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for rumor transmission

C. G. Shao, Z. Z. Liu, J. F. Wang, and J. Luo
Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
(Received 6 August 2002; revised manuscript received 19 May 2003; published 24 Jujy 2003

The L-state Potts model for rumor is thié-spin chain describing how a simple rumor transmittedNoy
recreant rumormongers is aggrandized. The studied rumor is represented mathematically by a simple proposi-
tion with the universal quantifier, which again is represented geometrically by a point in a proposition space.
During the transmission, such a proposition is changed with the change of the rumor, which has individual
numberN, at the beginning of the transmission. Correspondingly, the point expressing the proposition may
start from an arbitrary site at the proposition space, and then it shifts in the space. Thus, a spin sum of the Potts
model corresponds to a walk of a point in the proposition space and spin configuration’s numbers is given by
enumerating the corresponding walks. The concept of the lattice path in combinatorial mathematics is intro-
duced and the exact series representation of the configuration’s numbers is given. The partition function
exhibits the transition of the chain and critical equivalent inverse tempergtuie determined. Moreover,
there is a crossover value of the individual numbégy. The model has a first-order transition whislg
<Ngo and a second-order one whBig>Ng.
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[. INTRODUCTION and it is changed by rumormongers. Most studies about ru-
mor were collected to analyze how a rumor is transferred
For a long time, many interesting physical rules have beemlong distinct channel20,21]. However, the dramatic char-
found by using spin models, though they are usually veryacteristic of rumor during transmission is its incessant
simplistic[1]. Nowadays, the experience accumulated over &hange in semantics. Our model studies just the semantic
long time in studying spin models is transferred to probe intachange of the simplest rumor transmitted by a group of ru-
various complexity phenomena in broader fields includingmormongers along a channel without any bifurcation. Thus,
biology, economics, sociology, etf2,3]. One of these at- each spin in this model is used to represent how a recreant
tempts is the Potts chain for rumiat|, by which we describe rumormonger transmits and changes a rumor, but not the
how a simple rumor is aggrandized when it is transferedransmitted rumor itself. In semantics, each simplest rumor
successively by a group of recreant rumormongers. possesses at least: three semantic components the described
In all studies of spin models, finding exact solutions issubject, the action of the subject, and the individual number
still one of the main goals. Though it is very hard, exactinvolved in the subject. For quantitatively describing a ru-
solutions of a few integrable models of spins were still given,mor, the mathematical logi@2] was used in the Ref4]. A
in which the celebrated one is the Onsager’s solution of theumor is abstracted as a simple proposition with the universal
two-dimensional Ising mode[5]. The various integrable quantifier that?,, ;= (x),F (x) according to the mathematic
forms of Potts models have been studied for a long timdogic [4,22]. In our model, there ark predicates describing
[6—12. At present, part of the interest in the study is con-different actions andF,(x) is thelth predicate in the group.
centrated on the exact solutions of nonintegrable model# rumor is changed during transmission, so the proposition
[13-16. The Potts chain for rumor is one of nonintegrableexpressing the rumor is different when a different rumor-
statistical models because the addition for its spins does nehonger receives it. Therefore, numbendm of the propo-
obey the associative law. The approximate series representsition can be changed during the rumor’s transmission,
tion of the spin-configuration number was given for thiswhich express the semantic change of the transmitted rumor.
model by us[4], but the exact series representation will be Moreover, each recreant rumormonger is supposed to be able
given in this paper. Crossover is a complex behavior relevartb change individual numben with only one unit, by adding
to the transition appearing in some spin moddlg]; it is  one or subtracting one, according to his or her own opinion.
affirmed usually through some calculation by approximate This paper consists of four sections and one appendix. In
methods or through the rigorous argumentation by the renoiSec. Il, the main conception of the Potts chain for rumor and
malization group. Obviously, it is impossible to carry out thethe concerned mathematical laws are reviewed simply. In
grain coarse, the key step in the renormalization transformaSec. lll, the case oNy=1 will be studied.N; is the indi-
tion, in any nonintegrable system. So, we have to recur to thgidual number of an initial rumor. The configuration number
exact solution for affirming the crossover in the Potts modeis written as the power series bfaccording to the compu-
for rumor. tational methods of lattice paths in the combinatorics
Rumor is the collective behavior in a soci¢fy8,19. The  [23,24. The partition function becomes explicit as a series
primary character of all rumors is their indeterminacy. A ru-while configuration number is determined exactly. The sys-
mor can spread along arbitrary simple or complex networkstem has a first-order transition at critical inverse temperature
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Bc.=In(L—1). Correspondingly, the rumor will not be ag- N 1 for k=r N

grandized wherB< B3, or be aggrandized certainly wheh 5( > Sq:r) :{O for ket >, Sq=Mey.

> .. In Sec. IV, the partition function is calculated fbi, a-t At (2.1.2

>1. Crossover poinilgo=N(L —2)/L is determined exactly o

for a rumor channel o rumormongers. The result shows  spin summ :|zg:13q| determines individual numbers of
that the SyStem has a nonzero transition latent heat th'he proposition received by the |ast rumormonger, Whose av-

No<Noo, but the latent heat becomes zero wey>Noo.  grage value is supposed B Ratio M/N shows how the
Namely, there is the crossover phenomenon from the fII’S[(-

" L umor is aggrandized, which reflects the global behavior of
order transition to the second-order one when individual he society.
numberN, strides over crossover poiity,. In the Appen-
dix, the integer plane and various lattice paths on the plane
are defined according to the combinatorics. The one to one
correspondence between a lattice path and a walk on the As in common, the partition function of this model can be
proposition space is determined. Thus, the configuratiomvritten as
number is given by enumerating corresponding lattice paths
through the mother functiofgenerating function

B. Partition function

N
Q: E BM[(L_l)efM/a_’_eyM/a-]’ (22])
M=0
Il. SIMPLE REVIEW OF THE MODEL

in which B,, is the configuration number corresponding to

A. Model . . . L
ode spin sums 1Sq=Me, . Equation(2.2.D) is not the explicit

_In our model, the studied rumor is a simple propositionformula because the unknovy, is pending in it. To get the
with a universal quantifier tha®n, | = (X)mF () [4]. Thereis  explicit series representation of the partition function, we
a group ofL predicates in the model called predicate grouphave to count ouBy, exactly. Coefficient. —1 of factor
{L}, in which thelth predicate is=|(x). Individual number  ¢=M/7 s introduced becausk—1 predicates in predicate
m of the transmitted proposition is always a non-negativegroup{L} are different from the one asserted by social guide
integer. The change of a rumor is expressed by changlngr(x)_
numberm and predicaté= (x). Each rumormonger has his | addition, it is worth mentioning tha¥l will be odd if N
own claim about the concerned event, which is represented odd, otherwise, it will be even Xl is even. Not missing its
by some predicateF (x) in group {L}. ComposingL  yniversality, we can definsi=2n. It will certainly makeM
branchegsemiaxesto form a skeleton, we get the proposi- even, which can be replaced byn2(m=1,2, ... n). Ac-

tion spaceFig. 2 in Ref.[4]). Each branch of the space is a cordingly, factore M@ in Eq. (2.2.) can be replaced by
semiaxis of the skeleton which has unit vecer (1<l e 2mo

<L). Thus, each propositiof,,; can be represented by
positive integerm on the Ith semiaxis of the skeleton as
Pmi=mg. All rumormongers on a rumor channel are as-
sumed as recreant ones, who only add one to the individual The key to getting the explicit expression for partition
number of the transmitted proposition according to their owrfunctionQ is counting the corresponding configuration num-
opinions, or subtract one from the individual number. bersB,, according to spin sumsg_,S,. Because the addi-
Such a rumor channel is proved to be equivalent to dion of spins has neither the associative law nor the commu-
L-state spin chaing, ....S;, ...Sy) such that each spin tative law, we have to avoid the direct algebra calculation
S, corresponds to one rumormonger. Theomponents of ~and appeal to the geometrical method to get the surl of
each spin are unit vectors of semiaxes in the proposition spins. If the sum of spins ismg, the sum ofn+1 spins
space, respectively. The law of the spin’s addition was showmay be (+1)e or (m—1)e, according to the addition
in Ref. [4]. Obviously, the addition has neither the associalaw of spins. Summsg is a point(proposition in the propo-
tive law nor the commutative law, which has never appearegition space. Similarly, o+ 1)e, and (m—1)e, both are
in any one of fundamental physical laws. Rumor’s transmis{oints (proposition$ in the space. The addition of spins pre-
sion is affected by the global properties of a society such ascribes the shift of a point on the proposition space with a
the social guide and social acceptability degree. In outnit step and the addition &f spins corresponds to &fstep
model, acceptability exponent of a proposition and guide Wwalk in the proposition space.
exponenty are introduced and probability of sequence Numberm also expresses the individual number of the
(S1,...S¢,...S\) is transmitted proposition. When the individual number of the
initial rumor isNy= 1, the first step in the walk, correspond-
P(St, . Sy, - SN) ing to the spin sum, starts from original point O, and arrives
N at positionMe, at last. But, for cas®ly# 1, the first step of
=Q—1exp| —{1—5( Zl Sy, r
=

C. Addition of spins and walks on proposition space

the walk starts from poinNge;, and also arrives at position

Me, at last.

2.1.1 The translation probability ofig shifting to (n+1)e, is
o written asP(n,n+1) and the translation probability from

Moreover, we have also defined (n+1)e tong is P(n+1,n). For a specified numbelg, is

(y+1)|Mlo
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the unit vector of one of the semiaxes, and a# (k+#1) are n-m

unit vectors of the rest of the—1 semiaxes. The addition B=An(L—1)""M=> f(L—1)"""

law determines that adding to ne removesneg to point k=0

(n+1)g, but adding any one of the restbf-1 e, removes n-m

ne to point (n—1)e,. So, the random walk on the proposi- = kEO ApLéL—1)"m (3.2)

tion space corresponding to the addition of spins in a chain

has the following translation probability: In the right side of the above equation, all factors relevant to

P(n,n+1)=1L for n=0, L have been separated off and all the remaining fadkqrg

are independent of numbér. So, we can adopt the most

convenient value of for counting out factoA, ,, which is

L=2. The above characteristic of configuration numBgr

provides the simplest counting scheme for us as follows.
ForL=2, Eq.(3.2.] is simplified as

P(n,n—1)=(L—-1)/L for n=1. (2.3.2

[l. PARTITION FUNCTION AND FIRST-ORDER n-m n-m )
TRANSITION FOR Ny=1 Bm=An= kzo fr= go Am k2" (3.2.2

A. Series expression of partition function

Namely, configuration numbeB,,, can be expressed as the
ower series of 2, in whiclAp,  is the coefficient ofkth

gower of 2. Therefore, it is quite convenient that we count

configuration numbeB,, for L=2 first, and then write it as

n the power series of 2. Numbéy,, , is given thereby as co-

Q= 2 B, [(L—1)e28m74g2Bm] (3.1.1) efficients of the power series. Obviously, configuration num-

m=0 ber B,, for an arbitraryL is given by the counted, , ac-
cording to Eq.(3.2.1).

Probability sum and configuration numbdf:we take 8
= vyl o as the equivalent temperature, the probability sum o
the model, the partition function, is

whereB,, is the configuration number corresponding to spin C. Series expression of partition function
sumEg":lSq:Zmer, and the social guide prefersh predi-

cate Random walk and lattice patfhe proposition space for

L=2 has two branches, each of which is a real semiaxis, the
positive semiaxis and the negative semiaxis. So, such a space
is just a real axis. Leg; be the unit vector of the positive
semiaxis ane, be that of the negative axis. Imzteps of a

It is shown in Sec. Il that adding a spin to a spin sumwalk shifting from original point O to ehe;, there are cer-
successively corresponds to a proposition’s walk in theainly n+m steps shifting along the direction & andn

B. Spin sum and random walk

proposition space with translation probabili{8.3.1). For the ~ —m steps shifts along the direction ef. A simple calcula-
spin sum studied in the present problem, the walk starts offion shows that numbeA,, is just a combination number
from the original point and movesn2steps to Pne in the on M =2NY[(n—m)!(n+m)!].

proposition space with semiaxes. It is very difficult to expand combination numb&j, ™

In 2n steps of a walk, there are+m steps along the straight away as the power series of 2, for counting factor
direction of semiaxegeach step is the shift frorke to (k A . So, we will adopt a convenient way to count number
+1)&] and n—m steps along the opposite directipthe A, by enumerating lattice paths according to the method
shift from (k+1)e, to ke]. The probability that a step along given in the Appendix. An integer plane is the plane on
the direction opposite to semiaxes appeais-isl times the  which the Cartesian coordinate is established. Neighbor
probability that a step appears along the direction of semipoints with integer coordinates on integer plane can be
axes according to translation probabilit.3.1. Therefore, linked by a line segment, and a way linked by rightward and
factor (L—1)"" ™ will appear in configuration numbes,,,, upward line segments is called a lattice path. The equiva-
and numbemB,, should be written a&\,(L—1)""™ More- lence between a walk on the real axis and a lattice path on
over, a h-step walk may return to the original point over the integer plane has been proved in the Appendix. In terms
and over again in the midway, and then leave the originabf this method, each walk shifting from original point 0 to
point anew. It can return to the original point at the mest 2me, is just a lattice path from (0,0) taad m,n—m) on the
—m times. Each step, starting off from the original point, integer plane ané,,, must be the total number of such lattice
can walk arbitrarily along one of the semiaxes. Lef, be a  paths.
positive integer, then there arg walks returning to the In an integer plane, the points with integer coordinates on
original point midwayk times in the totaB,, walks. Then, straight liney=x correspond to the original point of the real
numberA,, is the sum of all numberf, and eaclf, contains axis. Each lattice path from (0,0) ta ¢ m,n—m) may cross
factor L¥. Lastly, configuration numbeB,, can be written as  straight liney=x several timegas in Fig. 1. This lattice
follows: path corresponds to the 2n-step walk on the real axis from
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y yr= 13.9 The mother function of the lattice paths crossing hrex k
(13.9) times is given as
V1—4x

(1—\/1—4xy)kT_;. (333

A Determining A,. Using equations

0,0)
— /1= ko~

FIG. 1. The Cartesean plane and a path fi@9) to (13,9 on w _ E cs 2k(xy)s+k (3.3.9

it. One step on the plane increasingkiaxis corresponds to one step J1—4xy =t

forward in proposition space, and one step increasing Bxis
corresponds to one step backward. This path on the plane can %(?.'d
represented by a sequencegxxyyyyxxxyxxyxyyxxxXhe path

has five verticegnot including the original pointon liney=x.

ﬂ: % (CP —4cP7! )xPy9, (3.3.5
the original point to 2n. If f, is the number of lattice paths 1-X—y plgzo P9 p*a-2 ’
crossing the straight linktimes midway, the sum df, gives
Am andAp, i according to the following equation we can expand Eq3.3.3 as the power series of 2 as fol-
n—-m n—-m lows:
Ap=2 fi= > ALk (3.3.1)
k=0 k=0

— _k — _k_
2 2 (Chig b 4CE G 5 - 2)
Decomposing lattice patff.he conceptions of one-respect ) ) ’ .
lattice path and one-direction lattice path are defined in the X Ce1 k2K (xy)STHxPmskyams7k, (3.3.6
Appendix. Each lattice path crossing straight lipex k

times (except for the starting pointan be decomposed as whereC is defined to be zero im<0. So, the number of
two segments linked end to end, the first of whiclkisne-  |attice paths from (0,0) to (+m,n—m), which cross

respect lattice paths and the second is a one-direction latticgraight liney=x k times (except for the starting pointis
path. The combinatorics provides the method for enumeraie coefficient of termx*™y"~™ as follows:
ing lattice paths through the mother function. The mother

function of the above lattice paths is the product of mother n—m—k
functions of the two segments of lattice paths linked. fu= > (CO M Sk—ach m s koS, 2k,
Through the mother function, we can coudptexpediently. $=0

Mother function of the first section of lattice pathEhe (3.3.7

first section of each lattice path ksone-respect lattice paths,

whose mother function is thieth power of mother function Inserting the above equation into E@.2.1), taking index
of one-respect lattice paths. The mother function of onetransformatiork—k, ands+k—s, we get the series expres-
respect lattice paths is given in the Appendix as 1sion ofA, as

—+/1—4xy. So, the mother function d one-respect lattice

paths is (1 1—4xy)X. n-m s
Mother function of the second section of lattice pafftse An= EO kEO (Chm s—ach M s hes k2,
S= =

second section of each lattice path is a one-direction lattice
path. Letd(x,y) be the mother function. Each lattice path
starting from original point (0,0) on the integer plane is for (L=2). (3.3.8
formed by linking several one-respect lattice paths and a

one-direction lattice path. All lattice paths starting from the  Case of I>2. For the case of >2, numberA,, is
original point on the integer plane form s&‘, whose

mother function is (:x—y) 1, as shown in the Appendix. -

n—-m s
All lattice paths formed by linking several one-respect lattice A= 2 2 ( 2;,'"2;5—4C2;T2;§}1)C§;kkLk.
paths belong to subs@t of S*, whose mother function is s=0 k=0
given in the Appendix as (+4xy) Y2 (3.39

The mother function of number of lattice paths$ is

-1/2
also the product of (1 4xy andd(x,y). So, we have D. Analytical representation of partition function

According to the definition in Eq:3.1.1), we get the exact
d _ Vl-4xy series expression of the partition function from the exact se-
(x,y)—T. 3.3.2 . . . . .
1-x-y ries expression of the configuration number as follows:
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n n—-—m s — —
:mE:O 520 IZO (02;@2;3_402;“12;521) hy(x,t)=(1—x—1)In Tx_1 +(1—x+t)In T xrt
k n—-m —2B8m/ 28m L2
X CS K LML —1)""M[(L—1)e 27+ e2hM], +2(1=x)In2+xIn — (346
(3.4.0
We study the rumor transmission along an extremely long N€ derivative ofhg(x,t) with respect tax is

channel, namely, the casemf- %, which corresponds to the h 2 2
thermodynamic limit for a thermodynamic system. The ther- Ihs(X, t) L (1= (3.4.7

modynamic study shows that property of a system is com- x 4(|- 1) (1—x)2—t2'
pletely determined by the maximum term in the partition

function. Similarly, property of rumor transmission will be The above equation has zerosxat=1+Lt/(L—2). Obvi-

provided exactly by the asymptotic analytic representation obusly, the first zerax;=1+Lt/(L—2) is out of regionx

the partition function fom—o. Consequently, we can use [0,1], so we consider only,=1—Lt/(L—2), the second
various methods of the asymptotic analysis here, involvingzero. The second zero can vary with paramétesnd the
Stirling’s formula and Laplace’s theorem, etc. The samevalue oft determines where exponemj(x,t) has the maxi-
technique is used to study the equivalence between canonicaum.

and micro canonical ensembles in REZ5]. Similarly, the When 0<t<(L—2)/L, X, is within region[0,1—t] and

term with factor ( —1)e~2#™7 in Eq. (3.4.) can be can- hy(x,t) has extremehy(x,t)=2 InL—(1+t)in(L—1) at Xs

celled. Therefore, the following part of the partition function =1—Lt/(L—2). According to Laplace’s formula, we get
will completely determine the statistical property of the

chain 1-t
J’ S(Xt nhS(xt)dX

n n-m s
Oy M- 4G, et
mE= Z ZO( 2n—2s 2n-25-2") [L2n L—2 0=t (L=2) (3.4.8
<t< . 4.
€325 LA (L~ 1) T2, (3.42 (LT

Sum for k Settings—o, k/s=x, and using Stirling’s When L—2)/L<t<1, [dhg(x,t)]/dx is negative eter-

formula and Laplace’s formula, we get nally. So, hy(x,t) has maximumhg(0;t)=In4—(1—-t)in(1
< —t)—(1+t)In(1+t) at end pointx=0 of the region. The
S s ke LZ \® 2L 34 Laplace’s formula can be used to finish the integral as fol-
e i WIS 343 ows:
Sum for s Settingn—c, andm/n=t, ands/n=x, we 1-t nhe(x.t)
obtain f (X t)e s dx
5 e s S S
n—=2s n—2s— —_ —
L-1) L-1 WL_l L2(1—t?)
L n(fi-t
T1\/:] fS(X,t)e”hs(X't)dX, (3.4.4 « 22n (L-2) <1
mJo (1—t)"A-9(1+1)n@+D’ L '
with (3.4.9
1-x t? 345 Sum for m We insert Eqs(3.4.8 and (3.4.9 into Eq.

fs = [(1—x)2—12 (1—-x)? (3.4.2 and transform the sum fan into an integral oft for
regions G<t<(L—2)/L and L —2)/L<t<1, respectively.
and The partition function is written a®~Q,+ Q,, where

(L=2)/L L-2
Q.= fo LGL_lnen[zﬁt—(1+t)|n(L—1)—t|n(L—1)+|n(L—1)]dt, (3.4.10

and
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Q fl 22n L n 2 I
= \/ 1] In
2ot L=1 N z(1-13)

Two integrals will be finished with the Laplace’s theorem. Within redior(L —2)/L], we get

-1
4L-1) enl2At=(1=in(1-Y = (L+)n(L+) ~th(L-1)+I(L-D]g¢ (3.4.17

(1—t?)L?

InL when B<In(L—-1)
im 2 L2 (3.4.12
im——= - 4.
e 2N InL+——[B=In(L-1)] when g>In(L—1).
Within region[ (L —2)/L,1],
INQ, |InL L_2[| (L—1)—B] when g<In(L—1)
n nL———I In(L—1)— -
lim ——2 = L (3.4.13
no 2N 28—In(L—1)
—B+In(L—1)+In(e?? +1) when B>In(L—1).
E. First-order transition
Using Egs.(3.4.12 and(3.4.13, we get
i InQ i InQ, i InQ, [InL when B<In(L—1) 351
im ——=max lim——,lim——|= (L — 5.
1w 2N f. 2n T 2n —B+In(L—1)+In(e*#~"t"D1+1) when B>In(L—1).

Free energy per spifi= — Iimnﬁxln Q/2p8n is continuous at  peratureB. The chain has a first-order transition appearing at
the critical pointB.=In(L—1). However, its first-order de- critical equivalent inverse temperatuge when the numger
rivative, namely, the entropy per spin, is discontinuous at thi®f spin’s components id >2. Average magnetizatiom
critical point. Because the increase of the entropy per spin athows how the rumor is aggrandized. For the chain \With
the critical point is =2n spins, we can haven/n >0 only when equivalent
L_2 temperature> 3., which means the social guide inten-
As=8|g n-1)-0— S| gmL-1)r0=——IN(L—1), sively affects the rumor transmission and the rumor is abso-

L (35.2 lutely aggrandized. Otherwise, we'll get/n=0 when B

~ < B, which means the rumor has not been aggrandized. The

the system has a first-order transition at critical pgiat ~ chain has transition latent helat (L —2)/L at critical point
=In(L—1). The transition latent heat per spin s (L Be- It shows that the exaggeration ratio of the rumor ac-
—2)/L. Average magnetizatiom per spin of the chain sat- quires a gap aB;.
isfies equation

o 1.00
i m i 10InQ
im —=Ilim —
14
n—oo n—oo B 0-75 |
0 when B<In(L—1)
28—In(L—1)_
e 1 g L
——— when g>In(L-1). ig 050
e2B-In(L-1)4 1 L
(L-2)L
(3.5.3 025}
Above result indicates the rumor is absolutely aggrandized
when 8> 8. . Figure 2 showsn/n varies with3 for L=3. 0.00 . . . . .
As a section conclusion, we have obtained the exact so- 0 g=inL-1) 1 B 2 3
lution of the Potts chain for the rumor with initial individual
numberNy=1. Acceptability exponentr of a proposition FIG. 2. m/n varies with 8 for L=3. The system has a first-

and guide exponeny determine the statistical property of order transition at critical poing.=In(L—1), which means that the
the rumor’s transmission through equivalent inverse temrumor is absolutely aggrandized whgi> 3. .
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IV. CROSSOVER BETWEEN TRANSITIONS ALONG another is the walk starting from the original point, which
WITH INCREASING N, differs from that which appeared in the foregoing problem
only in its length.
The proposition space fdr=2 is the real axis such that
In this section, the more general form of rumor transmit-e, is the unit vector of the positive axis areg is the unit
ted by recreant rumormongers will be studied, in which theyector of the negative axis. We take=2 andr=1 for the
initial proposition isNge; with No=1. Along a rumor chan-  simplification. In each walk of & steps, there ar@+m
nel, if the individual number received by the last oneNn +2no steps a|ong the same direction qsandn_ m—ZnO
rumormongers becomed, the exaggeration ratio of the ru- steps along the same direction @swith n=m+2n,. Let
mor is defined as1/No. Thus, the average exaggeration ra- A be the total number of such walks. We have
tio of the rumor along various channelshi¥ N,. After being
transmitted byN rumormongers, such a proposition becomes ~ , _ sn-m-2no_ (2n)!
Noej+2g=18q:Mek. If the social guide prefersth predi- moT2n (n—m—=2ng)! (n+m+2ny)! -
cate, spin sunNoe;+={_,S;=Me, will have a larger prob- (4.3.9
ability than the other surloe; +Sq_,S,=Mey (k#r).
Let Ng=2ng, N=2n, andM=2(ng+m), (m>—np) as
done in the preceding section, the partition function is

A. Series form of partition function

It is easily found that each walk fromnge; to 2(n
+m)e,,(r#j), on the proposition space corresponds to a
lattice path from point (0)2)) to point (2ng+n+m,n

n—2ng —m) on the integer plane. Because the start point and end
Q= 2 B, [(L—1)e 2BMo+mlyy g2Bno+m)] point are assumed to seat at different semigxies condi-
m=""No tion), such a walk goes through the original point at least

(4.1.7 once. So, the corresponding lattice path crosses straight line
x=Yy at least once.

Let (ny,n;) be the first crossing of such a lattice path
with straight linex=y. As shown above, each studied walk
can be separated into two sections and the corresponding
B. Spin sum and random walk lattice path can also be separated into two sections. The first

According to the addition of spins, adding a spin in theis a lattice path from (0s%) to (ny,n;) and the second is
spin sum successively corresponds to a point's walk on théhe lattice path fromrf;,n;) to (2ng+n+m,n—m) . In
proposition space. According to the spin sum in the preserﬁfountingz we make the reflection tran.sformation only for the
problem, the walk starts off fromre; and moves certain first section with respect to straight line=y, under which
steps randomly to®€,, ande; # e, . Along the same way as Point (0,21) is transformed into point (%,0) and this sec-
for caseNy=1, we count configuration numb@,, as fol-  tion is transformed into a lattice path from r{g0) to
lows. (nq,ny); the whole path is transformed into a lattice path

In 2n steps of each walk fromre; to 2(ng+m)e, on  from (2n,,0) to (2no+n+m,n—m). The reflection is a one
the proposition space, there are certaimlym steps walking  to one transformation, s, also can be regarded as the total
along the direction of semiaxes amd-m steps along the number of all lattice paths from ®,0) to (2ng+n+m,n
opposite direction. Each step along the direction opposite to-M), Which crosses straight ling=x midways at least
semiaxes has —1 choices, soB,, surely contains factor once. We will adopt this form of lattice paths in counting
(L—1)""™ At one time, during movement, a proposition NUMberA,.
may start from the original poirk times (k<n—m-2n,). Separating lattice pathSimilarly, we separate such a lat-
So, we have tice path into two sections in the following way. The first

section starts from point (&,0) and ends at the first cross-
ing on straight liney=x. The second section starts from
Bn=An(L—1)"" "= kZO AmiLK(L=1)"™, straight liney=x and ends at point (&+n-+m,n—m),
N 4.2.1) which includesk one-respect lattice paths and a one-direction
o lattice path. The mother function for the whole lattice paths
is the product of mother functions for the two sections of the
lattice paths, which will be determined, respectively.

Mother function of first section of lattice path&n arbi-
trary lattice path from (8,,0) to straight liney=x can be
separated into a lattice path fromr(20) to the first crossing

Factor A, « will be given through enumerating the ran- on straight liney=x, which is just the above-mentioned first
dom walks on the real axis, as done in the preceding sectiosection of lattice paths, and several one-respect lattice paths.
The main difference between the present problem and th8uch a lattice path can cross straight linrex midway sev-
foregoing one wittNy=1 is their different starting points on eral times. The mother function for the first section of lattice
real axis. Therefore, each walk in the present problem ipaths is the quotient of mother functions for the lattice paths
certainly linked by two parts. One part is the walk startingfrom (2n,,0) to straight liney=x and that of several one-
from point Nge; to the original point of the real axis and respect lattice paths.

whereB,, is the configuration number corresponding to spin
sum Noe;+ 351, S,=2me .

n—m-2ng

whereAn \ is a factor independent &f, which can be given
by considering case=2.

C. Series expression of partition function
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Consider the lattice paths starting fromn(0) and end- (1—\1—4xy)2notk \[1—4xy
ing at point (y+k,2ng+k) on straight liney=x. Each  g(X,y)=f1(X,y)f2(x,y)= ™ T—x—v '
lattice path from (2,,0) to (2no+k,2n,+k) has y+ 2k (2x)7 Xy
steps in which, By+k steps are upward ankl steps are (4.3.7
rightward. Sop§n0+2k is the number of the lattice paths, and Determining A, . Using Eqs(3.3.4 and(3.3.5, we can
the mother function of these lattice paths isyite Eq.(4.3.7 askfollows

EE:OC'gnOHky"xZ”O“‘ according to that given in the appen-
dix.
Supposing =xy and using equation o(x,y)= E E (Cp+q p+q )
1 (1 V1-4t ) 2 o 432 X Cler an - 29T SHiyAr 8Tk 20 (4,39
i ot on 3.

Letn+m=p+s+k andn—m=qg+s+2n,. Then, coef-
we obtain the mother function of the lattice paths fromficient of termx™*™y"~™ in mother functiong,(x,y) is
(2n¢,0) to straight liney=x as follows

n—m-Kk—2ng
© fo= 2 (Cn—m—s—k—2n0
2 C2n caXy?notk= 3 C5n0+2ktky2”0 ¥ $=0 2n-2s-2k=2no
k=0

—4Cy S e 3 Chsion k2 (4.3.9

2n 2n—2s—2k—2n,—2
1 (1—\/1—4t) OyZnO_ 0

Vv1-4t 2t Obviously, f,=An, 2% . So, we have
(4'3'3 n—m—k—2nq
n—m—s—k—2n
A lattice path from (0,0) to straight ling=x is formed Amk= SZO (Czn—Zs—Zk—an
by linking several one-respect lattice paths. The mother func-
tion of the number of such lattice paths3§_,C& x*y* with _4c’2‘;i“2;f*2t:§:2: ;)C§s+2n0+k' (4.3.10
i cX xkyk=;. (4.3.9 D. Counting partition function
= 1—-4xy '

Inserting Eq.(4.3.10 into Eq. (4.2.1), we get the expres-
The mother function of the number of the lattice pathssion of the partition function as follows:

from (2n,,0) to the first crossing on straight litye=x (never n—2ny n-m-2n, s
crossing straight liney=x midway) is supposed to be Q= 2 E 2 n—m-s-2n
f1(x,y), which is thereby the quotient of above-counting me—n, $=0 K=o 2N725720o

mother functions as follows: s 21
—4C °, )CZS k+2n Lk(l—_l)n_m

2n—2s—2n,—2
Z Czno+2kxkyzn°Jrk 1—I—dxy| 2" X[(L—1)e" 2Anotmiv g2B(notm], (4.4.9
fl(XaY)— o :( ) .
2x For n—«, the property of the system is determined en-

k
kZO Cax'y" tirely by the maximum term in the series expression of the
(435 Ppartition function. So, term I(—1)e 2AMo*M'¥ in Eq.
(4.4.7) will be taken out and the partition function becomes
Mother function of second section of lattice patfitie
second section is the lattice path from straight jnex to

—2ng n—
(2ng+n+m,n—m), which returns to the straight lin& Q= >

2ng

s
n—m—s—2ng
kgo (CZn—Zs—ZnO

3

times midway. The mother function of the number of these m=""o
i ' n—-m 2ng—1 _
allce pafis s —4C; o oy 2 )Cos ks an LML —1)""Me?Pno™m),

Vv1—4x
fo(x,y)=(1— \/1—4xy)kT_;. (4.3.6 (4.4.2
Each summing in the equation will be changed to an integral
Mother function of total lattice pathsThe mother func- by the Stirling’s formula and the integral will be finished by
tion for the number of the whole lattice paths starting fromusing the Laplace’s formula.
(2n¢,0) and crossing straight line=x, k+1(k=0) times is Sum for k For n,s—o, settings/n=y, ny/n=y,, and
the product off 1(x,y) andf,(x,y) as follows: k/n=x, we obtain
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S

n iy
> Cofon Lk~ \ﬁf fl(x)esMdx, (4.4.3
k=0 0 mJo

where

fr(x)= \/

and

y+Yo— g) / [(y+2y0)(y—x),

h(X) = (2y+2y,—Xx)In(2y +2yo—X) — (Y + 2Yo)In(y
(4.4.9

Let us count extremum pointy, of function h,(x) for x
e[0y]. h(x) has maximum at point, with

+2yo)—(y—x)In(y—x)+xInL.

0 y<2yo/(L—2)

Xy~ (y+2y(L—1) y>2yo/(L—2).
(4.45

According to the Laplace’s theorem about integral, we obtain Q« f !

S
kzo Cg;lr(zno—kLkoc e, (4.4.9

Over here, we are only concerned about how the partition

function is increasing with increscentfor n—c. So, we
can keep down only the exponent functionndf; (x,) in Eq.
(4.4.9.

Sum for s Let m/n=t. using the Stirling’s formula for
n—o, we have

2In2—(1-yo)In(1—-yg)—(1+yp)[In(1+ye)—In(L-1)],

h(t)

2In(e?ANt-D41)—2[g—In(L—1)

Foryo<(L-2)/L,

21InL,

h(t)= ma){ h(ty,h(ty)]= { 2 In(e28~n(L-1)4 1)

PHYSICAL REVIEW E 68, 016120 (2003

n—m-2ng ) 1-2y,—t
N—=2ng=M=S nhy(Xq) nhg(y)
SZO C2n—2n0—2$e K Oxfo es dy-
(4.4.7

where
hs(y)=(2-2yo—2y)In(2—2y,—2y)
—(1=2yo—t=y)In(1-2yo—t-y)
—(1+t—y)In(1+t—y)+he(Xg).

We denote the point_whelhg(y) has the maximum by
When yo>(L—2)/L, y=(1—t—2yg)/(t+2ysyo). When
Yo<(L—2)/L, we must discus_s for different regions tofif
te(—Yo,1—2yp,—2/L) then y=1—[Li+2(L—1)y0]/(L
—=2). Ifte(1-2yy,—2/L,1-2y,) theny=(1—t—2y,)/(t

+2YoYo)-
Sum for mLastly, we should change the sum forto the

integral fort and finish the following integral of:
—2yp =
en[hs(y)+2ﬁt+2ﬁy0—tIn(L—1)+In(L—1)]dt.
Yo
(4.4.8
Setting

h(t)=hg(y)+28t+28ye—tin(L—1)+In(L—1),
(4.4.9

maximumh(t_) of h(t) within regiont e (—yg,1—2y,) will
be counted.
Wheny,>(L—-2)/L,

e2f-(L-1)_q
_— <
e2B-In(L-1) 1 1 Yo

E. Second-order transition and crossover from first-order
transition into second-order transition

The above result depends strictly on individual number
No=2n, of the initial proposition. It is necessary to study

2B-L-1)_ 1 (4.4.10
1(1+yo), m>yo.
B<In(L—1)
=2[B—In(L—1)](1+yy), B>In(L—-1). (4.4.13
|
(4.4.10 as follows:
_InQ  h(H)
f=—Jm%=—ﬁ. (4.5.],)

how the global properties of the spin chain change with the

change in numbeN,,.
Whenyy>(L—2)/L[Nog>N(L—2)/L)], free energy per
spinf of the system is defined according to E¢%.4.8 and

The entropy per spin is
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e26-I(L-1)_ 4

1 1
In2=5(1=yoIN(1-yo) ~ 5[1+yo=In(L=1)]In(1+yo), A, Yo

of
= 2—:
s=p B 2po(L1) ZIBeZB—In(L—l) e2B-In(L-1)_ 1 (4.5.2
—In(L— - _ -
In(e +1) eZB*In(L71)+1+(1+yO)|n(L 1), eZBfln(Lfl)+1>y0'
|
It is easy to find '1[haf ands are contlnuoqs at critical pomt  m+n, - 1 9InQ
c2=In(L—21)/2+ 3 In[(1+Yyg)/(1—Yyy)], but first-order deriva- lim = lim on B
tive of entropy s is discontinuous at the critical point. n—e n—e
Namely, we have 0 when B8<S.,
e2B-In(L-1)_ 1
m—yo When B>B02'
(4.5.9
01 B<BC2 . epr
s 26-In(L-1) This result means that the rumor cannot be magnified
B Y e 8> (453  when B<pB.. But when B>p.,, due to inequality
(2B n(L-1) 1 1)2’ c2 (e2A~InL=D_1)/F"t"D+1)—y,>0, the rumor can be

magnified. [Strictly speaking, average exaggeration ratio
M/Ng<1 when @*#~Nt-D_1)/fNt-Dt1)—y <y,
and M/Ng>1 when @A nCt-D_1)/#nCt-Dy1)—y,
>Yy,.] The transition point is determined by the acceptability

- . . exponential and the society’s guide.
Thus, the system has second-order transition at critical pom% However, whenyo<(L—2)/L [Ng<N(L—2)/L], free

B=Be for casey,>(L—2)/L. Averagem of the spin chain  energy per spirf is given according to Eqsi4.4.8 and

satisfies the following equation (4.4.1) as follows
In 1 (2InL, B<In(L—1)
f:_ ||m _Q:__ 2B8-In(L—1) (455
ne 28N 2B | 2In(e +1)-2[B—In(L—=1)](1+Yyy), B>In(L-1).
Moreover, the entropy per spin is
InL, B<In(L—1)
of
s=B2—= X 2Be?f~In(L=1) (4.5.6
B—In(L—1) s _ _
B | In(e - Sy T (MHyoin(L-1), AZIn(L-1).
|
It is easy to find thaff is continuous at critical poinj3. m+ No 1 4InQ
=In(L—1) but entropysis not. The increment of the entropy lim = lim on
in the critical point is nowe N noe 2N 9
0 when B<In(L—-1)
As=s|g_inL-1)-0~ Sl p=in(L-1)+0 ={ e28-In(L-1)_1
proinltmo A S -, when g>In(L-1).
2 e2h-In(L-1)4 1
=11-2yo— —|In(L—1). (4.5.7
L (4.5.8

Thus, the system has first-order transition at critical pgint This result means that the rumor cannot be aggrandized
=B and transition latent heat of per spinlis(1—-2y,  wheng<g.. On the other hand, fo8> 3., the rumor can
—2/L). Average magnetizatiom per spin satisfies equation be aggrandized because?f "t~ D—1)/F "D+ 1)—y,
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0.8 1. Lattice path
a. Basic conceptions
0.6 Integer planeAn integer plane is the plane on which the
Cartesian coordinate is established. Theoretically, the integer
plane involves all four quadrants of the plane, but actually
IZ 04 we will pay attention only to the first quadrant. Neighbor
points with integer coordinates are linked by segments with
unit length. In order to simplify description, we will call the
02| . . . .
set of all points with integer coordinates on a plane and all
segments linking such points as the integer plane later.
Lattice path.A way turning rightwards and upwards on
0‘0 2 1 " 1 n 1 n . . . . . .
0.0 05 B, B,1.0 15 20 the integer plane is called a lattice path if it is formed by

B linking.
o Total number of lattice path§.he length of a lattice path
FIG. 3. M/N varies with 8 for L=3. The curves fory,=1/2 from (0,0) to (Mm,n)(m=0,n=0) ism+n, in whichm steps
and yo=1/5 represent the second-order transition and the firsturn rightwards and steps turn upwards. Out of tha+n
order-transition, respectively. The curve fpy=1/3 represents the steps, upwarah steps haveC" , = ways to appear in the lat-

m—+n

crossover of transition becauseygf= (L —2)/L. The second-order tice path, so the total number of the lattice paths from (0,0)
transition happens at critical poinﬁczz[ln(L—l)]/2+%In[(l to (m,n) is C", =(m+n)!/(m!n!)

+yo)/(1—yg)] for yo>(L—2)/L. The first-order transition happens mn ,
at critical point 3.~ In(L—1) for yo< (L —2)/L. In counting the number of some type of the lattice paths,

we must show clearly the essential characteristics of the lat-
. ) . — tice paths. Two types of the lattice paths appearing frequently
>0. [Strictly speaking, average exaggeration rakdNy 5. defined as follows
2B8—In(L=1)__ 2B n(L-D 1)y < and L . . . . .

<1 when € i )=Yo<Yo One-respect lattice patfStraight linex=y divides an in-
M/No>1 when @#~"V-1)/@ "t"D+1)—y,>y,]  teger plane into two partéwo respects The lattice path
Figure 3 showsM/N varies withg for L=3. The curves for starting from a pointX;,y;) on straight linex=y and then
yo=1/2 andy,=1/5 represent the second-order transitionreturning to straight linex=y is called a one-respect lattice
and the first-order transition, respectively. The curveyfgr path if it does not cross straight line=x midway.
=1/3 represents the crossover of transition becausg,of One-direction lattice pathThe lattice path starting from
=(L—-2)/L. straight linex=y and then arriving atx,,y,) is called a

It is easy to see that pointy=(L—2)/L, namely, indi- one-direction lattice path if it does not involve any one-
vidual’'s numberNy=[(L—2)/L]N=Ngo, is the crossover respect lattice path. Unlike a one-respect lattice path, none of
point at which the crossover between first-order and secondhe one-direction lattice path ever returns to straight jine
order transition in the spin chain comes true. =X midway.

ACKNOWLEDGMENT b. Lattice path and random walk on real axis

This work was supported by the National Natural Science In practice, each lattice path on an integer plane corre-

Foundation of China Grant Nos. 19835040 and 10075021. sponds to a walk on a straight line one to one.
Correspondence between integer plane and real akis.

straight line becomes the real axis when a coordinate is es-
tablished on it. Let point0,0) on an integer plane correspond
For a given positive integevl, number of solutiongSg} to original point O of the real axis. Now we study the shift
determined by spin surﬁg'zlsf Me,, or the number of among points on the real axis. Each step starting from a point
spin configurations, is the key to giving the exact solution ofn and arriving at poinh+1 on the real axis corresponds to a
the rumor model. step of a lattice path turning rightward, and each step from
The addition of spins shows that the spin polynomial de-n+1 to n on the real axis corresponds to an upward step of
termines a translation at a proposition space from the originat lattice path. So, each poink;(y;) on the integer plane
point to Me, . According to the addition law, the configura- corresponds to the point with coordinate= x,—y, on the
tion numbers for a spin sum is just the total number of thereal axis. Moreover, each poink;(y;) over straight linex
random walks with transition probability E¢R.3.1). =y hasx;<y; which corresponds to a point on the negative
Because the original point holds a particular place at ssemiaxis. Similarly, each poini{,y;) under straight linex
proposition space, which is the joint bfsemiaxes, the tran- =y corresponds to a point on the positive semiaxis.
sition probability for cased.>2 has the central symmetry Lattice path and random wallet the starting point of a
with respect to the original point, but not the translation in-lattice path be (0,0) and the end point bg (y,). This lat-
variance. So, the calculation of the configuration number igice path corresponds to a walk on the real axis from the
so complicated that we have to recourse to the concept of theriginal point 0 to poinn=x,—Yy,. So, the total number of
lattice path in combination mathematics. walks on the real axis from the original point to point

APPENDIX: ENUMERATION OF THE LATTICE PATHS
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=X,—Y, equals the total number of the lattice paths from Monomial and free monomial systeBifferent numbem

(0,0) to (x,,Y,). Therefore, we can enumerate walks on thecorresponds to the sequence with different length, which be-

real axis through enumerating the corresponding latticdongs to different se8™. All finite sequences composed by

paths. elements in se6 form a new set, which is noted &, and
One-axis walk.There is a walk starting from original we have

point 0 and going only on the negative or on the positive

axis, and finally returning to (does not involve the original St = ujiosi. (A.2.2)

point in the midway. We call such a walk as a one-axis

walk. Obviously, such a walk corresponds to the one-respet* s regarded as being generated®yand elements oS!

lattice pa_th. _ - =S are essential elements 8f. Also, elements irS* are
One-direction walk. A walk on the positive or on the called monomials.
negative axis from original point 0 to a point (does not The following juxtaposition operationcan be defined as

return to the original point in the midways called a one-  fgllows:
direction walk. Obviously, such a walk corresponds to the For two arbitrary elementsa;a,---a,eS* and

one-direction lattice path. b,b,---b,eS*, their juxtaposition is another element

I_n order to C(?Uﬂt numbeA_m’k, We have to use the alter- a;a,- - -apmbib,---b,in S*, which is denoted as follows
native method in enumerating lattice paths. A walk on the

real axis from O tan may be regarded as a walk formed by (aja,- - -am)°(bib,- - -by)=aja,- - -ambiby- - - by,.

linking several one-axis walks and a one-direction walk end (A.2.2)

to end. At one time, the corresponding lattice path is re-

garded as a path formed by linking several one-respect lattice Obviously, juxtaposition operationsatisfies the associa-

paths and a one-direction lattice path end to end. tive law, and empty sequence 1 is its unique unit element.
We consider a 8-step walk on the real axis from O to, So, (S*,°) is a unitary semigroup.§* o) is called the free

which is formed by linking several one-axis walks and amonomial system o, or for short, the free monomial sys-

one-direction walk. Each one-axis walk may go on differenttem. Elements o6 may be common variables. L&={x},
semiaxis and have different step numbers. So, various poshen S"={x™}. So, S*={1x,x% ...}, which is right the

sible one-axis walks and one-direction walk must be considysual monomial systertpower ofx). If S={x,y}, wherex

ered in the calculation of the total number of random Wa”(S.and y represent turning one step rightwards and one step
Similarly, various possible one-respect lattice paths and onespwards on an integer plan, respectively, then, the element of
direction lattice paths must be considered in the calculatios™ s 3 lattice path with lengtm. S* is the set of all lattice

of the total number of lattice paths, too. The following theo-paths starting from the original point. Juxtaposition operation

rems can be proved easily. _ o denotes linking two lattice paths end to end.
Theorem A.1.1The number of lattice pathS from (0,0) to Theorem A.2.1For everyue S* andae S, we have

(m,n) (m=n=0) but never surpassing straight lige=x is

-1
cn, ,—cnl. (A.1.2) > u=(1— > a (A.2.3
ueS* aeS
Obviously, this number is relevant to that of the ways of
the walk from original point O to pointm on a semiaxis. Proof: SuestU=21oZycsU=2,_o(Z4c8)"=(1
Similarly, we have —3a.q) L
Theorem A.1.2The number of lattice paths from (1,0) to
(m,n) (m=n=0) without surpassing straight line=x—1 b. Mother function for lattice paths
IS Mother functionLetag,a;,a,, ... ,a,, ... be a number
n _cnt (AL12) series anc a variable, the mother function for numbexsis
n—1+m ~n-1+m-* - defined as the following power series
2. Free monomial system ~
_ _ f(X)=ag+agXx+axi+ - +ax"+ .= >, ax".
a. Basic conceptlon n=0
(A.2.9)

For the calculation of the total number of various lattice
paths, relevant content of free monomials is heededSlbet Let « be a real number arkla non-neaative integer. and
a set with several elements. For an arbitrary non-negativg @ " 'g ger,
integerm, m elements of seB can form a sequendelements ~ 9€NOte () =[a(a=1)...(a—k+1)]/k!. We denote {)
in the sequence can be repeatédiith all such sequences, =C, whena is a non-negative integer. The mother function
we can form a new set, which is denotedS%s The length  for binomial coefficients {) is
of every elementie S™ is m, which is written asm=lenu.

There is only one sequence with length 0, which is the empty ¢ I I e IV o V- T )
sequence. It can be denoted as 1. THe={1} and St A= T g XH] o X g X
={S}. (A.2.5
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Because it is consistent with the expansion of-¢)“ in the
manner of the mathematical analysis, we deniyféx) as
(1+x)“. Takinga=—1/2, we have

oo

>

n—O(n

E Chx"=(1-4x)"*2  (A.2.6)

Mother function for 3. SetS* is the set of all lattice

paths starting from the original point, which is generated by
setS={x,y}. The mother function for it is obtained accord-

ing to Theorem A.2.1:

-1
> u=(1—2 al] =(1-x—-y)"%L (A2
ueS* aeS
The above formula can also be rewritten as
(1-x—y) = E (x+y) EImnxy (A.2.8)

wherel,  is the total number of lattice paths from (0,0) to

(m,n).

c. Subsystem of monomials

Subsystem about one-respect lattice path T and cor-
responding mother functioisetT* of all lattice paths start-

ing from straight liney=x then returning to it is the subset

of free monomial systerS8* generated by sék,y}. Suppose
T* is the free monomial system created Bythe set of all
one-respect lattice paths starting from pdgii0) and ending
at the straight line/y=x. So, we have

S u[1-3, vl

ueT* ueT

(A.2.9

Because the total number of lattice paths from (0,0)ntmy
is C5,, we have

> u=n20 Ch(xy)".

ueT*

(A.2.10

Apparently, sun>, _ra determines mother functiof(x,y)
of the one-respect lattice paths. Now we have

gocgnuy)“:[l—f(x,y)rl. (A.2.1)
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Using formula (A.2.6), we can obtain the result that the
mother function of the lattice paths in sé&t* is (1
—4xy)Y? and mother functiorf(x,y) of the one-respect
lattice paths is

1—1-4x
f(x,y)=1—(1—4xy)“2=ZTy.

(A.2.12

As we have noticed, there are two types of one-respect lattice
paths. The lattice paths in one type are always over straight
line y=x, while the lattice paths in the other are under
straight liney=x. These two types of one-respect lattice
paths are symmetric with respect to straight §rex, so the
number of one-respect lattice paths with length i each
type is b,/2 and the corresponding mother function is
f(x,y)/2.

System RLet us consider a lattice path starting from point
(0,0) and arriving at the straight line=x—1 never surpass-
ing this line. These lattice paths form $etAll one-direction
paths are formed by linking several lattice paths offséthe
mother function of the lattice paths for dgtis

1-+1—4xy

5 (A.2.13

System about one-direction lattice paths.R'he free mo-
nomial systenR* is formed by all one-direction lattice paths
which are under straight ling=Xx rigorously, except the
starting point. As mentioned above, their essential elements
are lattice paths in sé.

It can be proved that the total number of lattice paths from
(0,0) to (m,n) in R* is [(m—n)/(m+n)]n.,, m=n. The
mother function of the lattice paths R* is

m_n
m=n m+n m+n

_—

1—1—4xy| !
"
2y

(A.2.19

[1] Phase Transitions and Critical Phenomenadited by C.
Domb and M.S. GreefAcademic, London, 1934Vol. 1-12.

[2] The Economy as an Evolving Complex Systedited by P.W.
Anderson, K.J. Arrow, and D. Pineddison-Wesley, Re-
swood City, California, 1988

[3] J. Goldenberg, D. Mazursky, and A. Solomon, Scie@8g,
1495(1999.

[4] Z.Z. Liu, J. Luo, and C.G. Shao, Phys. Rev.6B, 046134
(2001.

[5] L. Onsager, Phys. Re85, 117 (1944).

[6] F.Y. Wu, Rev. Mod. Phys54, 235(1982.

[7] H.N.V. Temperley and E.H. Lieb, Proc. R. Soc. London, Ser. A
322 251(197).

[8] R.J. Baxter, H.N.V. Temperley, and S.E. Ashley, Proc. R. Soc.
London, Ser. A358 535(1978.

[9] T. Kihiara, Y. Midzuno, and J. Shizume, J. Phys. Soc. 3n.
681 (1954.

[10] I.G. Enting, J. Phys. A, 1617 (1974).

016120-13



SHAO et al.

[11] R.V. Ditzian, and J. Oitman, J. Phys. A L61 (1974.

[12] F.J. Dyson, Commun. Math. Phyk2, 91 (1969.

[13] D.H.E. Gross, Phys. Re79, 119 (19979.

[14] T. Padmanabhan, Phys. Re88 285 (1990.

[15] D. Lynden-Bell, and R.M. Lynden-Bell, Mon. Not. R. Astron.
Soc.181, 405(1977).

[16] P. Hertel and W. Trirring, Commun. Math. Phykl, 22 (1971);
28, 159(1972.

[17] H.E. StanleyPhase Transitions and Critical Phenomereal-
ited by C. Domb and M.S. Greg#cademic, London, 1974
Vol. 3, p. 485.

[18] Britannica, 15th ed.(Encyclopaedia Britannica, Inc, Chicago,

PHYSICAL REVIEW E 68, 016120 (2003

1988, Vol. 16, p. 556.

[19] A. Thio, Sociology 2nd ed.(Harper & Row, New York, 1989
Chap. 2, p. 23.

[20] J.M. Henslin,Sociology(Allyn and Bacon, Boston, 1993

[21] Z.H. Damian, Phys. Rev. B5, 041908(2002.

[22] J. Barwise, in Handbook of Mathematical Logic, edited by J.
Barwise(North-Holland, Amsterdam, 197,7Appendix 1, p. 6.

[23] D.I.A. Cohen, Basic Techniques of Combinatorial Theory
(Wiley, New York 1978, p. 33.

[24] I.P. Goulden and D.M. Jackso@ombinatorial Enumeration
(Wiley, New York 1983, p. 290.

[25] Z.Z. Liu, J. Luo, and C.G. Shao, Phys. ReW6E 2089(2000.

016120-14



