that the Couplingquantum scattering systeifik3], in a double k_)arrler potential

T = ~ [19], a double-square-well systef20], and in a toy model
coefficientsW, are complex and energy dependent, M4t  for the conductance through a small quantum [@di.

has a resonance behavior at the enefgyHE,)/2 with the According to Eq.(20), the asymmetry of narrow reso-
width (T + T, )/2, and that the energy dependence of the twdlances is usually Iarger than that of broad resonances: when
valuesW, andT, is different in the overlapping regime. In T1>T,, it follows W;~T ;, while the corrections fron'; to

the energy region of the resonance behavidigicaused by~ Wa can mostly not be neglected. In any case, the nonlinear
a neighbored resonance statehe S matrix contains terms term inW,, Eq. (20), causes a nonexponential decay of the
being nonlinear in energy. two resonance states. Only when the line shape of a certain

When the widths of the two states are eqi¥sl,—0 with  resonancek is of Breit-Wigner type and:k is almost con-
E—>(Ek+ E,)/2. At large distanceE>E,+E,, follows Wk stant in a large energy region aroukg, the states will

—.T,. In this case, the two resonance states behave as isg€cay according to an exponential [§#B].

When the two resonance states lie at the same energy, but
lated ones. When the p05|t|0|Es<,E| of the two resonance their widths are different, then follows from Eqg&l9) and

states are outside of the resonance regiowpandW,, the  (20) that the contributions from both resonance states anni-
resonances can also be considered, to a good approxmaﬂqwate each other & =E.=E. ie. the cross section van
1— 2, LC., -

as isolated, antV~T ,W,~T). ishes at that energy where the two resonance states lie. This

The nonlinear term creates some deviation in the resodestructive interference has been traced numerically in Ref.
nance line shape from the linear Breit-Wigner one. This caf14] for two resonance states coupled to one channel by
be seen best in the case when 8matrix has a double pole, varying the coupling strength between the states and the con-

ie., E,=E,=E4 andT;=T,=Ty. In such a case, th&  tinuum. Whenl';> .>T,, the narrow resonance appears as a

matrix (19) reads dip in the cross section that is determined mainly by the
. \7\/d broad resonance. This is in accordance with Ef): for
S=1-2l ———— E—L(E,+E,), follows W, —T; andW,— —Ts.
E-Eqt5 Iy For illustration, the cross section calculated with two

neighboring resonance states is shown in Fig. 1. The width of
one of the states is fixed t51:0.05 (in arbitrary unitg
while that of the other one is varied betweﬁgz 0.01 and
5.0. Whenl~"2>l~“1, it is 1~“Z~ const in the energy region of
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4= 0.05p==<
3.5
€0.04f
3 3
g
525 0.03}
8 s
a2 3
2 . 8
o 5 0.02f
O15 g
S
g
1 Z0.01}
05 "
¥s 7.95 8 8.05 8.1 '
E
4 . . .
FIG. 1. Cross section with two resonance statds,at 7.99 and
3 -

E,=8.01. The width of one of the states is fixedﬁp: 0.05, while
that of the other state is variefl,=5.0 (dashed curve I',=0.05
(full curve), and1~“2=0.01 (dash-dotted curye The dotted curves

are calculated withf‘2=1.0, 0.5, 0.1, 0.025, respectively. Cross
section and energy are given in arbitrary units.

- N
T T

of coupling coefficient
(=]

the narrow resonance, and the cross section shows a dip
the energyE;. In this case, the broad resonance plays theg
role of a background for the narrow resonance. When theg -2r
widths of both states are equal, the structure of the cros:

=1t

section is similar to that caused by E@1) at the double =3r
pole of theS matrix. WhenI',<I';, the two peaks in the _ , , ,
cross section are no longer symmetrical in relation to the %8 7.9 8 8.1 8.2
center atE=8. E

The corresponding coupling coefficien®/; and W, FIG. 2. Coupling coefficientV, of the resonance state Bt
(Figs. 2 and B show a resonancelike behavior Bt=(E;  =7.99. The width id"; =0.05. The position and width of the other

+E,)/2. While the absolute values show the same tendencstate is as in Fig. 1.
for both states, their phases behave differently. The phase of

the broad state is almost not influenced by the interactiona|ly varied(see Sec. Iy, Here,W=0. However, the phase

with the narrow one, while the phase of the narrow stat§ump of 7 does not appear at every zero of the cross section,
jumps by 27 at the energye=(E;+E;)/2. This is caused see Figs. 1-3. It follows further that the resonance behavior
by the minimum of Re{V,), which is reached aE=(E, of the coupling coefficients plays a role only for resonance

~ - T states lying near to one another.
+E)/2. The minimum value id’,—T'~T\ for the broad As can be seen in Fig. 1, the interferences between the

state, but=T', for the narrow one. In both cases, Mik;)) different resonance states cause, in the one-channel case, a
oscillates and vanishes Bt=(E,+E;)/2. These results are separation of the peaks in the cross section. In this manner,
in agreement with the fact that the broad resonance statie interferences may feign the existence of well-isolated
plays the role of a background for the narrow resonanceesonance states in spite of their strong overlapping. An ex-
state. treme case is the case with two separated peaks appearing in

Of special interest is the ca$g =1 ,. The resonance be- the cross section with a double pole of Benatrix[2,10,14

havior of the coupling coefficients appearing &t= (E; or in its neighborhood, Fig. 1.

~ o , ~ The line shape of the peaks in the cross section is de-
+E,)/2 is independent of the distan¢g; —E,| of the two  g¢yipeq usually by means of energy-independent Fano pa-
resonance states. It reflects the properties of a double pole

, x Pmeters. A recent example, is the experimentally observed
the S matrix. One clearly sees the phase jump®yat E 5110w peak in the conductance through a quantum dot con-

=£E1+~Ez)/2 (Figs. 2 and 3 This energy E“=(E; trolled by varying the strength of the magnetic figk2]. The
+E,)/2 is the critical value at which the wave functions of energy-independent Fano parameters are related to a repre-
the two states are exchanged when the energy is parametsentation of theS matrix (19) with energy independent/,
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will use the\7vk that are meaningful also around double poles
of the S matrix according to Eq(21).
It is easy to generalize the study to more than two reso-

Se===

_‘54 nance states. Suppose
£ .
L] | ~
Q ~
;3 N E-E,— EFn
£ S= . (23
3 LEE LT
%’2 nt5%n
E
= instead of Eq(17). In an analogy with Eqg19) and(20), it
§°1 follows
W,
S=1-i% ———+—, (24)
9. " E_En'i‘ 5 | S
4 .
with
3_ 7 ~
I3 - - [‘m
2 i 1 Wy=T| 112 Xn+ X
r [

(25

-2 XX+ XX+ XX,

and X,=E—E,+(i/2)[",,. The sum in the second term of
Eg. (25) is running ovem+ n and that in the third term over
m=#n and|+#m,n. The denominatoX,+ X,, of the second
i term is linear inE, while that of the third termX,X,

|
-
T

Angle of coupling coefficient
P o

-3¢ 4 1 ~
+ XX+ XX, is quadratic inE. In any case, th&V, de-

-4 : : : pend on energy in a nontrivial manner.
8 7.9 8 8.1 8.2 As follows from Egs.(24) and(25), the coupling coeffi-

E
_ R _ cients at a triple pole of th& matrix arew,=1",/3 (in con-
FIG. 3. Coupling coefficieniV, of the resonance state Bt trast t0\7Vn=0 at a double pole Here, theS matrix contains
=8.01. The position and width of the other state as well as the[ . ’ . .
erms up to third order. When one of the widths is much

width T, is as in Fig. 1. In the upper paiti,| is multiplied by 1 ) ~
(dashed curve 100 (full curve), and 500(dash-dotted curye and IarNger than the other ones in the three-resonance dase,

by 5, 10, 50, and 200, respectivelgotted curves > (k=n,m), it is \7V|~f‘| and \7Vk= —f‘k when E= %(E
+E,). These relations are in complete analogy with those
[instead of the energy dependéM( in Eq. (20)]: obtained for the two-resonance case.
In Figs. 4 and 5, the cross sections with three resonance
~ states are shown, two of which are lying symmetrically
Wlf(:fk 1—i Fil (220  around the position of th~e third one B=E;=8, as well as
E.—E - E(fk_fl) the coupling coefficient§Vs. The different curves in Fig. 4

are obtained by varying the widih; between 0.05 and 5. In

the first case, the widths of all three states are equal, while in
In the literature, mostly th&V, are used since they provide the other cases, the middle state overlaps the narrower ones.
ample 1 the analyss of the biorthogonaliy of resonancdeNT s T (k=12), the broad state can be considered as
wave functions in the molecule N@23]. The representation a “backgro_und" fo_r the other two: these appear as dips in the

; X o . cross section. This can be seen better in Fig. 6 where one

(22) is equivalent to Eq(20), except in approaching a double ~ )
pole of theS matrix where Eq.(22) has a singularity in broad resonafceftat54=3.0) is shown that overlaps two
contrast to Eq(20). The W, lose, however, their physical narrow ones[[;=I",=0.05). In both cases, a peak appears
meaning as the coupling matrix elements between resonande the middle of the spectrum &=8 in contrast to the
states and continuum in the overlapping reg[h@. For this  two-resonance case, Fig. 1. In Fig. 5, the widths of all three
reason, we will not consider them in this paper. Instead, westates are kept constant, while the distance between them is
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FIG. 4. Cross sectiotitop) with three resonance states &t
=7.99,E,=8.01,E,=8.0 and I';=I',=0.05, T'3=0.05 (full
curve, I'3=1.0 (dash-dotted curye andI';=5.0 (dashed curve
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FIG. 5. Cross sectioftop) with three resonance states of widths
I',=I',=I5=0.05 atE,;=7.99,E,=8.01,E;=8.0 (dotted curvg

Coupling coefficientmiddle and bottonW; of the resonance state E,=7.9,E,=8.1, E;=8.0 (dash-dotted curve and E;=7.75,E,

in the middle of the spectrum{Ws| is multiplied by 100 (full
curve, 5 (dash-dotted curyeand 1(dashed curve Cross section

and energy are given in arbitrary units.

=8.25,E,=8.0 (full curve). Coupling coefficientW, (middle and
bottom) of the resonance state in the middle of the spectrum. Cross
section and energy are given in arbitrary units.
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efficients W5 at the critical values of the energy®=(E,
8.5 1 +E3)/2; k=1,2. They are mostly smaller than thoseVuf

3t 1 and \7V2 (not shown. The influence of a broad resonance
state on the coupling coefficients of narrow ones is illustrated
in Figs. 6 and 7 with the state 3, being, respectively, much
broader and much narrower than the states 1 and 2. At the
energies 6 and 9, the states 1 and 2, respectively, interact
with the state 3 while the interference picture at the energy 7
is caused by the two states 1 and 2 with equal widths. The
phase jump ofr at this energy(Fig. 7) is reduced in the

presence of the broad resonance stfig. 6). Also, |W,|

and |W,| differ in the two cases without and with a broad
state.

Measurements of phase and magnitude of the reflection
and transmission coefficients of a quantum dot are performed
in Ref.[24]. As a result, the phases of the dot’s transmission
and reflection coefficients change abruptly by abautt
some energy in the resonance peak. The phase changes are
very similar to those observed in the present calculations for

the W in the one-channel cagsee the figurgsAs discussed
above, they are related to the unitarity of thenatrix in the
overlapping regime. The results are expected to be similar
] for the case with more channdisr terminalg since, as will
i be shown in Sec. 1V, they are characteristic of the intrinsic

i ] wave functionsﬁ)k andd", respectively, of the system.
In the consideration, presented in this section, Ehend

fk are assumed to be independent of the energy. This is,
mostly, a good approximation in the energy range of the
resonance state In any case, the energy dependence of the

coupling coefficients\7vk arises primarily from their reso-
nance behavior caused by a neighboring resonance state, Eq.
(20). It may be influenced, of course, by the energy depen-

dence ofE, and f‘k, especially when the levels repel or
Lemmmmm = attract each other by varying a certain parameter.

Cross section
no

w
(4]

w
T

n
T

N
)
T

Modulus of coupling coefficient
S
[

-
T

o
2]
7 moof

| / IV. WAVE FUNCTIONS NEAR AVOIDED LEVEL
S b | CROSSINGS IN THE COMPLEX PLANE

Angle of coupling coefficient
[=]

The coupling coefficients between system and continuum
4 ‘ ‘ ‘ ‘ . are defined by¥£)?, Eq. (5). Their energy dependence and
phase are determined, in the one-channel case, by the energy

~ ) )
FIG. 6. Cross sectioffitop) with one resonance state of width dependence and phase of thia” (after removing the com
_ = _ . mon phase and energy dependence caused b§fjhévuch
I'3=3.0 atE3=8.0 (dotted curv and with two additional reso- 5 therefore, be learned on the behavior of the coupling

nance states of width, =I',=0.05 atE;=4.0 andE,=10.0, re-  coefficients between system and environment from a study
spectively(full curve). Coupling coefficient§middle and bottormn of the wave functiong,..

W, (dashed, W, (dash-dottej] andWj (full curve) of the three Characteristic of the overlapping regime are avoided level
resonance stateV;| and|W,| are multiplied by 60. Cross section crossings in the complex plane. At an avoided level crossing,
and energy are given in arbitrary units. Note the different energythe wave functions of the two crossing states are exchanged.
scales for the cross section and the coupling coefficients. This fact is very well known for a long time for discrete

. . . states (Landau-Zener effegt It holds also for resonance
varied. Although the peaks in the cross section seem 10 bgatas in the adiabatic limif2]. The difference between
well isolated from one another foE{(—E,.)/(I'y+1'y+1) avoided crossings of discrete and resonance states consists
=2.5 (full curve), the interferences between the resonancenainly in the fact that resonance states may cross in the
states are not vanishing. complex plane even when the interaction between them is

Interesting are again the phase jumps of the coupling coronvanishing and, furthermore, that the crossing may lead

moo
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FIG. 7. The same as Fig. 6, blit=3x10"5.

not only to level repulsion but also to level attraction. While

PHYSICAL REVIEW E 68, 016211 (2003

The avoided level crossing of resonance states can be
traced back to a branch point in the complex pl4ag].
When the conditions for crossing of the two levels are ful-
filled, the branch point in the complex plane is nothing else
than a double pole of thBmatrix (see also Ref26]). In any
case, the wave functions of the two levels are exchanged at
the critical value of the parameter at which the two levels
avoid crossindor cross in one point Here, either the widths
or the energiegpositions of both states are equal. In the first
case, the avoided crossing happens, as for discrete states, in
the energies of the resonance states traced as a function of
the considered parameter. In the second case, however, it
appears in their widths.

Further studies have shown that the wave functions at the
critical valuea® of the parametea are exchanged according
to

wherek and| are the two crossing states. This relation has
been obtained analyticall{25] as well as in a numerical
study of atoms in a laser fie[d 6]. It is related to nonlinear
terms that appear in the Schiinger equation due to the
biorthogonality of the eigenfunctions of the effective Hamil-
tonian’H. At a%, the sign of the imaginary part of the wave

function&)k jumps from+ to — (or opposite¢ even when the
two states avoid crossing amg,=|®,| remains finite[25].

This means, in a certain parameter raaf€'<a“<a™ the
wave functions of the two statésandl #k are mixed,

D= B D+ B D (27)

The wave function§3§h change smoothlywithout any jump
of the sign of their components

from B—=*+1, B—0 at a—a™"<a®
to By—0, Bj—=1 at a—a™>a” (29

The valuesa™" and a™ may be quite different from one
anothef25]. Only in the case where the avoided level cross-
ing shrinks to one point, being the double pole of tBe
matrix, 8,=0 or =1 for all a buta®. In any case, the two
wave functions (1y2)(®,+i®,) and (142)(P,Fid,) re-
main unchanged a=a* under the exchang&6).

Hence, in the parameter rang€""<a<a™ the wave

functions of the two states a@ ", but not®, (k=1,2).
The two wave functions are restored, after the exchange at
a“, only ata=a™ In other words, using the representation

D= |DMelk, (29

level repulsion is accompanied by the tendency to equilibraté, depends om whena™"<a<a™ Beyond this parameter
the widths of the resonance states, level attraction is acconarea,, depends ora much weake(if at all). After remov-
panied by the formation of different time scales in theing a common phase factor, it follows from E@8) for an

system.

avoided level crossing near the double pdg— = /4 and
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+3/4, respectively, in approachiraf” and 6,—0 or 7 in of more than two resonance states take place in the paranjeter
approachinga™ or a™ At a, the states are chiral. rangea™"<a<a"®. As an extreme case, the branch point in
The comparison of Eq(26) with the experimental data the complex plane may be a multiple pole of Benatrix.
obtained from microwave cavities has been discussed in d The relation between the different wave functions is, in such
L ) ) case, more complicated than that for two states where the
tail in Ref. [27]. All the data published in Ref$28,29 for \\aye functions of only two resonance states are exchanged
the case of two levels of the system that are well '30|ate%ccording to Eq(26), mixed in the rang@a™"<a<a™ and
from the other ones, can be explained by means of(E).  restored beyond this range. Such a situation is studied ex-
Some chirality appears: left and right turns around the doubl@erimentally[28] as well as theoretically in different ap-
pole of theS matrix with 8,=g, are different from one proacheq4,25,34,3% compare also Figs. 2 and 3 for two
another according to Eq&27) and(28). resonance states with Figs. 4 and 5 for three resonance states
Phase changes of the wave functions in the conductands Well as Fig. 6 with Fig. 7.
through a microwave cavity have been considered in Refs.
[30,31]. The question is studied to what extent the transport
through the cavity changes the structure of its internal wave The resonance phenomena are described well by two in-
functions. It is demonstrated theoretically as well as experigredients also at high level density. The first ingredient is the
mentally [30] that the standing waves of the original cavity effective Hamiltoniar?{ that contains all the basic structure
are transformed more or less completely into running wavedformation involved in the HamiltoniarH, i.e., in the
propagating from the entrance antenna to different exit portd-tamiltonian of the corresponding closed system with dis-

This is expressed by the two limiting casés:the real and crete eigenscgates. Moreo_vé{, contains the coupI_ing matrix_
imaginary parts of the wave functions are strongly Corre_elementswﬁ between discrete states and continuum which

lated, and(ii) they are completely uncorrelated. In the Iastaccount for the changes of the system under the influence of

case. the real and imaginary parts of the wave functions O:}s coupling to the continuum. These matrix elements are
' imaginary p wave functi esponsible for the non-Hermiticity dff and its complex

the resonance states evolve independently in the open micr@jgenyalues which transfer the discrete states into resonance

wave cavity. states and determine not only their positions but also their
In Ref.[32], the phase difference between two modes hasfinite) lifetimes.
been measured in a cavity composed of two almost identical The second ingredient is the unitarity of tBenatrix that
semicircular parts. The two modes are each localized in onRas to be fulfilled in all calculations of resonance phenom-
of the semicircular parts of the cavity and are excited sepaena. The unitarity of th& matrix causes a nontrivial energy
rately by appropriately positioned dipole antennas. The COrgependence of the coupling matrix elemeﬁl&‘:’ between
responding two eigenvalues are well separated from all theasonance states and continuum. This energy dependence be-
other ones. By varying two parameteidesigned here to- comes decisive in the overlapping regime even in the case
gether bya) of the cavity, their avoided crossing in the com- the lifetimes of the overlapping states are very different from
plex plane to galmos} true crossing can be traced. Further- one another and the different long-lived states seem to be
more, the eigenfunctions are studied by mapping thevell-isolated from one another. It is taken into account in the
distributions of the electric field. Finally, the phase differenceunified description of structure and reaction aspects since
A = 6,— 6, between the antennas has been found for differenany statistical or perturbative assumptions are avoided in
distances ofa from the critical valuea®. The results ob- solving the basic equatiofl). The unitarity of theS matrix
tained in the experimer(t32] are A— #/2 for a—a and  influences also the phases of the wave functions of the reso-
A= for abeyond the ranga™"<a<a™® They agree with ~Nance states thgt change generically in approaching avoided
Egs.(27) and(28) by using the representatid9) [33]. level crossings in the complex plane.

According to Eq.(5), the phase of the coupling coeffi- In the nonoverlapping regime, both ingredients are ful-

. . . ~ ) filled in almost all theoretical approaches. Here, the wave
C\ 2 2 I}
cients () is determined by that of®,)”. Considered as a fnctions and positions of the resonance states are described,

function of a certain parameter, the phases of both expregy g good approximation, by the wave functions and posi-
sions vary, in the one-channel case, in the same manngfons of the discrete states of the corresponding closed sys-
Since the parameter may be also the energy of the systefam. The coupling matrix elements between system and con-
[2], the phase of the¥()? varies generically with the energy tinuum can be calculated by means of the wave functions of
in the same manner as the phase of tig)2. The results the discrete states. They are energy independent, to a good
discussed above are in full agreement with those following?PProximation. _ . .
immediately from the unitarity of th& matrix, Figs. 2—7. In the overlapping regime, however, with many avoided

: o . level crossings, the wave functions of the resonance states
Even th b the ph f th I ' , .
ven the JUmps byr appearing In the phases of the couping suffer phase changes. Furthermore, the coupling coefficients

coefficientsW in Figs. 2, 3, and 7 can be explained by EQs.of the resonance states to the continuum show a resonance-

(26) and (27). In other words, Eqs(26)—(28) coincide with  |ike behavior caused by the interaction with a neighbored

the postulation of the unitarity of th® matrix. In any case, resonance state. Both effects are described by nonlinear

nonlinearities are responsible for the energy dependence @rms appearing in the Schtinger equation and th& ma-

the coupling coefficients between system and continuum.  trix, respectively. They are related to one another and cannot
In realistic systems, mostly more than two resonancée neglected at high level density.

states are coming close to one another, i.e., avoided crossings As a conclusion of these results, the coupling of a quan-

V. CONCLUDING REMARKS
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tum system to the environment may change its propertiedime scale for the system while different time scales are
The changes are small as long as the coupling strength bérmed in the second case. The formation of different time
tween system and environment is smaller than the distancgcales in an open quantum system, which is accompanied by
between the individual states of the unperturbed system, i.elevel attraction, is accompanied also by the appearance of a
smaller than the distance between the eigenstates of theontrivial energy and phase dependence of the coupling co-

HamiltonianH. The changes can, however, not be neglectedficientsW. The use of an effective non-Hermitian Hamil-
when the coupling to the continuum is of the same order ofon operator in describing scattering processes in the over-

magnitude as the level distance or larger. In such a case, thgyping regime is therefore meaningful only when, at the
changes can be described neither by perturbation theory nar

by introducing statistical assumptions for the level distribu->2M€ time, the energy dependence of\hés considered.
tion. Here, nonlinear effects become important which cause a
redistribution of the spectroscopic properties of the system
and, consequently, changes of its features.

Under the influence of the coupling to the continuum, not | am indebted to A. I. Magunov, N. Moiseyev, and E.
only level repulsion but also level attraction may appear. Théersson for valuable discussions and to H. Schomerus for a
first case is accompanied by the tendency to form a uniforneritical reading of the manuscript.
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