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Experimental realization of chaos control by thresholding
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We report the experimental verification of thresholding as a versatile tool for efficient and flexible chaos
control. The strategy here simply involves monitoring a single state variable and resetting it when it exceeds a
threshold. We demonstrate the success of the technique in rapidly controlling different chaotic electrical
circuits, including a hyperchaotic circuit, onto stable fixed points and limit cycles of different periods, by
thresholding just one variable. The simplicity of this controller entailing no run-time computation, and the ease
and rapidity of switching between different targets it offers, suggests a potent tool for chaos based applications.
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[. INTRODUCTION quencegsymbol sequences in mapnd enforcing a period-
icity on the sequence through the thresholding action which

Control mechanisms that enable a system to maintain acts as a resetting of initial conditions. The effect of this
fixed activity (the “goal” or “target”) even when intrinsi- scheme is to limit the dynamic range slightly, i.e., “snip” off
cally chaotic has many applications in situations ranginggmall portions of the available phase space, and this small
from biology to engineering1,2]. It is thus of considerable controlling action is effective in yielding a range of stable
interest and potential utility, to devise control algorithms ca-Pehaviors. In fact, chaos is advantageous here psgesses
pable of achieving the desired type of behavior in strongly2 rich range of temporal patterns which can be clipped to
nonlinear systems. In recent years, there has been intengiferent behaviorsThis immense variety is not available
research activity devoted to the design of effective controffom thresholding regular systems. _ _
techniqueg1,2]. A large body of work derives from the Ott, It can be shown analytically for one-dimensional maps
Grebogi, and Yorke(OGY) idea [1], which seeks to use and numerically for m_ultldlmensmnal systems that the
small perturbations to place chaotic orbits onto unstable pdhreshold mechanism yields stable orbits of all orders by
riodic orbits. In this paper, we will experimentally demon- Simply varying the threshold levgh—6]. But so far there
strate an alternate control strategy: the simple and easilpad been no direct experimental verlﬂcatllon of th.IS cont_rol
implementable threshold mechanism. This strategy does n§€heme. To the best of our knowledge, this work is the first
involve adjusting any parameter in the system, but only in-Such attempt. Now to experimentally demonstrate the range
volves the occasional resetting of one state variable. We wifnd efficacy of the method, we implement it on three differ-
first introduce the general formalism and then focus on ex&nt chaotic electrical circuits, including a hyperchaotic one.
perimental implementation on a range of systems, including N€ results from our experiments are presented in detail in
the challenging task of controlling a hyperchaotic sysfgin ~ the sections below.

Threshold formalism for multidimensional syster@sn-
sider a generaN-dimensional dynamical system, described
by the evolution equation Xx=F(x;t) where X
=(Xq,Xs,...,Xy) are the state variables, and variableis
chosen to be monitored and threshold controlled. The pre-
scription for threshold control in this system is as follows: The first experimental setup is a realization of nonlinear
control will be triggered whenever the value of the moni-third-order ordinary differential equation®DE), a form
tored variable exceeds a critical threshafd (i.e., whenx; known in literature as Jerk equations:
>x*) and the variable; will then be reset toc* [4—6]. The

II. CONTROLLING A CIRCUIT REALIZATION
OF NONLINEAR THIRD-ORDER ORDINARY
DIFFERENTIAL EQUATIONS

dynamics continues till the next occurrencexpfexceeding d3x d2x X
the threshold, when control resets its valuectoagain. e +AW + q G(x), D

No run-time knowledge oF (x) is involved, and no com-
putation is needed to obtain the necessary control. The
method only involves monitoring a single variable and nowhereG(x) is a piecewise linear functiorG(x)=BJ|x|—C
parameters are perturbed in the original system. The theoretvith B=1.0,C=2.0, andA=0.6[7]. The circuit realization
ical basis of the method does not involve stabilizing unstablef the above uses resistors, capacitors, diodes, and opera-
periodic orbits, but rather involves clipping desired time se-tional amplifiers as shown in Fig. 1. The implementation
involves three successive active integrators to generate
d?x/dt?, dx/dt, andx from d3z/dt3, coupled with a nonlin-
*Email address: kmurali@annauniv.edu ear element that generat€3(x) and feeds it back to
"Email address: sudeshna@imac.ernet.in d3x/dts.
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Now we implement the threshold mechanism on variablehe rest of this three-dimensional system to regular dynami-
X, i.e., whenevek>x*, x is clipped tox*. A precision clip- cal behavior. The characteristics of the controlled states can
ping circuit [8] as depicted in the dotted box in Fig. 1 is be easily varied by just changing the threshold(see Table
employed for threshold control. We have chosen componerl). Also note that simply setting the threshold beyond the
values for the control circuit to bpopamp= wA741, diode bounds of the attractor gives back the original dynamics.
=1IN4148, load resistor1l k), and threshold reference The control transience is very short hétgpically of the
voltage=V, which setsx*]. order of 102 times the controlled cyc)e This makes the

Figure 2a) displays the uncontrolled attractor and Figs. control practically instantaneous. The underlying reason for
2(b)—2(d) show some representative results of the thresholdhis is that the system does not have to be close to any par-
action on this chaotic system for a range of threshold valueticular unstable fixed point, as in OGY based schemes, be-
X* (x*<2.4). It is clear that the mechanism manages tdore implementing control. Once a specified state variable
yield cycles of varying periodicities. Further, a detailed com-exceeds the threshold, it is caught immediately in a stable
parison shows theomplete agreement between our experi-orbit.
mental results and our numerical simulation results The changes in state effected by thresholding, namely,

So the single threshold variabiehas the ability to drag (x—x*) whenx>x*, are typically smallas adjustments are
made just aftek crosses*). Further, for higher periods, the
controlling action is infrequent and occurs for short intervals
in every controlled cycle. For instance, to control to a 16-
cycle with x*=2.327, the thresholding is operational for
only ~0.22 msec in an interval of 50 msec.

Ill. CONTROLLING CHUA'S CIRCUIT

Now we consider a realization of the double scroll chaotic
Chua’s attractor given by the following set @éscalegithree
coupled ODE49]

x=aly—x-g(x)], )

TABLE |. Threshold rangesgin V) vs periodicity of the con-
trolled cycle, for the chaotic system given by Eij).

Threshold for system Nature of controlled orbit
©) (d) x*<—2.00 Fixed point
—2.00<x*<1.477 Period 1 cycle
FIG. 2. Attractors in the-x plane:(a) the uncontrolled chaotic 1.477<x* <2.242 Period 2 cycle
system obtained from the circuit realization of Efj) (upper left 2.242<x*<2.321 Period 4 cycle
box); (b) period 1 cycle obtained whexi* =1V (upper right box 2.321<x*<2.325 Period 8 cycle
(c) period 2 cycle obtained whext =2 V (lower left box; and(d) 2.325<x*<2.331 Period 16 cycle

period 4 cycle obtained whext =2.1 V (lower right box.
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Pl “' TABLE IlI. Threshold rangesin V) vs periodicity of the con-
.Qaz trolled cycle, for the chaotic system given by E(@-4).
R SDUKE Threshold for system Nature of controlled orbit
i o X* <1.84375 Fixed point
+— 1.84375<x* <2.235 Period 1 cycle
R1 2.235<x* <2.258 Period 2 cycle
OA1’ 2.258<x* <2.264 Period 4 cycle
%“L Lo o1t - 2.264<x* <2.265 Period 8 cycle
¢ 2.265<x* <2.2653 Period 16 cycle
R2 RS
R3 R6
? structure configuration of the classic Chua’s cird@l0].
The uncontrolled attractor from this system is displayed in
ki Fig. 4(a).

FIG. 3. Chua's chaotic circuit with threshold level controling ~ NOW we implement an even more minimal thresholding.
circuit (shown in the dotted box Here, V7 is the threshold con- Instead of demanding that thevariable be reset ta* if it
trolled signal. exceeds<*, we only demand this in Eq3). This has very

easy implementation, as it avoids modifying the value of
the nonlinear elemerdg(x), which is harder to do. So then

y=x-y+z, (3  all we do is to implemeny/=x* —y+z instead of Eq(3),
whenx>x*, and there is no controlling action X¥<x*. In
7= — By @) the circuit, the voltagd/; corresponds to*. The resulting

controlled orbits with respect to threshold is given in
Figs. 4b)—4(d) (x*<2.7). So the threshold control works

wherea =10 and3=14.87 and the piecewise linear function O the system rapidly and can control to a wide range of
g(x)=bx+ 1/2@@—b)(|x+1|—|x—1|) with a=—1.27 and temporal behaviorssee Table Il

b= —0.68. The corresponding circuit component values are

[L=18 mH, R=1710 Q, C,;=10 nF, C,=100 nF, R; IV. CONTROLLING HYPERCHAQOS

=2200, R,=2200, Ry;=2.2 kQ, R;=22 k), Rg=22 Kk,
R;=3.3 k), D=IN4148, B,,B,=Buffers, OA1-0A3:
opamp uA741]. Note that the circuit of Fig. 3 is the ring

Now we demonstrate the method on a hyperchaotic elec-
trical circuit. This constitutes a stringent test of the control
method since the system posseses more than one positive
Lyapunov exponent, and so more than one unstable eigendi-

rection has to be reigned in by thresholding a single variable.
In particular, we consider the realization of four coupled
nonlinear (rescaledl ordinary differential equations of the
form
5(1=(k—2)X1—X2—G(X1—X3), (5)
Xo=(K—=1)X1 =Xz, (6)
(b)
(d)

X3= =X+ G(X1—X3), (7)

X4= BX3, 8
where
G(X3—X3) = 3b[|X;—X3— 1|+ (X3 =Xz~ 1)]

with k=3.85,b=288, andB=18[11]. The circuit realization

of the above is displayed in Fig. 5, with component values

[L=18 mH,C,=68 nF,R=1.8 k(), C=68 nF,R;=2.8 K,

R,=1 k), andD;=1IN4148]. Figure 6a) displays the(un-
FIG. 4. Attractors in the/,-V, plane, corresponding to they ~ controlled hyperchaotic attractor resulting from this circuit,

plane of Egs(2)—(4). (a) Uncontrolled chaotic attractgupper left ~ and it is characterized by two maximal positive Lyapunov

box); (b) fixed point obtained when* =1.8 V (upper right box ~ €Xponents\;=0.13 and\,=0.05.

(c) period 2 cycle obtained whext =2.7 V (lower left box; and Again we implement gpartial thresholding on variable

(d) period 4 cycle obtained whext =2.71 V (lower right box. X3: wheneverxs>x* in the systemG(x;—X3) in Eq. (5)

()
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becomes G(x;—x*), i.e.,, we have x;=(k—2)x;—x, variable to be thresholded. A further advantage of the thresh-
—G(x;—x*), while Egs.(6)—(8) are unchanged. Whexy  olding method is that exact analytical results are available for
<x*, there is no action at all. A precision clipping circ[8] thresholding 1D chaotic map$§], and these indicate a theo-
as depicted in the dotted box in Fig. 5 is employed for theretical basis for the success of the method.

above scheme, which is even simpler to implement than
thresholding«s throughout the system. We have chosen com-
ponent values for the control circuit to bgopamp 4
=uA741, diode D)=IN4148 or IN34A, series resistor
Rs=1kQ and threshold reference voltag®, which sets >
the x*].

Both our experiments and our numerical simulations
(which are in complete agreemegrghow that this scheme =
successfully yields regular stable cycles under a very wide
range of thresholds. A representative example with threshold -2
set at 0 V is displayed in Fig.(B), which shows the con-
trolled cycle in theV,;—V, plane, which corresponds to the
rescaledk; — x5 plane of Eqs(5)—(8).

So it is evident that aingle thresholded variable has the
ability to clip the full four-dimensional hyperchaotic system v
to regular dynamical behavio(see Figs. 7 and 8 for some
examples of the geometries of the controlled ojbihus, @)
the period and geometry of the controlled states can be easily _
varied by settingx* in different windows. For instance, ERPANAUL A L PN
thresholding at O V yields a 1 T attractwith respect to the 0.1 — -
X4 variable, while thresholding at 0.3 V yields period 3 T, - -
0.32 V yields period 8 T, 0.33 V yields period 5 T, and 0.35 B 7
V yields period 13 T. i 7

Note that this technique has a certain similarity with im- o
pulse methodg13], in that they are both stroboscopic in
operation and act only on state variables, not on parameters. L 4
The difference lies primarily in that thresholding acisly - .
when the system is above threshold and thus can be very - 5
infrequent. Impulse methods, on the other hand, act at fixed -0.1 — n
intervals. Further, the control action here is a simple resetting Y T
of one variable, while the periodic pulse method involves an 4 -3 _¥ 0 1
additive (negative or positiveor multiplicative pulse to one Y
or more variables. It also appears that pulse methods need to )
implement more controlling action than thresholding. For in-
stance, in the example in R¢fL4] a three-dimensiondBD) FIG. 6. () Uncontrolled hyperchaotic attractdiy) controlled
system needs pulsing on two variables for control, while herettractor for threshold 0 V, in the V;-V, plane, corresponding to
even a four-dimensional hyperchaotic system needs only onge x,-x; plane of Eqs(5)—(8).
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FIG. 7. Controlled attractors in
thex;-x3 plane, obtained from the
hyperchaotic system by threshold-
ing thex; variable in Eq.(5) with
threshold values(i) x* =0.1, (ii)
x*=0.2, (ii) x*=0.3, (iv) x*
=0.7, (v) x*=0.8, and(vi) x*
=1.0.

FIG. 8. Controlled attractors in
thex;-x3 plane, obtained from the
hyperchaotic system by threshold-
ing thex, variable in Eq(5), with
threshold values(i) x*=1.2, (ii)
x*=1.5, (i) x*=1.7, (iv) x*
=2.0, (v) x*=2.5, and(vi) x*
=2.84.
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Lastly, note a few limitations of this method. In most range of temporal patterns which can be clipped to many
systems, very high-order periods are usually obtained in nadifferent behaviors.
row wonws of threshold values. So these targets are quite V. CONCLUSIONS
susceptible to noise, and consequently they are harder to ob-
tain, as one needs very accurate threshold level determing_-‘

tion. Also, high thresholds acting .at the edges .Of attractor ave applied it successfully to obtain a wide range of regular
are less robusjt and more susceptlble' to fluctuatlpns. behaviors. The method involves no adjustment of param-

Further, while threshold control will always yield some gters but merely the manipulation afiestate variable, even
regular orbit, it is not clear at the outset the full range ofj, hyperchaotic systems possessing more than one unstable
dynamic behaviors that can be obtained by thresholding. Sgjgendirection. A significant motivation in verifying the effi-
one needs an initial exploratory run over threshold parametegacy of this strategy in experiments was the possible appli-
space to map out the dynamic possibilities for differentcations of such a scheme to technical applications such as
thresholds. Such a run clearly lays out the scope of thehaos computin§12] and communicationgl5]. Such appli-
threshold mechanism in a specific system. The more comeations require swift control with no run time computations,
plex is the time series of a system, the greater is the diversitiye., a nonfeedback control which can be employed as a
of controlled orbits, e.g., in the hyperchaotic example abovelook-up table[16]. This is exactly what thresholding offers.
the variety of orbits that may be obtained is very wide in-Further, the controller is very simple and flexible, and this
deed. As noted before, chaos, especially hyperchaos, is pdias clear cost benefits in any attempts to exploit the richness
ticularly interesting in this context, as it possesses a riclof chaos.

In summary, it is clearly evident from these experiments
at the technique is powerful, efficient, and robust, and we
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