PHYSICAL REVIEW E 68, 016119 (2003
Power-law relaxation in a complex system: Omori law after a financial market crash
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We study the relaxation dynamics of a financial market just after the occurrence of a crash by investigating
the number of times the absolute value of an index return is exceeding a given threshold value. We show that
the empirical observation of a power law evolution of the number of events exceeding the selected threshold
(a behavior known as the Omori law in geophysitssconsistent with the simultaneous occurrencdipf
return probability density function characterized by a power law asymptotic behaviofiiqrad power-law
relaxation decay of its typical scale. Our empirical observation cannot be explained within the framework of
simple and widespread stochastic volatility models.
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Several complex systems are statistically characterized b8pecifically, decaying patterns of volatility are observed in
power-law distributions. Examples are earthquakes, financidlme periods immediately after a financial crash. An illustra-
markets, landslides, forest fires, and scale free networkdive example of such a nonstationary time pattern is given in
Power-law distributions imply that rare events are occurringFig. 1 where we plot the 1-min logarithm changes of the
with a finite non-negligible probability in complex systems. indexr (t) (a quantity essentially equivalent to retufar the
It is therefore meaningful to ask the following scientific Standard and Poor’s 508&P500 index during 100 trading
question: how is the dynamics of a complex system affecte@lays after the Black Mondail9 October 198)7 The pattern
when the System undergoes to an extreme event? An ansv\@bserved in Flg 1 is not invariant under time reversal. Other
to this question concerning earthquakes was provided b9xamples of statistical properties of market, which are not
Omori more than a century agj]. The Omori law describes time reversal, have been observed in the investigation of
the nonstationary period observed after a big earthquake. [Bross-sectional quantities computed for a set of stocks before
his study, the number of aftershocks per unit of time is de-and after financial crash¢s4].
scribed by a power law, and a time scale for the relaxation A direct characterization of the time evolution of the scale
process of the complex system to its typical state does n@f the random process of return is extremely difficult in fi-
exist. Nonexponential relaxation to a typical state has als@ancial markets and in several other complex systems due to
been observed in several physical and social systems. Féte fact that the random variable is highly fluctuating and
example, power-law relaxation has been theoretically prethat system is unavoidably monitored by just recording a
dicted and experimenta”y observed in Spin g|a$§§scon_ Single random realization. We make use of a different and
densed matter systeni8], microfracturing phenomenft], statistically more robust method. Specifically, we quantita-
physical systems described by a fractional Fokker-Planchively characterize the time series of index returns in the
equation[5], in the kinetics of reversible bimolecular reac- Nonstationary time period by investigating the number of
tions [6], in two-dimensional arrays of magnetic dots inter- times|r (t)| is exceeding a given threshold value. This inves-
acting by long-range dipole-dipole interactiog], in  tigation is analogous to the investigation of the numbfy

the _Internet dynamical respong8], and in the Internet 0.01
traffic [9].

In the present study, we investigate the dynamics of a
model complex system when it is moved far away from its 0.005
typical state by the occurrence of an extreme event. This is
done by investigating the statistical properties of time series 0

of financial indices in the time period immediately after a
financial crash. These market phases are indeed strongly
nonstationary and we show that a time power-law relaxation
is detected when the financial market is moved far away
from its typical behavior. -0.01
Financial time series of stock or index returns is modeled
in terms of random process¢$0,11]. Empirical investiga-
tions show that the time series of stock or index return is not g, 1. 1-min change of the natural logarithm of the Standard
Stl’iCt|y sense Stationary. In faCt, the VOIat|I|ty Of the finanCial and Poor’s 500 index during the 100 trading day time period im-
asset, i.e., the standard deviation of asset returns describifgediately after the Black Monday financial cra¢20 October
the typical scale of the process, is itself a stochastic proces®87-11 March 1998 A decrease of the typical scale of the sto-
fluctuating in time[12,13. The nonstationary evolution of chastic procesgvolatility in the financial literaturg is manifest
asset returns can sometimes show relaxation time patternsaking the stochastic process nonstationary.
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) ) FIG. 3. Cumulative numbeX(t) of the number of timegr (t)|

~ FIG. 2. Cumulative numbeN(t) of the number of timesr (t)| s exceeding the thresholdduring the 60 trading days immediately

is exceeding a threshold O!urlng_ the 60 trading days immediately after (a) the 27 October 1997 an) the 31 August 1998 financial

after the Black Monday financial crash. From top to bottom we . ,qhes. In hoth panels, from top to bottom, we show the curves for

show the curves for values df equal to 4r, 50, 60, and %, 5465 of¢ equal to 4r, 50, 60, and 7o, respectively. The pa-
respectively. The parameter is the standard deviation of the pro- rametero is the standard deviation of the procegs) computed

cessr(t) computed over the entire investigated period. The dashed, e the entire investigated period. The dashed lines are best fits of
lines are best fits of Eq2). Eq. (2).

of aftershock earthquakes measured at ttrafter the main

earthquake. The Omori law(t) ot~ P says that the number
of aftershock earthquakes per unit time measured at time
after the main earthquake decays as a power law. In orde
avoid divergence &t=0, the Omori law is often rewritten as

to 14 January 1988. This time period is chosen to maximize
the time period investigated by simultaneously ensuring that

the relaxation process is still going on. The selected value is
" ot a critical one and time windows of 50 or 70 trading days
provide similar results. For the selected time period, we in-
n(t)=K(t+7)P 1) vestigate the 1-min return time series of the S&P500 index.
' The first estimate concerns the unconditional 1-min volatility

. . _ 74 .
where K and 7 are two positive constants. An equivalent Which is equal too=4.91xX10"". In Fig. 2, we show the
formulation of the Omori law more suitable for comparison CUmulative number of events(t) detected by considering
with real data can be obtained by integrating E.between  @ll the occurrences observed when the absolute value of in-
0 andt. In this way the cumulative number of aftershocks dex return exceeds a threshold vali@hosen as &, So,

observed until time after the main earthquake is 60, and 7o. For all the selected threshold values, we ob-
serve a nonlinear behavior. Nonlinear fits performed with the
N(t)=K[(t+ 7)1 P—71"P]/(1—p), (2)  functional form of Eq.(2) well describes the empirical data

for the entire time period. This paradigmatic behavior is not

whenp#1 andN(t)=K In(t/7+1) for p=1. The value of specific of the Black Monday crash of the S&P 500 index. In
the exponenp for earthquakes ranges between 0.9 and 1.5fact, we observe similar results also for a stock price index
BecauseN(t) is related ton(t) by a summation, the fluctua- weighted by market capitalization for the time periods occur-
tion in N(t) is substantially reduced compared to the fluctua+ing after the 27 October 1997 and the 31 August 1998 stock
tion inn(t). Hence, customary measuremeni\gt) leads to  market crashes. This index has been computed by selecting
a more reliable characterization of the aftershock period thathe 30 most capitalized stocks traded in the NYSE and by
measurement af(t). using the high-frequency data of tieade and Quotealata-

We first investigate the index returns during the time pe-base issued by the NYSE. In Fig. 3, we shdift) for €
riod after the Black Monday crash occurred at New York =4c, 50, 60, and %, whereo is again the unconditional
Stock ExchangdNYSE). This crash was one of the worst 1-min volatility in the considered periods. We estimate
crashes occurred in the entire history of NYSE. The S&P500=4.54x 10 * during the period from 28 October 1997 to 23
went down 20.4% that day. In our investigation, we select alanuary 1998, and=6.09x 10" * during the period from 1
60 day after crash time period ranging from 20 October 198 Beptember 1998 to 24 November 1998. In the left part of

TABLE |. Exponents obtained from the empirical analyses of 60 day market periods occurring after the 19 October 1987, 27 October
1997, and 31 August 1998 market crashes.

P a B ap
4o 50 60 To
1987 0.85 0.90 0.99 0.99 3.189.34 0.32:0.02 1.02-0.13
1997 0.70 0.73 0.73 0.76 3.60.40 0.22-0.04 0.81%0.17
1998 0.99 0.99 0.99 0.99 3.49.37 0.32-0.05 1.12:0.21
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Table I, we summarize the values of tpeexponents ob- By hypothesizing thaty(t) ~exp(—kt), the frequency of
tained by best fitting with Eq(2) the cumulative number of events above threshold is expected to be exponentially de-
events exceeding the selected threshold values for the cooreasing:n(t) ~exp(—akt). Conversely, when the scale of
sidered market crashes. The value of the expopeaties in  the stochastic process decays as a powerjéy~t~#, the

the interval between 0.70 and 0.99. The estimate of the eXrequency of events above threshold is power-law decaying
ponentp is slightly increasing when the threshold valiés  asn(t)~1/P. It is worth noting that the exponeptis given
increasing. Below, we will comment on the relation betweenby

this observation and the properties of the index return prob-

ability density function(pdf). The detected nonlinear behav- p=ap. (7)

ior of N(t) is specific to aftercrash market period. In fact, an

approximately linear behavior dfi(t) is observed when a The previous relation links the exponeptgoverning the
market period of roughly constant volatility, for example, the number of events exceeding a given threshold todhex-
1984 year is investigated. This is due to the fact that whemonent of the power-law return cumulative distribution and
the process is stationary, the frequemgy) of aftershock is, to the 8 exponent of the power-law decaying scale. It is
on an average, constant in time and therefore the cumulativgorth noting that a power-law behavior of the return pdf is
numberN(t) increases linearly in time. In terms of EQ),  observed only for large absolute values of returns. Hence, the
this implies that the exponemtis equal to zero. For inde- relation between exponenf&qg. (7)] is valid only for large
pendent identically distributed random time series, it is posvalues of the thresholé used to determine the exponemt
sible to characteriza(t) in terms of an homogeneous Pois- Qur theoretical considerations show that a number of events
son proces$15]. The results summarized in the left part of above threshold decaying as a power law, i.e., the analogous
Table | imply that the time period immediately after a big of the Omori law, is consistent with the simultaneous occur-
market crash has statistical properties which are differentence of (i) a return pdf characterized by a power-law
from constant volatility periods. In particular, index return asymptotic behavior angi) a non-stationary time evolution
cannot be modeled in terms of independent identically disof the return pdf whose scale is decaying in time as a power
tributed random process after a big market crash. law. These hypotheses are consistent with recent empirical
The empirical evidence of the power-law decrease of thgesults. In fact, a return pdf characterized by a power-law
frequency of aftershocks is consistent with a power-law deasymptotic behavior has been observed in the price dynamics
cay of volatility after a major crash. In order to prove this of several stock§16,17]. To the best of our knowledge, the
claim, we describe the empirical behaviorMft) by assum-  only investigation on the decay of volatility after a crash has
ing that during the time period after a big crash, the stochasheen performed in Ref18] where a power-law or power-
tic variabler (t) is the product of a time dependent scal¢)  law log-periodic decay of implied volatility has been ob-
and a stationary stochastic procesgt). For the sake of served in the S&P500 after the 1987 financial crash. We
simplicity, we also assume that the pdf ifft) is approxi-  would like to stress that the implied volatiltty is different
mately symmetrical. Under these assumptions, the frequendyom our y(t) because implied volatiltiy is obtained from

of events of|r(t)| larger than¢ observed at time is index derivative prices by using the Black and Scholes for-
. mula instead that directly from data. Moreover, the value of

n(t)oc2J f(r t)dr, 3) the exponent governing the decay o_f volat|I|ty is dl_fferent in

¢ our study and in Ref.18]. The analytical considerations de-

veloped above indicate that stochastic volatility models of
wheref(r,t) is the pdf ofr(t) at timet. One can rewrite Eq. price dynamics are able to describe the behavior of an index
(3) in terms of the cumulative distribution functidny(rg) of  after a crash when they predict the volatility power-law de-

the random variableg(t) as cay in time after a crash. Therefore, simple autoregressive
models, such as GARGH,1) [19] models, are unable to
n(t)x1—Fg(€/y(1)). (4)  describe the observed behavior. GARCH processes in their

) o . . . most compact form cannot show a scale of the stochastic
In this description, the specific form of the time evolution r5cess decaying as a power law after a big event. By ana-
of n(t) is, for large values of the threshofd controlled by |ytical calculation and performing numerical simulations, we
the properties ofi) the time evolution of the scalg(t) and  pave shown that these models are characterized by an expo-
(i) the asymptotic behavior of the pdf for large valuespential decay of the scale of the procgzel.

of [ry(t)]. _ ) In order to show that empirical data are consistent with
By assuming that the stationary return pdf behavegyr description of aftershock periods, we empirically study
asymptotically as a power law the time evolution of the scale of the process. To this end, by

using the ordinary least square method, we fit the absolute
value of return with the functional forr(t)=c,;t " #+c, in
the 60 days after each considered market crash. We check
that the relatiorc,t ~#>c, is verified in the investigated pe-
the frequencyn(t) of events becomes for large valuesfof ~ riod. The best estimations of andc, are 6.3<10 * and 2.8
%106 for the 1987 crash, 5:410™* and 4.3<10"° for the
n(t)~[y(t)/€]¢. (6) 1997 crash, and 4x410 # and 1.0<10 * for the 1998 crash,

1
fs(fs)Nra—H, 6
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respectively. The timeis expressed in trading day. By using 1000
the relationr (t) = y(t)r4(t), the 8 exponent obtained is also o
the exponent controlling the scajg€t). In order to estimate ]
the @ exponent governing the stationary part of the return
evolution we define a new variabtg(t) obtained dividing ‘ ,
r(t) by the moving average of its absolute value. The aver- 500 | o
aging window is set to 500 trading minutes. The quantity
rp(t) is a proxy for the stationary retunn(t). We investi-
gate the asymptotic properties for large absolute values of
the stochastic procesg(t) by computing the Hill's estima-

tor [21] of the process computed over the largest 1% values 0 s a—
of |r ,(t)|. To assess the reliability of the estimate obtained 0 20 40 60
t (trading day)

with this method, we also compute its 95% confidence inter-
val. The 95% confidgnce interval is ob_tained by compu_ting FIG. 4. Cumulative numbeX(t) of the number of timer ()|

Coser/ Jm, whereCgs is the value at which the normal dis- s exceeding a thresholtl The data refer to the S&P 500 index just
tribution is equal to 0.95 andn is the number of records after the 1987 crasiN(t) is computed for different values of the
located in the distribution tail. With our procedure, we obtainthreshold¢ ranging from 4 to 13. A linear behavior df(t) is

a value of the exponent which is ranging from 3.18 to observed for all values df. In the inset, we show the values of the
3.67. These values are consistent with the observations pestope  as a function of¢ in a log-log plot. These values are
formed by different authors on the power-law behaviorcomputed by performing a best linear fitting M(t). The continu-
governing large absolute returns in stocks and stoclous line is the best fit ofy(€) with a power-law behavior. The best
indices[16,17]. fitting exponent is 3.14.

The estimates ofr and 8 values are shown in the right
part of Table | for all the investigated market crashes. The In conclusion, our results show that time periods of the
last column of the table gives the value of the prodag  order of 60 trading day&pproximately 3 months in calendar
that is to be compared with the values pSummarized in time) occurring after a major financial crash can be modeled
the left part of the table. The agreement is increasingly goodéh terms of a new stylized statistical law. Specifically, the
for values ofp obtained for large values of the threshold. number of index returns computed at a given time horizon
This is expected because only for large threshold, the releccurring above a large threshold is well described by a
evant part of the return pdf is well described by a power-lawpower-law function which is analogous to the Omori law of
behavior. geophysics.

Finally, we investigate the properties bi(t) computed The presence of a power-law relaxation seems to be a
for the random variable,(t). This variable is our proxy for common behavior observed in a wide range of complex sys-
r<(t) and therefore a linear behavior Nf(t) is expected for tems. One possibility for this common occurrence is that the
each value of the threshold chosen. From our definition ofomori law is a phenomenological manifestation of underly-
rp(t), it follows that the mean of the absolute valuer gft) ing common microscopic mechanisms governing the dynam-
is equal to one. In Fig. 4, we shoM(t) for the market crash ics of complex systems after an extreme event. An example
of 19 October 1987 whefi is ranging from 4 to 13. For all of such mechanisms has been proposed to model the magne-
values of the threshold\(t) is approximately linear show- tization relaxation in spin glasses where it has been shown
ing thatr,(t) provides a good proxy for(t). Moreover, that the presence of many metastable states whose lifetimes
starting from Eq(4), one can show that the slopgof N(t) are distributed according to a broad, power law distribution
is proportional to the quantity F¢(€). We determine ~ implies a power-law decay of the magnetization during aging
with a best linear fit oN(t) for each value of. The results  [2].
are shown in the inset of Fig. 4. Under the assumption of Eq.

_(5), the expected relation bgtweepanda is p~€ . The ACKNOWLEDGMENTS

inset also shows our best fit af with a power-law relation
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