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Quantum games of asymmetric information
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We investigate quantum games in which the information is asymmetrically distributed among the players
and find that the possibility of the quantum game outperforming its classical counterpart depends strongly on
not only the entanglement but also the informational asymmetry. What is more interesting, when the informa-
tion distribution is asymmetric, is that the contradictive impact of the quantum entanglement on the profits is
observed, which is not reported in quantum games of symmetric information.
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[. INTRODUCTION information, the “interaction” between the quantum en-
tanglement and the informational asymmetry creates interest-
The field of information and computation has experiencedng properties of the game. Due to the presence of informa-
a fundamental innovation since the last decades of the tweriional asymmetry, the quantum entanglement has
tieth century through the combination with the theory of contradictory effects: on the one hand, it promotes coopera-
quantum physics. The new-born theory of quantum information and potentially increases the profits but on the other
tion and computation opens a broad field of potential appli’and, it potentially decreases the profits at the same time.
cations[1]. Its recent application to the theory of games ex-Whether the quantum game outperforms its classical coun-
tends the classical game thed@j, which is in fact one of terpart depends strongly on not only the quantum entangle-
the cornerstones of modern economics, into the quantum dépent but also the informational asymmetry.
main. It has been shown that quantum games may have great
advantages over their classical counterpg8tsl0. Many of Il. CLASSICAL COURNOT'’S DUOPOLY OF
the current works focus on games in which the players have ASYMMETRIC INFORMATION
finite number of classical strategies and/or the information is ) )
symmetrically distributed among the players. Games with We now briefly recall the classical Cournot's Duopoly
continuous set of strategies and those of asymmetric infor-12] Of asymmetric information. In a simple scenario, firm 1
mation, which represent much realistic significafitg], es- and firm 2 simultaneously choose quantitistrategies d,
pecially in market situations in economics, are not givendnd dz, respectively, of a homogeneous product. Lt
much attention. However, the quantization of these games Y1+ 02 be the total quantity and the market price be
deserves thorough investigation and interesting results could
be obtained. B(O) a—Q for Q=a !
The investigations on quantum games might provide new Q)= 0 for Q>a. @
insights into the field of economics research, as it does in the
fields of computation, communications, and others. There argye denote the unit cost of firms 1 and 2 by and c,,
several reasons why quantizing games that could be applia@spectively, withc;<a (j=1,2). Then, the profit for firnj
in economics may be interesting. First, market situationgg
could be, in their nature, regarded as games; their quantiza-
tion may be of the same interests as quantizing gaps _ u;(d5,92) = [ P(Q)—¢;], 2)
Second, in any market situation, information and communi-

cation are of utmost importance. However, as we live in gyitp j=1,2. In the case of asymmetric information, firm 1
quantum world, it is legitimate to think of information as yyes not clearly know what, (firm 2’s unit cos} is, it only
quantum information and communication may also need tQqvs thatc,= ¢, with probability # andc,=c, with prob-
be thought of as quantum communicatiai least in the near ability 1— 6 (c>c,). Yet, firm 2 knows with certainty the
future) [1]. Therefore, it might be interesting to investigate |, it cost of its productc(z), as well as that of firm 1'sd;).
the quantization of market situations as games and intereslt_—et q%,, andg?, be the quantities of firm 2 whezy=cy; and

ing quantum features might be explored. -~ . * . ,
In this paper, we investigate the quantum form of a par—cz_CL’ respectlyely, andj; be the quimtlty of f'”‘? 1 I
Co=Ch(r), then firm 2 needs to sek=q3y, to maximize

ticular game of the market situation, known as Cournot’s, (

Duopoly [12] of asymmetric information, based on the pre- IS Profit:

viously proposed physical model for continuous-variable

quantum game$6]. In the quantum game of asymmetric Uony(d7 ,82) =02[(a— g7 —d2) —Cu(y]. (©)
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Firm 1 needs to sef,=qj to maximize itsexpectedrofit:

U1(d1,054 .03 ) = 6uy(d1,054) + (1= O)us(gs,035,), @
4

where

U1(d1,92) =0gs[(a—Qg1—0z) —c4]. 5
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FIG. 1. The quantum structure of Cournot’s Duopoly.

|vac), are two vacuum states, e.g., of two single-mode elec-

Solving the three optimization problems yields the Bayesiromagnetic fields, respectively belonging to the two firms.

Nash equilibrium[2]:

2k1—k2
n=—7g
atc,—2cy (1—-60)A
*
qZH_ 3 + 6 y

. atci—2c 3 0A

4z = 3 6 (6)
where
ki=a—cq,
k,=a—[6cy+(1—0)c_],
A=cy—c,. (7)

The special instance witky =k,=k andA =0 reduces to the

original model of symmetric information, with uniqgue Nash

equilibrium

* * k
d1=42=3 (8)
and the payoffs being
k2
ui (a7 ,93) =uz(a1 ,03)= 5 (9)

However, this equilibrium fails to be the Pareto optim[8#h
which could easily be found to be

K
Qi=%=z, (10)
with
k2
U1(d1,02)=U(q3,d2) = g (11)

. QUANTUM COURNOT'S DUOPOLY OF
ASYMMETRIC INFORMATION

The quantum structure is given in Fig. 1, which is the
same as presented in RdB]. The necessity to include

J(y) andI(y)" are unitary operators, which are known to
both the firms and should be symmetric with respect to the
interchange of the two firms to guarantee a fair competition.
The initial state of the game is

|1y =3(y)|vag,|vac,. (12)

Strategic moves of firmp are associated with unitary local
operatorD j - The final state of the game is denoted by

|41)=3(1)1(D1©D,)I(y)|vag,|vag,.

It is straightforward to set the final measurement to be
corresponding to observablé§=(a/+a;)/+2 (the “posi-
tion” operatorg for firm j, where éJ-T (éj) is the creation
(annihilatior) operator of firmj’s electromagnetic field. If
the measurement result?’@, then the individual quantity is
determined b)ql:ij and hence, the profit by

13

UjQ(f)lvf)Z)zuj(’;(la;Z)y (14
where superscript Q" denotes “ quantum.” However, as
will be shown in Eq.(18), in the case we considered in the
present paper, the final state of gaje) is a tensor product

of two coherent states, respectively, belonging to the two
firms. One cannot have a deterministic measurement result of
5(j since a coherent state is not an eigenstaté(jof This
poses a problem because quantityis affected by uncer-
tainty quz=%. One possible method to reduce this uncer-
tainty is to perform appropriatequeezingoperation on the
final state before the measurement accordin&,—tts carried

out. The uncertainty of the measurement resulf(pfcould
be reduced, at the cost of increasing the uncertainty of the

measurement result éfj . In this paper, we assume the limit
case that the state is infinitely squeezed, so that the uncer-

tainty of the measurement result )3}‘ tends to zero. Conse-
quently, given a coherent state eprij’ ﬁ’j)|vac>j , the final
measurement could deterministically yietqzij’ in this
limit.

The classical Cournot’s Duopoly can be faithfully repre-
sented wherd(y)=J(y) =1 (the identity operator Set

continuous-variable quantum systems is that a continuous skt the guantum counterpart of the classical strategic space,
of distinguishablestates are necessary to represent all thevhere Pj=i(a;r—aj)/\/§ (the “momentum” operators In

possible outcomes of classical strategies, due todtben-
guishability of classical strategies. In Fig. lyag, and

this paper, we restrict ourselves to the “ minimal” extension,
i.e., we maintain the strategic space unexpan@&dqf firm
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j) while only extend the initial statéy;) to be entangled. k+ 0A+e?Tk+26A]
This minimal extension guarantees that any features of the X5 = > (21)
game not seen in the classical form could be completely due 2e”(1+2e7)

to the quantum entanglement. However, it is also possible to o ) )

find a quantum version that includes both the entangled state " the remaining part of this paper, we would like to con-

and the expanded strategic spaces. sider an iterative game in which the_ unit cost of f|r_m 2's
The choice of the entangling operator is not unique. EvefProduct is determined by the probability known by firm 1,

the requirement that for vanishing entanglement the classic&- c1 With probability 6 andc, with probability 1-6, to

game should be reproduced cannot uniquely specify this o2v0id the ambiguity and complexity caused by the specific

erator in the case presented in this paper. However, a po§hoice of firm 2s unit cost in a single game. Theerage

sible and legitimate one is profits in the iterative game are
j(‘y)=e_y(‘:’qé;_éléZ):eiV()A(llSZ'HA(ZlSl)_ (16) U:L( Y,8)= 0“?()(,{ Xon) +(1— G)U?(XI Xa1)
The initial state is exactly the two-mode squeezed vacuum _ k_z 8e’coshy (e~ 1)s
state: 8 | (3coshy+sinhy)? '
N _ o Aatat_a A _
|'7[’|> eXF{ 7(a1a2 alaZ)}|VaC>1|VaC>2: (17) U2( %S)= au(ZQH(X?I.c 'XEH)+(1_ a)u(ZQL(X;.C ’XEL)
wherey=0 is known as the squeezing parameter and can be o k2
reasonably regarded as a measure of entanglement. Detailed =uy(7y,8)+ ZS’ (22
calculation reveals that if firmj’s strategy is D i(%))
=exp(—ix;P;), then the final state is where
|¢) = expl — i (x,coshy+x,sinhy) P, }|vac A2
f> ! ? }vaos 5=0(1-6) 5=0 23)

@exp{ —i(x,coshy+x;sinhy) P, vac,. (18)

Hence, the quantities read out from the final measurementhe profits are already expressed as functiong ahds and

are are plotted in Fig. 2.
Notations defined in Eq(23) can reasonably be regarded
g, =X,coshy+Xx,sinhvy, as theamount of informational asymmetrindeed,s=0 is
attained only wher9=0, #=1, or A=0, each correspond-
g,=X,coshy+x;sinhvy. (19 ing to the case where firm 1 has the perfect information

about firm 2’s unit cost, i.e., there is no asymmetry in the
The total quantity iQ=q,+g,=e?(X;+X5) and the market information distribution. However, for fixed, sincreases as

price isP=a—e?Y(x,+X,). Therefore, profits are A increases and for fixel, sincreases a8 approaches 1/2.
) This means that the more asymmetrical the information dis-

UZ(X1,Xp) = (X1€0shy+X,sinhy)[P—c4], tribution is, the larges s. It is in this sense that we regasd
as a measure of the informational asymmetry of the game.
USh(1y(X1,X2) = (Xo€0Shy+x;sinhy)[P—Cy )], (20) We now investigate how the profits depend on the en-

tanglement and the amount of informational asymmetry. The

here, for convenience, we directly denote the strategy;by derivative ofUl andUz with respect toy is

when it isD;(x;).
Let {x} ,x3,X5, } be the Bayes-Nash equilibrium. Then, gu, du, e 2%k? 4e?
Xa=X3, IS chosen to maximizeu$ (X} .x;), and oy a ———s|. (29
x;=x¥ is chosen to maximize Au(xy,x3y) ’ y (3coshy+sinhy)
P . , oLV ) _ _
+(1—0) ur(xy,xz ). Solving the three optimization prob- g, ,ation(24) shows that there is a threshold for the amount

lems yields the Bayes-Nash equilibriu®] and the profits  J¢intormational asymmetng, =4/27. If s>
could also be obtained. For convenience and simplicity, we m ' m’

further setk;=k,=Kk. Detailed calculation gives the unique

Bayes-Nash equilibrium as %: %< , (25)
dy dy
kcoshy ) ) .
X = ™ which means the profits monotonously decreaseyas-
1+2e” creases. In this case, the quantum game is definitely inferior
to the classical game. It is also interesting to see that if
2 . — .
o _k=(1-0A+e7k-2(1-6)A] >1 we can always find that for some valuefu, will be
2 2e”(1+2e??) ’ less than zero while, remains positive. In this case, lacking
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tanh(y) 2

FIG. 2. The profits in the iterative game wikh=k, =k, with respect to tanh{ and the amount of informational asymmegjtanh(y)
monotonously mapy e[0,») into tanh¢) e[0,1)]. u, is at the left andu, at the right.

information makes firm 1 lose money in business on an av- For s<s,, U1(7,5)|«H+w>il(0,s)- andUz(y,S)Iwm

erage, yet it is beyond firm 1's means to get out of it.
In the case thas<s,,,
du,

dy

du,

—_— >
7 0, (26)

=0

y=0"

the profits increase agincreases whery is small. However,
we can findy,, satisfying

du,

_
ady

Y"¥m gy =0, (27)

Y=Ym

hence,u; andu, simultaneously reach the maximum gt
= v,. But wheny>vy,, the profits decrease.
In the limit that y— +, we have

_ k?(1—s)
u1(715)|7~>+m:T!

k?(1+s)

UZ(’va)|y~>+w:T (28)

While in the classical game=0,
_ k2
ul(O,S) = 3 ’

uy(0,8)=k? , (29)

1 s
973

Therefore, if 1/9<s<s,,, we can findy.>0 satisfying
Us(7c,8)=Us(09),

Ua(7e,8)=U5(0,9). (30)

>Uu,(0,s), the quantum game is always superior to the clas-
sical game for any>0. Fors,<s<s,,, the quantum game
is superior to the classical game forG/< vy, but inferior
for y>vy. and the profits reach the maximum @t y,,
<1v.. While for s>s,,, the quantum game is definitely in-
ferior to the classical game and the profits will get worse
when the entanglement increases. To be illustrative, we plot
firm 1's profit (divided byk?) with different settings o in
Fig. 3 in which all the above intriguing features could be
seen.

In fact, the profits in Eq(22) consist of two parts: one is
independent o$ and the other is linear with. The first part
is an increasing function of while the second is a decreas-
ing one. The combination of these two parts creates the in-
triguing features as mentioned above. However, it also im-
plies that the quantum entanglement has contradictive effects
on the game with asymmetric information: on the one hand it
potentially increases the profits but on the other hand it po-
tentially decreases it. The part independens @i Eq. (22)
can be regarded as the representation of cooperation. As the
entanglement increases, the cooperation increases and the
profits potentially increase. While the part dependens an

$=2/27

s=1/9
$=3.5/27
§=4/27

> tanh(y)

FIG. 3. TheUllk2 versus tanhy) plot with k;=k,=k. The

Thus, we find another threshold for the amount of informa-solid lines are associated with the values.ofFhe horizontal dashed

tional asymmetrys.= 1/9<s,,.

line atUl/k2=1/9 represents the classical profit.
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Eq. (22) represents the impact of the informational asymme-games given in Ref6]. We found that with the presence of
try, this impact will decrease the payoff with the presence ofinformational asymmetry, the quantum entanglement has
entanglement not only for the player who lacks informationcontradictory effects. On the one hand the quantum entangle-
but also for the one who possesses more information. ment promotes cooperation and potentially increases the
A special instance is the case wih-0 (see in Ref[6])  profits. On the other hand, due to the asymmetric distribution
in which the classical game turns back to the original one obf information, the quantum entanglement induces a decreas-
symmetric information proposed by Courrld2]. While in  ing effect not only to the player who lacks information but
the maximally entangled limit withy—+, we have also to the one who possesses more information. The com-
U;(,0)|, 4= Ua(7.,0)], . +.—k?8, which is exactly the bination of these two effects results in an intriguing variation
Pareto optimum. In this case, the initial state tends towardsf the game with respect to the measure of entanglement and
the singular limitf|x,—x)dx. It is this limiting state, first the amount of informational asymmetry.
considered by Einstein, Podolsky, and Rosen, which enables
the two firms to best cooperate and therefore, to be best
rewarded. The dilemmalike situation is thus completely re- ACKNOWLEDGMENTS

moved in this limit. ) )
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