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Exact representation of crossover of transitions from first order to second order in the Potts mode
for rumor transmission
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The L-state Potts model for rumor is theN-spin chain describing how a simple rumor transmitted byN
recreant rumormongers is aggrandized. The studied rumor is represented mathematically by a simple proposi-
tion with the universal quantifier, which again is represented geometrically by a point in a proposition space.
During the transmission, such a proposition is changed with the change of the rumor, which has individual
numberN0 at the beginning of the transmission. Correspondingly, the point expressing the proposition may
start from an arbitrary site at the proposition space, and then it shifts in the space. Thus, a spin sum of the Potts
model corresponds to a walk of a point in the proposition space and spin configuration’s numbers is given by
enumerating the corresponding walks. The concept of the lattice path in combinatorial mathematics is intro-
duced and the exact series representation of the configuration’s numbers is given. The partition function
exhibits the transition of the chain and critical equivalent inverse temperaturebc is determined. Moreover,
there is a crossover value of the individual number,N00. The model has a first-order transition whenN0

,N00 and a second-order one whenN0.N00.
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I. INTRODUCTION

For a long time, many interesting physical rules have b
found by using spin models, though they are usually v
simplistic @1#. Nowadays, the experience accumulated ove
long time in studying spin models is transferred to probe i
various complexity phenomena in broader fields includ
biology, economics, sociology, etc.@2,3#. One of these at-
tempts is the Potts chain for rumor@4#, by which we describe
how a simple rumor is aggrandized when it is transfe
successively by a group of recreant rumormongers.

In all studies of spin models, finding exact solutions
still one of the main goals. Though it is very hard, exa
solutions of a few integrable models of spins were still give
in which the celebrated one is the Onsager’s solution of
two-dimensional Ising model@5#. The various integrable
forms of Potts models have been studied for a long ti
@6–12#. At present, part of the interest in the study is co
centrated on the exact solutions of nonintegrable mod
@13–16#. The Potts chain for rumor is one of nonintegrab
statistical models because the addition for its spins does
obey the associative law. The approximate series represe
tion of the spin-configuration number was given for th
model by us@4#, but the exact series representation will
given in this paper. Crossover is a complex behavior relev
to the transition appearing in some spin models@17#; it is
affirmed usually through some calculation by approxim
methods or through the rigorous argumentation by the re
malization group. Obviously, it is impossible to carry out t
grain coarse, the key step in the renormalization transfor
tion, in any nonintegrable system. So, we have to recur to
exact solution for affirming the crossover in the Potts mo
for rumor.

Rumor is the collective behavior in a society@18,19#. The
primary character of all rumors is their indeterminacy. A r
mor can spread along arbitrary simple or complex netwo
1063-651X/2003/68~1!/016120~14!/$20.00 68 0161
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and it is changed by rumormongers. Most studies about
mor were collected to analyze how a rumor is transfer
along distinct channels@20,21#. However, the dramatic char
acteristic of rumor during transmission is its incessa
change in semantics. Our model studies just the sema
change of the simplest rumor transmitted by a group of
mormongers along a channel without any bifurcation. Th
each spin in this model is used to represent how a recr
rumormonger transmits and changes a rumor, but not
transmitted rumor itself. In semantics, each simplest rum
possesses at least: three semantic components the des
subject, the action of the subject, and the individual num
involved in the subject. For quantitatively describing a r
mor, the mathematical logic@22# was used in the Ref.@4#. A
rumor is abstracted as a simple proposition with the unive
quantifier thatPm,l5(x)mFl(x) according to the mathemati
logic @4,22#. In our model, there areL predicates describing
different actions andFl(x) is the l th predicate in the group
A rumor is changed during transmission, so the proposit
expressing the rumor is different when a different rum
monger receives it. Therefore, numberl andm of the propo-
sition can be changed during the rumor’s transmissi
which express the semantic change of the transmitted rum
Moreover, each recreant rumormonger is supposed to be
to change individual numberm with only one unit, by adding
one or subtracting one, according to his or her own opini

This paper consists of four sections and one appendix
Sec. II, the main conception of the Potts chain for rumor a
the concerned mathematical laws are reviewed simply.
Sec. III, the case ofN051 will be studied.N0 is the indi-
vidual number of an initial rumor. The configuration numb
is written as the power series ofL according to the compu
tational methods of lattice paths in the combinator
@23,24#. The partition function becomes explicit as a ser
while configuration number is determined exactly. The s
tem has a first-order transition at critical inverse temperat
©2003 The American Physical Society20-1
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bc5 ln(L21). Correspondingly, the rumor will not be ag
grandized whenb,bc or be aggrandized certainly whenb
.bc . In Sec. IV, the partition function is calculated forN0
.1. Crossover pointN005N(L22)/L is determined exactly
for a rumor channel ofN rumormongers. The result show
that the system has a nonzero transition latent heat w
N0,N00, but the latent heat becomes zero whenN0.N00.
Namely, there is the crossover phenomenon from the fi
order transition to the second-order one when individ
numberN0 strides over crossover pointN00. In the Appen-
dix, the integer plane and various lattice paths on the pl
are defined according to the combinatorics. The one to
correspondence between a lattice path and a walk on
proposition space is determined. Thus, the configura
number is given by enumerating corresponding lattice pa
through the mother function~generating function!.

II. SIMPLE REVIEW OF THE MODEL

A. Model

In our model, the studied rumor is a simple propositi
with a universal quantifier thatPm,l5(x)mFl(x) @4#. There is
a group ofL predicates in the model called predicate gro
$L%, in which thel th predicate isFl(x). Individual number
m of the transmitted proposition is always a non-negat
integer. The change of a rumor is expressed by chang
numberm and predicateFl(x). Each rumormonger has hi
own claim about the concerned event, which is represen
by some predicateFl(x) in group $L%. Composing L
branches~semiaxes! to form a skeleton, we get the propos
tion space~Fig. 2 in Ref.@4#!. Each branch of the space is
semiaxis of the skeleton which has unit vectorel (1< l
<L). Thus, each propositionPm,l can be represented b
positive integerm on the l th semiaxis of the skeleton a
Pm,l5mel . All rumormongers on a rumor channel are a
sumed as recreant ones, who only add one to the individ
number of the transmitted proposition according to their o
opinions, or subtract one from the individual number.

Such a rumor channel is proved to be equivalent to
L-state spin chain (S1 , . . . ,Sq , . . .SN) such that each spin
Sq corresponds to one rumormonger. TheL components of
each spin are unit vectorsel of semiaxes in the propositio
space, respectively. The law of the spin’s addition was sho
in Ref. @4#. Obviously, the addition has neither the assoc
tive law nor the commutative law, which has never appea
in any one of fundamental physical laws. Rumor’s transm
sion is affected by the global properties of a society such
the social guide and social acceptability degree. In
model, acceptability exponents of a proposition and guide
exponent g are introduced and probability of sequen
(S1 , . . .Sq , . . .SN) is

p~S1 , . . .Sq , . . .SN!

5Q21 expH 2F12dS (
q51

N

Sq ,r D ~g11!GM /sJ .

~2.1.1!

Moreover, we have also defined
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N

Sq ,r D 5H 1 for k5r

0 for kÞr , (
q51

N

Sq5Mek .

~2.1.2!

Spin sumM5u(q51
N Squ determines individual numbers o

the proposition received by the last rumormonger, whose
erage value is supposed asM̄ . Ratio M̄ /N shows how the
rumor is aggrandized, which reflects the global behavior
the society.

B. Partition function

As in common, the partition function of this model can b
written as

Q5 (
M50

N

BM@~L21!e2M /s1egM /s#, ~2.2.1!

in which BM is the configuration number corresponding
spin sum(q51

N Sq5Mer . Equation~2.2.1! is not the explicit
formula because the unknownBM is pending in it. To get the
explicit series representation of the partition function, w
have to count outBM exactly. CoefficientL21 of factor
e2M /s is introduced becauseL21 predicates in predicate
group$L% are different from the one asserted by social gu
Fr(x).

In addition, it is worth mentioning thatM will be odd if N
is odd, otherwise, it will be even ifN is even. Not missing its
universality, we can defineN52n. It will certainly makeM
even, which can be replaced by 2m (m51,2, . . . ,n). Ac-
cordingly, factore2M /s in Eq. ~2.2.1! can be replaced by
e22m/s.

C. Addition of spins and walks on proposition space

The key to getting the explicit expression for partitio
functionQ is counting the corresponding configuration num
bersBm according to spin sums(q51

N Sq . Because the addi
tion of spins has neither the associative law nor the comm
tative law, we have to avoid the direct algebra calculat
and appeal to the geometrical method to get the sum oN
spins. If the sum ofn spins ismel , the sum ofn11 spins
may be (m11)el or (m21)el , according to the addition
law of spins. Summel is a point~proposition! in the propo-
sition space. Similarly, (m11)el and (m21)el both are
points~propositions! in the space. The addition of spins pr
scribes the shift of a point on the proposition space with
unit step and the addition ofN spins corresponds to anN-step
walk in the proposition space.

Number m also expresses the individual number of t
transmitted proposition. When the individual number of t
initial rumor isN051, the first step in the walk, correspond
ing to the spin sum, starts from original point O, and arriv
at positionMer at last. But, for caseN0Þ1, the first step of
the walk starts from pointN0el , and also arrives at position
Mer at last.

The translation probability ofnel shifting to (n11)el is
written as P(n,n11) and the translation probability from
(n11)el to nel is P(n11,n). For a specified number,l,el is
0-2
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the unit vector of one of theL semiaxes, and allek(kÞ l ) are
unit vectors of the rest of theL21 semiaxes. The addition
law determines that addingel to nel removesnel to point
(n11)el , but adding any one of the rest ofL21 ek removes
nel to point (n21)el . So, the random walk on the propos
tion space corresponding to the addition of spins in a ch
has the following translation probability:

P~n,n11!51/L for n>0,

P~n,n21!5~L21!/L for n>1. ~2.3.1!

III. PARTITION FUNCTION AND FIRST-ORDER
TRANSITION FOR N0Ä1

A. Series expression of partition function

Probability sum and configuration number:If we takeb
5g/s as the equivalent temperature, the probability sum
the model, the partition function, is

Q5 (
m50

n

Bm@~L21!e22bm/g1e2bm#, ~3.1.1!

whereBm is the configuration number corresponding to sp
sum(q51

2n Sq52mer , and the social guide prefersr th predi-
cate.

B. Spin sum and random walk

It is shown in Sec. II that adding a spin to a spin su
successively corresponds to a proposition’s walk in
proposition space with translation probability~2.3.1!. For the
spin sum studied in the present problem, the walk starts
from the original point and moves 2n steps to 2mer in the
proposition space withL semiaxes.

In 2n steps of a walk, there aren1m steps along the
direction of semiaxes@each step is the shift fromkel to (k
11)el ] and n2m steps along the opposite direction@the
shift from (k11)el to kel ]. The probability that a step alon
the direction opposite to semiaxes appears isL21 times the
probability that a step appears along the direction of se
axes according to translation probability~2.3.1!. Therefore,
factor (L21)n2m will appear in configuration numberBm ,
and numberBm should be written asAm(L21)n2m. More-
over, a 2n-step walk may return to the original point ove
and over again in the midway, and then leave the origi
point anew. It can return to the original point at the mosn
2m times. Each step, starting off from the original poin
can walk arbitrarily along one of theL semiaxes. Letf k be a
positive integer, then there aref k walks returning to the
original point midwayk times in the totalBm walks. Then,
numberAm is the sum of all numbersf k and eachf k contains
factorLk. Lastly, configuration numberBm can be written as
follows:
01612
in

f

e
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Bm5Am~L21!n2m5 (
k50

n2m

f k~L21!n2m

5 (
k50

n2m

Am,kL
k~L21!n2m. ~3.2.1!

In the right side of the above equation, all factors relevan
L have been separated off and all the remaining factorsAm,k
are independent of numberL. So, we can adopt the mos
convenient value ofL for counting out factorAm,k , which is
L52. The above characteristic of configuration numberBm
provides the simplest counting scheme for us as follows.

For L52, Eq. ~3.2.1! is simplified as

Bm5Am5 (
k50

n2m

f k5 (
k50

n2m

Am,k2
k. ~3.2.2!

Namely, configuration numberBm can be expressed as th
power series of 2, in whichAm,k is the coefficient ofkth
power of 2. Therefore, it is quite convenient that we cou
configuration numberBm for L52 first, and then write it as
the power series of 2. NumberAm,k is given thereby as co
efficients of the power series. Obviously, configuration nu
ber Bm for an arbitraryL is given by the countedAm,k ac-
cording to Eq.~3.2.1!.

C. Series expression of partition function

Random walk and lattice path.The proposition space fo
L52 has two branches, each of which is a real semiaxis,
positive semiaxis and the negative semiaxis. So, such a s
is just a real axis. Lete1 be the unit vector of the positive
semiaxis ande2 be that of the negative axis. In 2n steps of a
walk shifting from original point 0 to 2me1, there are cer-
tainly n1m steps shifting along the direction ofe1 and n
2m steps shifts along the direction ofe2. A simple calcula-
tion shows that numberAm is just a combination numbe
C2n

n2m5(2n)!/ @(n2m)!(n1m)! #.
It is very difficult to expand combination numberC2n

n2m

straight away as the power series of 2, for counting fac
Am,k . So, we will adopt a convenient way to count numb
Am by enumerating lattice paths according to the meth
given in the Appendix. An integer plane is the plane
which the Cartesian coordinate is established. Neigh
points with integer coordinates on integer plane can
linked by a line segment, and a way linked by rightward a
upward line segments is called a lattice path. The equ
lence between a walk on the real axis and a lattice path
the integer plane has been proved in the Appendix. In te
of this method, each walk shifting from original point 0 t
2me1 is just a lattice path from (0,0) to (n1m,n2m) on the
integer plane andAm must be the total number of such lattic
paths.

In an integer plane, the points with integer coordinates
straight liney5x correspond to the original point of the re
axis. Each lattice path from (0,0) to (n1m,n2m) may cross
straight liney5x several times~as in Fig. 1!. This lattice
path corresponds to the 2n-step walk on the real axis fr
0-3
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the original point to 2m. If f k is the number of lattice path
crossing the straight linek times midway, the sum off k gives
Am andAm,k according to the following equation

Am5 (
k50

n2m

f k5 (
k50

n2m

Am,kL
k. ~3.3.1!

Decomposing lattice path.The conceptions of one-respe
lattice path and one-direction lattice path are defined in
Appendix. Each lattice path crossing straight liney5x k
times ~except for the starting point! can be decomposed a
two segments linked end to end, the first of which isk one-
respect lattice paths and the second is a one-direction la
path. The combinatorics provides the method for enume
ing lattice paths through the mother function. The moth
function of the above lattice paths is the product of mot
functions of the two segments of lattice paths linke
Through the mother function, we can countf k expediently.

Mother function of the first section of lattice paths.The
first section of each lattice path isk one-respect lattice paths
whose mother function is thekth power of mother function
of one-respect lattice paths. The mother function of o
respect lattice paths is given in the Appendix as
2A124xy. So, the mother function ofk one-respect lattice
paths is (12A124xy)k.

Mother function of the second section of lattice paths.The
second section of each lattice path is a one-direction lat
path. Letd(x,y) be the mother function. Each lattice pa
starting from original point (0,0) on the integer plane
formed by linking several one-respect lattice paths an
one-direction lattice path. All lattice paths starting from t
original point on the integer plane form setS* , whose
mother function is (12x2y)21, as shown in the Appendix
All lattice paths formed by linking several one-respect latt
paths belong to subsetT* of S* , whose mother function is
given in the Appendix as (124xy)21/2.

The mother function of number of lattice paths inS* is
also the product of (124xy)21/2 andd(x,y). So, we have

d~x,y!5
A124xy

12x2y
. ~3.3.2!

FIG. 1. The Cartesean plane and a path from~0,0! to ~13,9! on
it. One step on the plane increasing inx axis corresponds to one ste
forward in proposition space, and one step increasing iny axis
corresponds to one step backward. This path on the plane ca
represented by a sequencexyxxyyyyxxxyxxyxyyxxxx. The path
has five vertices~not including the original point! on line y5x.
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The mother function of the lattice paths crossing liney5x k
times is given as

~12A124xy!k
A124xy

12x2y
. ~3.3.3!

Determining Am . Using equations

~12A124xy!k

A124xy
5(

s50

`

C2s1k
s 2k~xy!s1k ~3.3.4!

and

124xy

12x2y
5 (

p,q50

`

~Cp1q
p 24Cp1q22

p21 !xpyq, ~3.3.5!

we can expand Eq.~3.3.3! as the power series of 2 as fo
lows:

(
p,q50

`

(
s50

`

~Cp1q22s22k
p2s2k 24Cp1q22s22k22

p2s2k21 !

3C2s1k
s 2k~xy!s1kxp2s2kyq2s2k, ~3.3.6!

whereCn
m is defined to be zero ifm,0. So, the number of

lattice paths from (0,0) to (n1m,n2m), which cross
straight liney5x k times ~except for the starting point!, is
the coefficient of termxn1myn2m as follows:

f k5 (
s50

n2m2k

~C2n22s22k
n2m2s2k24C2n22s22k22

n2m2s2k21!C2s1k
s 2k.

~3.3.7!

Inserting the above equation into Eq.~3.2.1!, taking index
transformationk→k, ands1k→s, we get the series expres
sion of Am as

Am5 (
s50

n2m

(
k50

s

~C2n22s
n2m2s24C2n22s22

n2m2s21!C2s2k
s2k 2k,

for ~L52!. ~3.3.8!

Case of L.2. For the case ofL.2, numberAm is

Am5 (
s50

n2m

(
k50

s

~C2n22s
n2m2s24C2n22s22

n2m2s21!C2s2k
s2k Lk.

~3.3.9!

D. Analytical representation of partition function

According to the definition in Eq.~3.1.1!, we get the exact
series expression of the partition function from the exact
ries expression of the configuration number as follows:

be
0-4
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Q5 (
m50

n

(
s50

n2m

(
k50

s

~C2n22s
n2m2s24C2n22s22

n2m2s21!

3C2s2k
s2k Lk~L21!n2m@~L21!e22bm/g1e2bm#.

~3.4.1!

We study the rumor transmission along an extremely lo
channel, namely, the case ofn→`, which corresponds to the
thermodynamic limit for a thermodynamic system. The th
modynamic study shows that property of a system is co
pletely determined by the maximum term in the partiti
function. Similarly, property of rumor transmission will b
provided exactly by the asymptotic analytic representation
the partition function forn→`. Consequently, we can us
various methods of the asymptotic analysis here, involv
Stirling’s formula and Laplace’s theorem, etc. The sa
technique is used to study the equivalence between cano
and micro canonical ensembles in Ref.@25#. Similarly, the
term with factor (L21)e22bm/g in Eq. ~3.4.1! can be can-
celled. Therefore, the following part of the partition functio
will completely determine the statistical property of th
chain

Q5 (
m50

n

(
s50

n2m

(
k50

s

~C2n22s
n2m2s24C2n22s22

n2m2s21!

3C2s2k
s2k Lk~L21!n2me2bm. ~3.4.2!

Sum for k. Setting s→`, k/s5x, and using Stirling’s
formula and Laplace’s formula, we get

(
k50

s

C2s2k
s Lk'S L2

L21D s 2L

L21
. ~3.4.3!

Sum for s. Settingn→`, and m/n5t, and s/n5x, we
obtain

(
s50

n2m

~C2n22s
n2m2s24C2n22s22

n2m2s21!S L2

L21D s L

L21

'
L

L21
An

pE0

12t

f s~x,t !enhs(x,t)dx, ~3.4.4!

with

f s~x,t !5
A12x

A~12x!22t2

t2

~12x!2
~3.4.5!

and
01612
g
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hs~x,t !5~12x2t !ln
12x

12x2t
1~12x1t !ln

12x

12x1t

12~12x!ln 21x ln
L2

L21
. ~3.4.6!

The derivative ofhs(x,t) with respect tox is

]hs~x,t !

]x
5 ln

L2

4~L21!
2 ln

~12x!2

~12x!22t2
. ~3.4.7!

The above equation has zeros atxs516Lt/(L22). Obvi-
ously, the first zeroxs511Lt/(L22) is out of regionx
P@0,1#, so we consider onlyxs512Lt/(L22), the second
zero. The second zero can vary with parametert, and the
value of t determines where exponenths(x,t) has the maxi-
mum.

When 0,t,(L22)/L, xs is within region@0,12t] and
hs(x,t) has extremehs(x,t)52 lnL2(11t)ln(L21) at xs
512Lt/(L22). According to Laplace’s formula, we get

L

L21
An

pE0

12t

f s~x,t !enhs(x,t)dx

'
L2n

~L21!n(11t)

L22

L21
, 0,t,

~L22!

L
. ~3.4.8!

When (L22)/L,t,1, @]hs(x,t)#/]x is negative eter-
nally. So, hs(x,t) has maximumhs(0,t)5 ln 42(12t)ln(1
2t)2(11t)ln(11t) at end pointx50 of the region. The
Laplace’s formula can be used to finish the integral as
lows:

L

L21
An

pE0

12t

f s~x,t !enhs(x,t)dx

'
t2

Anp~12t2

L

L21 F ln
4~L21!

L2~12t2!
G21

3
22n

~12t !n(12t)~11t !n(11t)
,

~L22!

L
,t,1.

~3.4.9!

Sum for m. We insert Eqs.~3.4.8! and ~3.4.9! into Eq.
~3.4.2! and transform the sum form into an integral oft for
regions 0,t,(L22)/L and (L22)/L,t,1, respectively.
The partition function is written asQ'Q11Q2, where
Q15E
0

(L22)/L

L2n
L22

L21
nen[2bt2(11t)ln(L21)2t ln(L21)1 ln(L21)]dt, ~3.4.10!

and
0-5
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Q25E
(L22)/L

1

22n
L

L21
A n

p~12t2!
t2F ln

4~L21!

~12t2!L2G21

en[2bt2(12t)ln(12t)2(11t)ln(11t)2t ln(L21)1 ln(L21)]dt. ~3.4.11!

Two integrals will be finished with the Laplace’s theorem. Within region@0,(L22)/L#, we get

lim
n→`

ln Q1

2n
5H ln L when b, ln~L21!

ln L1
L22

L
@b2 ln~L21!# whenb. ln~L21!.

~3.4.12!

Within region @(L22)/L,1#,

lim
n→`

ln Q2

2n
5H ln L2

L22

L
@ ln~L21!2b# whenb, ln~L21!

2b1 ln~L21!1 ln~e2b2 ln(L21)11! when b. ln~L21!.

~3.4.13!

E. First-order transition

Using Eqs.~3.4.12! and ~3.4.13!, we get

lim
n→`

ln Q

2n
5maxS lim

n→`

ln Q1

2n
, lim
n→`

ln Q2

2n D 5H ln L when b, ln~L21!

2b1 ln~L21!1 ln~e2b2 ln(L21)11! when b. ln~L21!.
~3.5.1!
-
th
n
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ze

s
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f
m
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-
so-
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-

Free energy per spinf 52 lim
n→`

ln Q/2bn is continuous at

the critical pointbc5 ln(L21). However, its first-order de
rivative, namely, the entropy per spin, is discontinuous at
critical point. Because the increase of the entropy per spi
the critical point is

Ds5sub→ ln(L21)202sub→ ln(L21)105
L22

L
ln~L21!,

~3.5.2!

the system has a first-order transition at critical pointbc
5 ln(L21). The transition latent heat per spin isl 5(L
22)/L. Average magnetizationm̄ per spin of the chain sat
isfies equation

lim
n→`

m̄

n
5 lim

n→`

1

n

] ln Q

]b

5H 0 when b, ln~L21!

e2b2 ln(L21)21

e2b2 ln(L21)11
when b. ln~L21!.

~3.5.3!

Above result indicates the rumor is absolutely aggrandi
whenb.bc . Figure 2 showsm̄/n varies withb for L53.

As a section conclusion, we have obtained the exact
lution of the Potts chain for the rumor with initial individua
numberN051. Acceptability exponents of a proposition
and guide exponentg determine the statistical property o
the rumor’s transmission through equivalent inverse te
01612
is
at

d

o-

-

peratureb. The chain has a first-order transition appearing
critical equivalent inverse temperaturebc when the number

of spin’s components isL.2. Average magnetizationm̄
shows how the rumor is aggrandized. For the chain withN

52n spins, we can havem̄/n .0 only when equivalent
temperatureb.bc , which means the social guide inten
sively affects the rumor transmission and the rumor is ab
lutely aggrandized. Otherwise, we’ll getm̄/n50 when b
,bc , which means the rumor has not been aggrandized.
chain has transition latent heatl 5(L22)/L at critical point
bc . It shows that the exaggeration ratio of the rumor a
quires a gap atbc .

FIG. 2. m̄/n varies with b for L53. The system has a first
order transition at critical pointbc5 ln(L21), which means that the
rumor is absolutely aggrandized whenb.bc .
0-6
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IV. CROSSOVER BETWEEN TRANSITIONS ALONG
WITH INCREASING N0

A. Series form of partition function

In this section, the more general form of rumor transm
ted by recreant rumormongers will be studied, in which
initial proposition isN0ej with N0>1. Along a rumor chan-
nel, if the individual number received by the last one inN
rumormongers becomesM, the exaggeration ratio of the ru
mor is defined asM /N0. Thus, the average exaggeration r
tio of the rumor along various channels isM̄ /N0. After being
transmitted byN rumormongers, such a proposition becom
N0ej1(q51

N Sq5Mek . If the social guide prefersr th predi-
cate, spin sumN0ej1(q51

N Sq5Mer will have a larger prob-
ability than the other sumN0ej1(q51

N Sq5Mek (kÞr ).
Let N052n0 , N52n, andM52(n01m), (m.2n0) as

done in the preceding section, the partition function is

Q5 (
m52n0

n22n0

Bm@~L21!e22b(n01m)/g1e2b(n01m)#,

~4.1.1!

whereBm is the configuration number corresponding to sp
sum 2n0ej1(q51

2n Sq52mer .

B. Spin sum and random walk

According to the addition of spins, adding a spin in t
spin sum successively corresponds to a point’s walk on
proposition space. According to the spin sum in the pres
problem, the walk starts off from 2n0ej and moves certain
steps randomly to 2mer , andejÞer . Along the same way as
for caseN051, we count configuration numberBm as fol-
lows.

In 2n steps of each walk from 2n0ej to 2(n01m)er on
the proposition space, there are certainlyn1m steps walking
along the direction of semiaxes andn2m steps along the
opposite direction. Each step along the direction opposit
semiaxes hasL21 choices, soBm surely contains factor
(L21)n2m. At one time, during movement, a propositio
may start from the original pointk times (k<n2m22n0).
So, we have

Bm5Am~L21!n2m5 (
k50

n2m22n0

Am,kL
k~L21!n2m,

~4.2.1!

whereAm,k is a factor independent ofL, which can be given
by considering caseL52.

C. Series expression of partition function

FactorAm,k will be given through enumerating the ran
dom walks on the real axis, as done in the preceding sec
The main difference between the present problem and
foregoing one withN051 is their different starting points on
real axis. Therefore, each walk in the present problem
certainly linked by two parts. One part is the walk starti
from point N0ej to the original point of the real axis an
01612
-
e

-

s

e
nt

to

n.
e

is

another is the walk starting from the original point, whic
differs from that which appeared in the foregoing proble
only in its length.

The proposition space forL52 is the real axis such tha
e1 is the unit vector of the positive axis ande2 is the unit
vector of the negative axis. We takej 52 andr 51 for the
simplification. In each walk of 2n steps, there aren1m
12n0 steps along the same direction ase1 andn2m22n0
steps along the same direction ase2 with n>m12n0. Let
Am be the total number of such walks. We have

Am5C2n
n2m22n05

~2n!!

~n2m22n0!! ~n1m12n0!!
.

~4.3.1!

It is easily found that each walk from 2n0ej to 2(n0
1m)er ,(rÞ j ), on the proposition space corresponds to
lattice path from point (0,2n0) to point (2n01n1m,n
2m) on the integer plane. Because the start point and
point are assumed to seat at different semiaxes~the condi-
tion!, such a walk goes through the original point at lea
once. So, the corresponding lattice path crosses straight
x5y at least once.

Let (n1 ,n1) be the first crossing of such a lattice pa
with straight linex5y. As shown above, each studied wa
can be separated into two sections and the correspon
lattice path can also be separated into two sections. The
is a lattice path from (0,2n0) to (n1 ,n1) and the second is
the lattice path from (n1 ,n1) to (2n01n1m,n2m) . In
counting, we make the reflection transformation only for t
first section with respect to straight linex5y, under which
point (0,2n0) is transformed into point (2n0,0) and this sec-
tion is transformed into a lattice path from (2n0,0) to
(n1 ,n1); the whole path is transformed into a lattice pa
from (2n0,0) to (2n01n1m,n2m). The reflection is a one
to one transformation, soAm also can be regarded as the to
number of all lattice paths from (2n0,0) to (2n01n1m,n
2m), which crosses straight liney5x midways at least
once. We will adopt this form of lattice paths in countin
numberAm .

Separating lattice path.Similarly, we separate such a la
tice path into two sections in the following way. The fir
section starts from point (2n0,0) and ends at the first cross
ing on straight liney5x. The second section starts from
straight line y5x and ends at point (2n01n1m,n2m),
which includesk one-respect lattice paths and a one-direct
lattice path. The mother function for the whole lattice pat
is the product of mother functions for the two sections of t
lattice paths, which will be determined, respectively.

Mother function of first section of lattice paths.An arbi-
trary lattice path from (2n0,0) to straight liney5x can be
separated into a lattice path from (2n0,0) to the first crossing
on straight liney5x, which is just the above-mentioned firs
section of lattice paths, and several one-respect lattice pa
Such a lattice path can cross straight liney5x midway sev-
eral times. The mother function for the first section of latti
paths is the quotient of mother functions for the lattice pa
from (2n0,0) to straight liney5x and that of several one
respect lattice paths.
0-7
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Consider the lattice paths starting from (2n0,0) and end-
ing at point (2n01k,2n01k) on straight liney5x. Each
lattice path from (2n0,0) to (2n01k,2n01k) has 2n012k
steps in which, 2n01k steps are upward andk steps are
rightward. So,C2n012k

k is the number of the lattice paths, an

the mother function of these lattice paths
(k50

` C2n012k
k ykx2n01k according to that given in the appen

dix.
Supposingt5xy and using equation

1

A124t
S 12A124t

2t D l

5 (
n50

`

C2n1 l
n tn, ~4.3.2!

we obtain the mother function of the lattice paths fro
(2n0,0) to straight liney5x as follows

(
k50

`

C2n012k
k xky2n01k5 (

k50

`

C2n012k
k tky2n0

5
1

A124t
S 12A124t

2t D 2n0

y2n0.

~4.3.3!

A lattice path from (0,0) to straight liney5x is formed
by linking several one-respect lattice paths. The mother fu
tion of the number of such lattice paths is(k50

` C2k
k xkyk with

(
k50

`

C2k
k xkyk5

1

A124xy
. ~4.3.4!

The mother function of the number of the lattice pat
from (2n0,0) to the first crossing on straight liney5x ~never
crossing straight liney5x midway! is supposed to be
f 1(x,y), which is thereby the quotient of above-countin
mother functions as follows:

f 1~x,y!5

(
k50

`

C2n012k
k xky2n01k

(
k50

`

C2k
k xkyk

5S 12A124xy

2x D 2n0

.

~4.3.5!

Mother function of second section of lattice paths.The
second section is the lattice path from straight liney5x to
(2n01n1m,n2m), which returns to the straight linek
times midway. The mother function of the number of the
lattice paths is

f 2~x,y!5~12A124xy!k
A124xy

12x2y
. ~4.3.6!

Mother function of total lattice paths.The mother func-
tion for the number of the whole lattice paths starting fro
(2n0,0) and crossing straight liney5x, k11(k>0) times is
the product off 1(x,y) and f 2(x,y) as follows:
01612
c-

e

gk~x,y!5 f 1~x,y! f 2~x,y!5
~12A124xy!2n01k

~2x!2n0

A124xy

12x2y
.

~4.3.7!

Determining Am,k . Using Eqs.~3.3.4! and~3.3.5!, we can
write Eq. ~4.3.7! as follows:

gk~x,y!5(
s50

`

(
p,q50

`

~Cp1q
p 24Cp1q22

p21 !

3C2s12n01k
s 2kxp1s1kyq1s1k12n0. ~4.3.8!

Let n1m5p1s1k andn2m5q1s12n0. Then, coef-
ficient of termxn1myn2m in mother functiongk(x,y) is

f k5 (
s50

n2m2k22n0

~C2n22s22k22n0

n2m2s2k22n0

24C2n22s22k22n022
n2m2s2k22n021

!C2s12n01k
s 2k. ~4.3.9!

Obviously, f k5Am,k2
k . So, we have

Am,k5 (
s50

n2m2k22n0

~C2n22s22k22n0

n2m2s2k22n0

24C2n22s22k22n022
n2m2s2k22n021

!C2s12n01k
s . ~4.3.10!

D. Counting partition function

Inserting Eq.~4.3.10! into Eq. ~4.2.1!, we get the expres-
sion of the partition function as follows:

Q5 (
m52n0

n22n0

(
s50

n2m22n0

(
k50

s

~C2n22s22n0

n2m2s22n0

24C2n22s22n022
n2m2s22n021

!C2s2k12n0

s2k Lk~L21!n2m

3@~L21!e22b(n01m)/g1e2b(n01m)#. ~4.4.1!

For n→`, the property of the system is determined e
tirely by the maximum term in the series expression of
partition function. So, term (L21)e22b(n01m)/g in Eq.
~4.4.1! will be taken out and the partition function become

Q5 (
m52n0

n22n0

(
s50

n2m22n0

(
k50

s

~C2n22s22n0

n2m2s22n0

24C2n22s22n022
n2m2s22n021

!C2s2k12n0

s2k Lk~L21!n2me2b(n01m).

~4.4.2!

Each summing in the equation will be changed to an integ
by the Stirling’s formula and the integral will be finished b
using the Laplace’s formula.

Sum for k. For n,s→`, settings/n5y, n0 /n5y0, and
k/n5x, we obtain
0-8
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(
k50

s

C2s12n02k
s2k Lk'An

pE0

y

f k~x!eshk(x)dx, ~4.4.3!

where

f k~x!5AS y1y02
x

2D Y @~y12y0!~y2x!,

and

hk~x!5~2y12y02x!ln~2y12y02x!2~y12y0!ln~y

12y0!2~y2x!ln~y2x!1x ln L. ~4.4.4!

Let us count extremum pointx0 of function hk(x) for x
P@0,y#. hk(x) has maximum at pointx0 with

x05H 0 y,2y0 /~L22!

y2~y12y0!/~L21! y.2y0 /~L22!.
~4.4.5!

According to the Laplace’s theorem about integral, we obt

(
k50

s

C2s12n02k
s2k Lk}enhk(x0). ~4.4.6!

Over here, we are only concerned about how the parti
function is increasing with increscentn for n→`. So, we
can keep down only the exponent function ofnh1(x0) in Eq.
~4.4.6!.

Sum for s. Let m/n5t. using the Stirling’s formula for
n→`, we have
e
y
th

01612
n

n

(
s50

n2m22n0

C2n22n022s
n22n02m2senhk(x0)}E

0

122y02t

enhs(y)dy,

~4.4.7!

where

hs~y!5~222y022y!ln~222y022y!

2~122y02t2y!ln~122y02t2y!

2~11t2y!ln~11t2y!1hk~x0!.

We denote the point wherehs(y) has the maximum byȳ.
When y0.(L22)/L, ȳ5(12t22y0)/(t12y0y0). When
y0,(L22)/L, we must discuss for different regions oft. If
tP(2y0,122y022/L) then ȳ512@Lt12(L21)y0#/(L
22). If tP(122y022/L,122y0) then ȳ5(12t22y0)/(t
12y0y0).

Sum for m. Lastly, we should change the sum form to the
integral for t and finish the following integral ofQ:

Q}E
2y0

122y0
en[hs( ȳ)12bt12by02t ln(L21)1 ln(L21)]dt.

~4.4.8!

Setting

h~ t !5hs~ ȳ!12bt12by02t ln~L21!1 ln~L21!,
~4.4.9!

maximumh( t̄ ) of h(t) within region tP(2y0,122y0) will
be counted.

Wheny0.(L22)/L,
h~ t̄ !55 2 ln 22~12y0!ln~12y0!2~11y0!@ ln~11y0!2 ln~L21!#,
e2b2 ln(L21)21

e2b2 ln(L21)11
,y0

2 ln~e2b2 ln(L21)11!22@b2 ln~L21!#~11y0!,
e2b2 ln(L21)21

e2b2 ln(L21)11
.y0 .

~4.4.10!

For y0,(L22)/L,

h~ t̄ !5maxFh~ t̄ 1 ,h~ t̄ 2!#5H 2 lnL, b, ln~L21!

2 ln~e2b2 ln(L21)11!22@b2 ln~L21!#~11y0!, b. ln~L21!.
~4.4.11!
E. Second-order transition and crossover from first-order
transition into second-order transition

The above result depends strictly on individual numb
N052n0 of the initial proposition. It is necessary to stud
how the global properties of the spin chain change with
change in numberN0.

Wheny0.(L22)/L@N0.N(L22)/L)], free energy per
spin f of the system is defined according to Eqs.~4.4.8! and
r

e

~4.4.10! as follows:

f 52 lim
n→`

ln Q

2bn
52

h~ t̄ !

2b
. ~4.5.1!

The entropy per spin is
0-9



s5b2
] f

]b
5

ln 22
1

2
~12y0!ln~12y0!2

1

2
@11y02 ln~L21!# ln~11y0!,

e2b2 ln(L21)21

e2b2 ln(L21)11
,y0

2b2 ln(L21) 2b2 ln(L21)
~4.5.2!

SHAO et al. PHYSICAL REVIEW E 68, 016120 ~2003!
5 ln~e2b2 ln(L21)11!2
2be

e2b2 ln(L21)11
1~11y0!ln~L21!,

e 21

e2b2 ln(L21)11
.y0 .
t

t.

oi

ed

tio

ity
It is easy to find thatf ands are continuous at critical poin
bc25 ln(L21)/21 1

2 ln@(11y0)/(12y0)#, but first-order deriva-
tive of entropy s is discontinuous at the critical poin
Namely, we have

]s

]b
5H 0, b,bc2

24b
e2b2 ln(L21)

~e2b2 ln(L21)11!2
, b.bc2 .

~4.5.3!

Thus, the system has second-order transition at critical p

b5bc2 for casey0.(L22)/L. Averagem̄ of the spin chain
satisfies the following equation
y

t

n

01612
nt

lim
n→`

m̄1n0

n
5 lim

n→`

1

2n

] ln Q

]b

5H 0 when b,bc2

e2b2 ln(L21)21

e2b2 ln(L21)11
2y0 when b.bc2 .

~4.5.4!

This result means that the rumor cannot be magnifi
when b,bc2. But when b.bc2, due to inequality
(e2b2 ln(L21)21)/(e2b2ln(L21)11)2y0.0, the rumor can be
magnified. @Strictly speaking, average exaggeration ra
M̄ /N0,1 when (e2b2 ln(L21)21)/(e2b2ln(L21)11)2y0,y0,
and M̄ /N0.1 when (e2b2 ln(L21)21)/(e2b2ln(L21)11)2y0
.y0.# The transition point is determined by the acceptabil
exponential and the society’s guide.

However, wheny0,(L22)/L @N0,N(L22)/L#, free
energy per spinf is given according to Eqs.~4.4.8! and
~4.4.11! as follows
f 52 lim
n→`

ln Q

2bn
52

1

2b H 2 lnL, b, ln~L21!

2 ln~e2b2 ln(L21)11!22@b2 ln~L21!#~11y0!, b. ln~L21!.
~4.5.5!

Moreover, the entropy per spin is

s5b2
] f

]b
5H ln L, b, ln~L21!

ln~e2b2 ln(L21)11!2
2be2b2 ln(L21)

e2b2 ln(L21)11
1~11y0!ln~L21!, b. ln~L21!.

~4.5.6!
ized
It is easy to find thatf is continuous at critical pointbc
5 ln(L21) but entropys is not. The increment of the entrop
in the critical point is

Ds5sub→ ln(L21)202sub→ ln(L21)10

5S 122y02
2

L D ln~L21!. ~4.5.7!

Thus, the system has first-order transition at critical poinb
5bc and transition latent heat of per spin isl 5(122y0

22/L). Average magnetizationm̄ per spin satisfies equatio
lim
n→`

m̄1n0

n
5 lim

n→`

1

2n

] ln Q

]b

5H 0 when b, ln~L21!

e2b2 ln(L21)21

e2b2 ln(L21)11
2y0 when b. ln~L21!.

~4.5.8!

This result means that the rumor cannot be aggrand
whenb,bc . On the other hand, forb.bc , the rumor can
be aggrandized because (e2b2 ln(L21)21)/(e2b2ln(L21)11)2y0
0-10
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.0. @Strictly speaking, average exaggeration ratioM̄ /N0
,1 when (e2b2 ln(L21)21)/(e2b2ln(L21)11)2y0,y0 and
M̄ /N0.1 when (e2b2 ln(L21)21)/(e2b2ln(L21)11)2y0.y0.#
Figure 3 showsM̄ /N varies withb for L53. The curves for
y051/2 and y051/5 represent the second-order transiti
and the first-order transition, respectively. The curve fory0
51/3 represents the crossover of transition because oy0
5(L22)/L.

It is easy to see that pointy05(L22)/L, namely, indi-
vidual’s numberN05@(L22)/L#N5N00, is the crossover
point at which the crossover between first-order and seco
order transition in the spin chain comes true.
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APPENDIX: ENUMERATION OF THE LATTICE PATHS

For a given positive integerM, number of solutions$Sq%
determined by spin sum(q51

N Sq5Mer , or the number of
spin configurations, is the key to giving the exact solution
the rumor model.

The addition of spins shows that the spin polynomial d
termines a translation at a proposition space from the orig
point to Mer . According to the addition law, the configura
tion numbers for a spin sum is just the total number of
random walks with transition probability Eq.~2.3.1!.

Because the original point holds a particular place a
proposition space, which is the joint ofL semiaxes, the tran
sition probability for caseL.2 has the central symmetr
with respect to the original point, but not the translation
variance. So, the calculation of the configuration numbe
so complicated that we have to recourse to the concept o
lattice path in combination mathematics.

FIG. 3. M̄ /N varies withb for L53. The curves fory051/2
and y051/5 represent the second-order transition and the
order-transition, respectively. The curve fory051/3 represents the
crossover of transition because ofy05(L22)/L. The second-order
transition happens at critical pointbc25@ ln(L21)#/21

1
2 ln@(1

1y0)/(12y0)# for y0.(L22)/L. The first-order transition happen
at critical pointbc5 ln(L21) for y0,(L22)/L.
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1. Lattice path

a. Basic conceptions

Integer plane.An integer plane is the plane on which th
Cartesian coordinate is established. Theoretically, the inte
plane involves all four quadrants of the plane, but actua
we will pay attention only to the first quadrant. Neighb
points with integer coordinates are linked by segments w
unit length. In order to simplify description, we will call th
set of all points with integer coordinates on a plane and
segments linking such points as the integer plane later.

Lattice path.A way turning rightwards and upwards o
the integer plane is called a lattice path if it is formed
linking.

Total number of lattice paths.The length of a lattice path
from (0,0) to (m,n)(m>0,n>0) is m1n, in which m steps
turn rightwards andn steps turn upwards. Out of them1n
steps, upwardn steps haveCm1n

n ways to appear in the lat
tice path, so the total number of the lattice paths from (0
to (m,n) is Cm1n

n 5(m1n)!/(m!n!).
In counting the number of some type of the lattice pat

we must show clearly the essential characteristics of the
tice paths. Two types of the lattice paths appearing freque
are defined as follows.

One-respect lattice path.Straight linex5y divides an in-
teger plane into two parts~two respects!. The lattice path
starting from a point (xi ,yi) on straight linex5y and then
returning to straight linex5y is called a one-respect lattic
path if it does not cross straight liney5x midway.

One-direction lattice path.The lattice path starting from
straight linex5y and then arriving at (xn ,yn) is called a
one-direction lattice path if it does not involve any on
respect lattice path. Unlike a one-respect lattice path, non
the one-direction lattice path ever returns to straight liney
5x midway.

b. Lattice path and random walk on real axis

In practice, each lattice path on an integer plane co
sponds to a walk on a straight line one to one.

Correspondence between integer plane and real axisA
straight line becomes the real axis when a coordinate is
tablished on it. Let point~0,0! on an integer plane correspon
to original point 0 of the real axis. Now we study the sh
among points on the real axis. Each step starting from a p
n and arriving at pointn11 on the real axis corresponds to
step of a lattice path turning rightward, and each step fr
n11 to n on the real axis corresponds to an upward step
a lattice path. So, each point (xi ,yi) on the integer plane
corresponds to the point with coordinaten5xn2yn on the
real axis. Moreover, each point (xi ,yi) over straight linex
5y hasxi,yi which corresponds to a point on the negati
semiaxis. Similarly, each point (xi ,yi) under straight linex
5y corresponds to a point on the positive semiaxis.

Lattice path and random walk.Let the starting point of a
lattice path be (0,0) and the end point be (xn ,yn). This lat-
tice path corresponds to a walk on the real axis from
original point 0 to pointn5xn2yn . So, the total number o
walks on the real axis from the original point to pointn

st
0-11
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5xn2yn equals the total number of the lattice paths fro
(0,0) to (xn ,yn). Therefore, we can enumerate walks on t
real axis through enumerating the corresponding lat
paths.

One-axis walk.There is a walk starting from origina
point 0 and going only on the negative or on the posit
axis, and finally returning to 0~does not involve the origina
point in the midway!. We call such a walk as a one-ax
walk. Obviously, such a walk corresponds to the one-resp
lattice path.

One-direction walk.A walk on the positive or on the
negative axis from original point 0 to a pointm ~does not
return to the original point in the midway! is called a one-
direction walk. Obviously, such a walk corresponds to
one-direction lattice path.

In order to count numberAm,k , we have to use the alter
native method in enumerating lattice paths. A walk on
real axis from 0 tom may be regarded as a walk formed b
linking several one-axis walks and a one-direction walk e
to end. At one time, the corresponding lattice path is
garded as a path formed by linking several one-respect la
paths and a one-direction lattice path end to end.

We consider a 2n-step walk on the real axis from 0 tom,
which is formed by linking several one-axis walks and
one-direction walk. Each one-axis walk may go on differe
semiaxis and have different step numbers. So, various
sible one-axis walks and one-direction walk must be con
ered in the calculation of the total number of random wal
Similarly, various possible one-respect lattice paths and o
direction lattice paths must be considered in the calcula
of the total number of lattice paths, too. The following the
rems can be proved easily.

Theorem A.1.1.The number of lattice paths from (0,0) t
(m,n) (m>n>0) but never surpassing straight liney5x is

Cn1m
n 2Cn1m

n21 . ~A.1.1!

Obviously, this number is relevant to that of the ways
the walk from original point 0 to pointm on a semiaxis.
Similarly, we have

Theorem A.1.2.The number of lattice paths from (1,0) t
(m,n) (m>n>0) without surpassing straight liney5x21
is

Cn211m
n 2Cn211m

n21 . ~A.1.2!

2. Free monomial system

a. Basic conception

For the calculation of the total number of various latti
paths, relevant content of free monomials is needed. LetSbe
a set with several elements. For an arbitrary non-nega
integerm, m elements of setScan form a sequence~elements
in the sequence can be repeated!. With all such sequences
we can form a new set, which is denoted asSm. The length
of every elementuPSm is m, which is written asm5 lenu.
There is only one sequence with length 0, which is the em
sequence. It can be denoted as 1. Thus,S05$1% and S1

5$S%.
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Monomial and free monomial system.Different numberm
corresponds to the sequence with different length, which
longs to different setSm. All finite sequences composed b
elements in setS form a new set, which is noted asS* , and
we have

S* 5ø j 50
` Si . ~A.2.1!

S* is regarded as being generated byS, and elements ofS1

5S are essential elements ofS* . Also, elements inS* are
called monomials.

The following juxtaposition operation+ can be defined as
follows:

For two arbitrary elements a1a2•••amPS* and
b1b2•••bnPS* , their juxtaposition is another elemen
a1a2•••amb1b2•••bn in S* , which is denoted as follows

~a1a2•••am!+~b1b2•••bn!5a1a2•••amb1b2•••bn .
~A.2.2!

Obviously, juxtaposition operation+ satisfies the associa
tive law, and empty sequence 1 is its unique unit eleme
So, (S* ,+) is a unitary semigroup. (S* ,+) is called the free
monomial system onS, or for short, the free monomial sys
tem. Elements ofS may be common variables. LetS5$x%,
then Sm5$xm%. So, S* 5$1,x,x2, . . . %, which is right the
usual monomial system~power ofx). If S5$x,y%, wherex
and y represent turning one step rightwards and one s
upwards on an integer plan, respectively, then, the elemen
Sm is a lattice path with lengthm. S* is the set of all lattice
paths starting from the original point. Juxtaposition operat
+ denotes linking two lattice paths end to end.

Theorem A.2.1.For everyuPS* andaPS, we have

(
uPS*

u5S 12 (
aPS

aD 21

. ~A.2.3!

Proof: (uPS* u5(n50
` (uPSnu5(n50

` ((aPSa)n5(1
2(aPSa)21.

b. Mother function for lattice paths

Mother function.Let a0 ,a1 ,a2 , . . . ,an , . . . be a number
series andx a variable, the mother function for numbersan is
defined as the following power series

f ~x!5a01a1x1a2x21•••1anxn1•••5 (
n50

`

anxn.

~A.2.4!

Let a be a real number andk a non-negative integer, an
denote (k

a)5@a(a21) . . . (a2k11)#/k!. We denote (k
a)

5Ca
k whena is a non-negative integer. The mother functio

for binomial coefficients (n
a) is

f a~x!5S a
0 D1S a

1 D x1S a
2 D x21•••1S a

n D xn1•••.

~A.2.5!
0-12
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Because it is consistent with the expansion of (11x)a in the
manner of the mathematical analysis, we denotef a(x) as
(11x)a. Takinga521/2, we have

(
n50

` S 2n
n D xn5 (

n50

`

C2n
n xn5~124x!21/2. ~A.2.6!

Mother function for S* . Set S* is the set of all lattice
paths starting from the original point, which is generated
setS5$x,y%. The mother function for it is obtained accord
ing to Theorem A.2.1:

(
uPS*

u5S 12 (
aPS

aD 21

5~12x2y!21. ~A.2.7!

The above formula can also be rewritten as

~12x2y!215 (
k50

`

~x1y!k5(
m,n

l m.nxmyn, ~A.2.8!

wherel m,n is the total number of lattice paths from (0,0)
(m,n).

c. Subsystem of monomials

Subsystem about one-respect lattice path T* , T and cor-
responding mother function.SetT* of all lattice paths start-
ing from straight liney5x then returning to it is the subse
of free monomial systemS* generated by set$x,y%. Suppose
T* is the free monomial system created byT, the set of all
one-respect lattice paths starting from point~0,0! and ending
at the straight liney5x. So, we have

(
uPT*

u5S 12 (
uPT

uD 21

. ~A.2.9!

Because the total number of lattice paths from (0,0) to (n,n)
is C2n

n , we have

(
uPT*

u5 (
n50

`

C2n
n ~xy!n. ~A.2.10!

Apparently, sum(aPTa determines mother functionf (x,y)
of the one-respect lattice paths. Now we have

(
n50

`

C2n
n ~xy!n5@12 f ~x,y!#21. ~A.2.11!
01612
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Using formula ~A.2.6!, we can obtain the result that th
mother function of the lattice paths in setT* is (1
24xy)1/2, and mother functionf (x,y) of the one-respec
lattice paths is

f ~x,y!512~124xy!1/252
12A124xy

2
.

~A.2.12!

As we have noticed, there are two types of one-respect la
paths. The lattice paths in one type are always over stra
line y5x, while the lattice paths in the other are und
straight line y5x. These two types of one-respect lattic
paths are symmetric with respect to straight liney5x, so the
number of one-respect lattice paths with length 2n in each
type is bn/2 and the corresponding mother function
f (x,y)/2.

System R. Let us consider a lattice path starting from poi
(0,0) and arriving at the straight liney5x21 never surpass
ing this line. These lattice paths form setR. All one-direction
paths are formed by linking several lattice paths of setR. The
mother function of the lattice paths for setR is

12A124xy

2y
. ~A.2.13!

System about one-direction lattice paths R* . The free mo-
nomial systemR* is formed by all one-direction lattice path
which are under straight liney5x rigorously, except the
starting point. As mentioned above, their essential eleme
are lattice paths in setR.

It can be proved that the total number of lattice paths fr
(0,0) to (m,n) in R* is @(m2n)/(m1n)#m1n

n , m>n. The
mother function of the lattice paths inR* is

(
m>n

m2n

m1n
Cm1n

n xmyn5(
l 50

` S 12A124xy

2y D l

5S 12
12A124xy

2y D 21

.

~A.2.14!
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