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Global dissipativity of continuous-time recurrent neural networks with time delay
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This paper addresses the global dissipativity of a general class of continuous-time recurrent neural networks.
First, the concepts of global dissipation and global exponential dissipation are defined and elaborated. Next, the
sets of global dissipativity and global exponentially dissipativity are characterized using the parameters of
recurrent neural network models. In particular, it is shown that the Hopfield network and cellular neural
networks with or without time delays are dissipative systems.
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[. INTRODUCTION Secs. Il and IV. lllustrative results can be found in Sec. V.
Finally, concluding remarks are made in Sec. VI.
Stability is one of the important properties for dynamic
systems. From a systems-theoretic point of view, the global Il. PRELIMINARIES
stability of recurrent neural networks is a very interesting . .
issue for research because of the special nonlinear structure Cpnsujer a general recurrent neural network model with
of recurrent neural networks. From a practical point of view,mUItIple time delays
the global stability of neural networks is also very important dx(t) n
because it is a prerequisite in many neural network applica- c d'—: —dixi(D)+ 2, a;0;(x;(1)
tions such as optimization, control, and signal processing. t =1
In recent years, the stability of continuous-time recurrent n

neural networks has received much attention in the literature, + z by 0 (X;(t— 7))+ u; , (1)
e.g., Refs[1-29. Among the numerous results, the stability i=1
of recurrent neural networks is characterized using symmetr}/
of weight matrice$1], diagonal domination of matricg43], or
positive definiteness of matricé&7], M-matrix characteris-
tics [21], Lyapunov diagonal stabilit}s,17,25, and additive
diagonal stability[28]. Despite the existence of many re-
ported results in the literature, there are still needs for MOTS,rk model with time delay can be described in a vector
in-depth and comprehensive investigations. For example, ig, .
almost all the existing results, the activation functions of the

i=1,3,...n; wherec;>0 andd;>0 are positive pa-
rametersy; is the state variable of thigh neuron,u; is an
input (bias, a;; andb;; are connection weights from neuron
i to neuronj, andg;(-) is an activation function.

If 7j=7(i,j=1,2,...n), then the recurrent neural net-

neural networks are limited to be sigmoid functions, piece- X
wise linear monotone nondecreasing functions with bounded Cgp = ~Dx(O+AgX(W))+BgXx(t—7)+u, (2
ranges.

The notion of dissipativity in dynamical systems was in-where, x=(X,X,, ... X,)" is the neuron state vectoy
troduced in the early 1970s. This concept generalizes the (uj,u,, ... ,u,)" is the bias vector, C
idea of a Lyapunov function and has found applications in=diag(c,,c,, ...,c,) and D=diagd;,d,, ... d,), A
diverse areas such as stability theory, chaos and synchrori=(a;j)nxn,B=(bjj;)nxn are connection weight matrices, and
zation theory, system norm estimation, and robust contro§(-)=(g1(-),92(+), - . . .gn(+))" is a vector-valued activa-
[30-32. tion function.

In this paper, we analyze the global dissipation and global As a special case, the recurrent neural network model
exponential dissipation of several classes of continuous-timeithout any time delay can be viewed Bs=0:
recurrent neural networks with general activation functions.
The main contributions of this paper include the derivations
of new global attractive sets and characterization of global
dissipativity and global exponential dissipativity. These
properties play an important role in studying the uniqueness We assume that the activation functigy(-) is continu-
of equilibria, global asymptotic stability, global exponential ous and monotonically nondecreasing wgtf0)=0 (i.e., its
stability, instability, the existence of periodic solutions, andDiniderivativeD " g;=0, for the definition of Diniderivative,
chaos control and synchronization. we refer to Ref.[34]) where D" g;(x):=limsup,_¢+(gi(x
The remaining paper is organized as follows. Section II+h)—g;(x))/h. Next, we define three classes of activation
describes some preliminaries. The main results are stated fanctions:

dx
Ca=—Dx(t)+Ag(x(t))+ u. 3)
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(1) The set of bounded activation functions defined as def|
| |xi| =

E (aj|+[bi; Dkj+ | ui|
def
B={g(x)||lg(x)|<k, 0<D*g(x)<¢}, (4)

n

1
gg —d{Z (|aljl+|bljl)k +|U|

where k= (ky,k,, ... k)T and €=(€,€,, ... €,)" with
0=<k;,€;<+0o0. The sigmoid activation functions used in the
Hopfield networks[1] and the piecewise linear activation def n

functions in cellular neural networK$3] are typical repre- S, = {x||x |<— {2 (laij |+ [bij D k; +ui]
sentatives of the bounded functions.

(2) The set of Lipschitz-continuous activation functions is

defined as def
=M;, i=1,2,...n]. 9)
def (X)) —Q; .
L= {g(x) 0= Ms(’gm, Y X,yieR
Xi—Yi Proof. First, we employ a radically unbounded and posi-
_ tive definite Lyapunov function a¢(x)=X!"_,c;x?/2. Com-
i=1,2,...n (5 puting dV/dt along the positive half trajectory ofL), we
have

A good example of the Lipschitz-continuous activation func-
tion is gi(x;) =max0,&;x;}, used in Ref[18].

(3) The general set of monotone nondecreasing activation dt
functions is denoted as

n

-3 engt

(1)

n

dor 2 {E (Jaj] + o k| i = dix?+ [ui [ x|
G={9(x)|g(x) eC[R,R], D"gi(x;)=0,

N

n

Xt = 121 (lagj |+ b Dkj+ [yl | [xi]

i=1,2,...n} (6) :ilr_ d

2

2]
n
2 (laj]+ by Dk + ||

n
Evidently, BCLCG. _ i E _ _
Definition 1 The neural network mod¢l) is said to be a i [2 2 (2] + [l )k +ui]
dissipative system, if there exists a compact$eR", such
that V xoeR", 3T>0, when t=to+T, X(t,tg,X)CS, 1
wherex(t,tq,Xg) denotes the solution of E@l) from initial d;
statexy and initial timet,. In this casesS is called a globally
attractive set. A seS is called positive invariant, iV X,
e S implies x(t,ty,X) CS for t=tg. :2 —d
Definition 2 Let S is a globally attractive set of neural
network model(1). The neural network modél) is said to L |
be globally exponentially dissipative system, if there exists a + 2d:
compact setS* DS in R" such thatV x,e R\ S*, there ex- LA
ists a constani (xg)>0 anda>0 such that

1
E |alj|+|blj|)k+|u|

2 r

2 (Jagj|+|b;Dkj+|u| | <0, (10

J =

when xe R"\S;; i.e., x¢S8;. Equation (10) implies that
_ ~ V Xge §; holdsx(t,tg,Xg) C Sy ,t=ty. Forxy& Sy, there ex-
inf, o pny o+ {1[X(,t0,X0) —X[|[x € S*} ists T>0 such that

<M (xg)exp{— a(t—tg)}. (7)
X(t’tOIXO)gsly Vt?T“l‘to,

The setS* is called globally exponentially attractive set,
wherex e R™\S* meansx e R" but x ¢ S*. i.e., the neural network modél) is a dissipative system and
S, is a positive invariant and attractive set.
Second, we define a radically unbounded and positive
IIl. MAIN RESULTS definite Lyapunov function
In this section, we present five theorems and two corol-
laries. Vi=cilx|, i=12,...n. (11)
Theorem 1Let g(x) € B. The neural network modél) is
a dissipative system and the &t S;NS, is a positive in-  Calculating the right-upper Diniderivativ® *V;, one ob-
variant and globally attractive set, where tains
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FIG. 1. Profile of the positive variant and globally attractive set
S.
n
v/ Ay - N _ FIG. 2. Profile of the positive variant and globally exponential
D Vll(l)S d||X||+j21 (|alj|+|blj|)k]+|ull<0’ attractive setS* .
i=12,...n, (12 Theorem 2Let g(x) € B. the neural network modél) is

globally exponentially dissipative and s&t is a positive

whenxe R\ S,. S0,S, is also a positive invariant and glo- invariant and globally exponentially attractive set.
bally attractive set. Proof. ObviouslyS* is a positive invariant set because

Combining the above proof, we know th8& S;NS,isa  S*DS,. Now choosing 8<e<max(d;/c), by Eqg. (11) we
positive invariant and globally attractive set. Theorem 1 ishave
proved.

Figure 1 illustrates a profile af. N

Corollary 1. Let g(x) e B. The neural network3) is a D explet}Vi[y<exp{et} 8Ci|Xi|_di|xi|+j21 ik
dissipative system and t#§ NS, is a positive invariant and
globally attractive set, where

n

n

+ 2 |y | Kj + [ ui
def n n 2 ]=l
S1= [xliil d; |Xi|_ﬁ ]21 |aj [k + i =exp{et}[ — (d;—ec;)|x;| +diM;]<0,
- =
"o 2 i=12,...n, (16)
g; 4_di<,2‘1 @i 1K+ i ] (13 when|x;|>MF¥ ; i.e.,xe R" S*. Integrating two sides of Eq.

(16) from 0 to an arbitraryt>0, we have

_ def 1/n def
8= X||Xi|$d— > lailkg+lul [ =My, i=1,...nf. exp{et}Vi(x(1),t)=<V;(x;(0),0).
=
| (14) Therefore, we have
Corollary 1 is an improvement and extension of Theorem cilxi(t)|<exp{ - st}ci|x;(0)]

3 in Ref.[2] where the global attractive set is a sphere de-
fined by Sq={xeR"||x||,=<||RL||,}. However, the global Of

attractive set given in Corollary 1 i§,NS,. It can be seen Ix;(t)|<exp{—et}|x;(0)], (17)
that S,C Ss.
Now, we construct a new set as when x, e R"\&*. Equation(17) means that sef* is glo-
bally exponentially attractive, i.e., E@l) is globally expo-
def diM, def nentially dissipative. The proof is complete.
&= XHX"Sdi—sci =M, (15 Corollary 2. Let g(x) e B. The neural network3) without

any time delay is globally exponentially dissipative, a$td
where 0<e<maxd;/c; and M; is defined inS, of Eq. (9) is a positive invariant and globally exponentially attractive
(see Fig. 2. set where
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_ def d;M¥ AC; ' Q1= (A+AN)/2+ 1), Q1,=B/2, and Q= —lnxn,
S* =1 X||X; |<d S O<T<1; i=1, ... ni. wherel ., is annxn identity matrix.

) ! ! Proof. Let us employ the radically unbounded and posi-
In the following, we suppose;; = 7; . tive definite Lyapunov function as

Theorem 3.Let g(x) e £,9(0)=0 and|g(x)|—+= as
|xi]— +. If the following matrix Q is negative semidefi-

n n
nite, then the neural network modé) is a dissipative sys- _ 'in P J't 2
tem and setS;={x| |gi(x))|<¢;|u;|/di=1,2,...n} is a VX(1),1) .21 G/, g,(x,)dx&;l tﬂig.(xl(f)) dé.

positive invariant and globally attractive set, where (18
= ( Qil le) : Computing the derivative of (x(t),t) along the positive half
Qp Q2 trajectory of Eq.(1), we have

n

dv
i) cg(X(t)) +Z [gi (xi(1)? =g (X (t—77))?]
dt (l) i=1 i=1
n di n n
g; [_ Zgi(xi(t))2+j21 aijgi(Xi(t))gj(Xj(t))+jZl bijgi(xi(t))gj(xj(t_Tj))+9i(xi(t))ui]
+§1 Qli(Xi('f))z—ig1 gi (xi(t— 7))
gx(t) |\T/Qu Qi [gx(1)) " d, 2
- g(x(t—r))) (Qi Qi)(g(x(t—r ) 2 70Ol oIl
" d, 2
Z {7 gi(x(1))] |gi(Xi(t))l_|ui|d_i
<0 when gi(Xi)ERn\S3.
|
So setS; is a positive invariant and globally attractive set. dvi g(x(t)) T/Qu Qo) [g(x(t))
Theorem 4.Let g(x) € G,g(0)=0, andD " g;(x;) <+, — ( ) ( )( )
i=1,2,...n. If there existe>0 andA>0 such that the dtf;, lgex(t=m)] 1Q1z Qaf | glx(t=1)
given matrix n n
Qu Ou _821 €Ji(><i(t))2+izl uig; (xi(t))
:(QIZ sz)

n n
<- (i (D)2 + 2, uigi(x(t
is negative semidefinite, whereQ;;=((A+AT)/2+(\ 82‘1 9i0xi(1) Z‘l 19104 (1)
+&)lgxn), Q12=B/2, and Q.= —\Il,«,, then the neural

network model(1) is a dissipative system and the set up\? Ui2
—82 9~ 5| =5
2e 4g?
def n n u
84= X|i21 (gi( ) ; P i=12,. <0 when gi(x) eR\S,.

Therefore, the proof is complete.
Theorem 5Let g(x) e G. If there exists a positive diago-
nal matrix P=diag(p1,p2, - - - ,Pn) With p;>0 such that

is a positive invariant and globally attractive set.
Proof. Let us employ the Lyapunov function

_ : . o[ 2 def
V(X(t)'t)_i:El Ci fo gi(Xi)dXH';l ftTi)\gi(Xi(f)) dé. 0= P(A—L D)+ (A—L"1D)TP (20)
19

is negative definite, then the neural netw¢8k without time
Then we have delay is a dissipative system and the set

016118-4
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def IV. TWO PROPOSITIONS

55—[X|2

pl i
9i(x)+ 5 ) Proposition 1. The continuous-time Hopfield network
with or without any time delay is a dissipative system.

" (piu;)? In the Hopfield network, its sigmoid activation function
=< >—, 1=12,...n satisfies |gi(x;)|<1 and O<D*g;(x;)<1. According to
=1 4hg Theorem 1, a globally attractive set$s=S;NS, as defined
in Egs.(13) and(14).
is a positive invariant and globally attractive set, where Proposition 2.The cellular neural network with or with-
=diag(,l2, ... l,) abd Ag=max<<\i(Q) is the maxi-  out any time delay is a dissipative system.
mum eigenvalue o. If PA+ ATP is negative semidefinite,  |n a cellular network, the activation functiog;(x;)
then Eq.(3) is still a dissipative system with a positive in- =0.5(x,+1|—|x,—1|) satisfies |g;(x)|]<1 and 0
variant and globally attractive set <D"g;(x;)<1. According to Theorem 1, a global attractive
set isS§=8;N S, as defined in Eq913) and (14).
def lu| . In Theorem 1 of Ref[33], an estimation is given as
Sg= {x||xi|sd—, i=1,2,... n]
I

Vixi(0)|]<1, |xi(t)|]<1+ max—- aii| + |y
Proof. Let a positive definite and radially unbounded X0 (0] 1=i<nd (2 2]+ uil |

Lyapunov function be

There is no conclusion fdx;(0)|>1.
According to Corollary 1, we have

V(X):El Cip; f:igi(xi)dxi -

_ def 1 n
5= X||Xi|$a > laylk+lul |, i=
i\j=1

A

BecauseS, is positive invariant,(1) when (S7_,|a;k;
+Hu)/di=1, V|x0)<1, x((t)eS, (e, [x(t)
<max<i=n(Z_qlay+lul)d); (2 when &L, lalk;
+|u)/di<1, V[x (0)|<Lxi(t)[=<(Z{_4lay|+|ui])/d;
<1; (3) Yx(0)eR", 3T>0 such that When>T [xi ()]
<(Z{_qlaij|+|u)/d;.

Calculating the time derivative of(x), we have

n

=> [_pidixigi(xi)+z Pia;; i (%) g;(X;)
(1) i=1 ]=1

dv
dt

+§1 Pigi(Xi)u;

n
Therefore, the above result improves and extends that in
<g(0TQY)+ 2 Pigi(X)u Ref. [33] P
i=1 . .
n n
S)\Qzl gi(Xi)2+; Pigi(X)U; V. THREE EXAMPLES

Example 1. Consider a two-neuron neural network:

X, (—2 0 (xl) 3 1)(g1(x1))

= + :

Xo 0 —-2/\x; 1 3/1gax2)
Here, ¢;i=1, di=2, a;=3, a;=1, b;=0, and y
=0(i,j=1,2). Suppose thag(x) e B, g(O) 0, |gi(x)]
<10, and sugERD+gi(xi)=D+gi(O)=4. Obviously,

(0,0)" is the equilibrium point of the neural network. Linear-
dv n izing g; at the origin, we have

a9t <> [—pidixigi(x)+pigi(x)u;]
10 4\(x
e )

@ =1 Xq
n X =
2
<i21 Pilgi (%) [ —di|xi| +ui]
. Since the coefficient matrix of the linearized system is posi-
0, for xeR™NSs. tive definite with position eigenvalues, it is not stable at the
equilibrium. From the Lyapunov theorem and approximation
S0 &g is a positive invariant and globally attractive set. Theo-theory, we can see that the original neural network is also
rem 5 is proven. instable at the equilibrium.

< piui |2 (pjup)?
_)\Q;“g'(XH ) g

<0,

wheng;(x;) e R\ Ss. S0,S;s is a positive invariant and glo-
bally attractive set.
WhenPA+ATP is negative semidefinite,

/

/

A
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Acc_:ording to C_orollar_y 2 hqwever, the above neural net- Xy —0.01 0 X, 41 a X?
work is exponentially dissipative. Let=1, thenM =M, = + 3
=(3+1)10/2=20. Therefore, a globally exponential attrac- | X; 0 —0021x; —a —41\x;
+ 3|t ,
def 2% 20 . 2 2/\Xy(t—17) 20
S = |X||Xi = 2-1 =40, 1= 1’2]' wherea is any constant. Obviouslg(x) € G.
Let \=2 ande=0.1. From Theorem 4,
Example 2.Consider a two-neuron neural network with 5 0 11
time delay: Q1= Q= Q=
11 22 0o -2/ 12711 1)
1) _ ([~ 103 (% n —2 —18|(01(x1) HenceQ is negative semidefinite. According to Theorem 4,
X, 0 -1/\x, 18 -2 /)1 ga(xy) the above delayed neural network is dissipative with a glo-
bally attractive set
(1 1)(gl(xl<t—r))) (5) ,
+ + . aet
1 1/1go(Xa(t=7))) |5 S= {x@l (gi(x;)—100?><20 000, i=1,ZJ.

def

Suppose thaig(x) < £ and €= sugieRD+gi(xi)=100 ( It is worth noting that the equilibrium point of the above

neural network may not be existent or unique. So, the dis-

=1,2). cussion of the global stability may not be meaningful. How-
From Theorem 3, ever, the study of the global dissipativity is feasible.
( -1 0 ) (0.5 0.:) VI. CONCLUDING REMARKS
Qu= Qz™ 0o -1/ Qo 05 05" In this paper, we discuss the global disspativity of a class

of continuous-time recurrent neural networks. Several theo-
Hence,Q is negative semidefinite. According to Theorem 3,rems and corollaries are presented to characterize global dis-
the above delayed neural network is dissipative with a glosipation and global exponential dissipation together with

bally attractive set their sets of attraction. The theorems and corollaries herein
imply that the equilibrium of a neural network lies in the
def positive invariant and globally attractive set only, the glo-
S={x|gi(x;)<¢;|u;j]/d;=500/1=500, i=1,2. bally asymptotic stability is equivalent to the asymptotic sta-

bility in the attractive set, any properties of activation func-
Example 3.Consider another two-neuron neural networktion over the set can be utilized, and the condition using the
with time delay: LaSalle invariant principle is given.
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